
Center for Adaptive Supercomputing Software-Multithreaded Architectures (CASS-MT)

Chapel for the Cray XMT

At a glance

Chapel is a new parallel
programming language being
developed by Cray Inc. with the
goal of increasing the productivity
of the end user. One of Chapel’s
themes is to support general parallel
programming by having the user
express parallelism and locality in
an architecture-neutral manner using high-level abstractions. For programmers
of multithreaded architectures like the Cray XMT, this has great promise since
dominant HPC programming models like MPI are a poor fit for it while its native
programming model does not support parallel execution on other architectures.
To help fulfill this promise, this project is focused on improving Chapel’s level of
support for the Cray XMT.

What we do

The Chapel compiler being developed by Cray researchers as part of the DARPA
High Productivity Computing Systems program uses source-to-source compilation
to implement a user’s Chapel program via standard C code with calls to runtime
libraries that implement the necessary parallelism and communication. This
permits the Chapel compiler to portably target such diverse architectures as
multicore desktops, commodity clusters, and Cray supercomputers (not to mention
those developed by other vendors).

Chapel’s support for the Cray XMT has traditionally lagged behind other
architectures due to the fact that within HPCS, Chapel has focused primarily on
supporting large-scale distributed memory systems and only on multithreading only
at a small scale.

As part of PNNL’s Center for Adaptive Supercomputing Software-Multithreaded
Architectures (CASS-MT) the Cray research team is modifying the open-source
Chapel compiler so that its generated C code can automatically be parallelized by
the standard XMT C compiler when it serves as the back-end compiler. This will
permit standard data parallel constructs in Chapel to transparently make effective
use of the thousands of hardware thread contexts supported by the Cray XMT. The
team will then implement XMT-specific performance optimizations with the goal of
making Chapel’s performance competitive with user-written native XMT C.

In addition to improving the Chapel compiler to make more effective use of the
Cray XMT, this project also focuses on extending the language and compiler to
permit a single Chapel program to execute in parallel across a variety of distinct
architectures. One such example would be to have a Chapel program execute using
the compute and service nodes of the Cray XMT. A second would be to have a
single program execute using a Cray XMT in combination with distinct external
systems such as a desktop computer, Cray CX1000, and/or Cray XE6.

To this end, a new locality feature—the realm—has been added to the Chapel
implementation to represent distinct target architectures. This permits Chapel

“The Cray XMT’s unique
architectural features for
multithreading have also resulted
in a unique programming
style since most current HPC
programming models, like MPI,
expose too many assumptions
about the target architecture
in the user’s code. In our work
with Chapel, we strive to let
the programmer focus on the
abstract concepts of parallelism
and locality, permitting programs
to target a more diverse set of
platforms including desktop
multicore architectures,
traditional distributed memory
systems, and now through
the CASS-MT program,
multithreaded architectures like
the Cray XMT.”

- Cray Inc Task Lead
 Brad Chamberlain

August 2010	 PNNL-SA-74689

CASS-MT is dedicated to research on systems software, programming
environments, and applications in a High-Performance Computing (HPC)
multithreaded architecture environment.

We offer the only Open Science Cray XMT system, a one-of-a-kind
supercomputer consisting of 128 multithreaded processors, 1 TB RAM,
and a 7.7 TB Lustre parallel filesystem.

The Cray XMT supercomputer has the potential to substantially
accelerate data analysis and predictive analytics beyond the limitations
of traditional computing. Multithreaded processors allow multiple,
simultaneous processing, helping researchers find solutions to the
world’s most complex challenges faster. The XMT can process irregular,
data-intensive applications that have random memory access patterns.
Unlike many applications where data delivery is dependent on memory
speed, the Cray XMT’s multi-threaded architecture tolerates memory
access latencies by switching context between multiple threads that
work continuously, overlapping the memory latency and preventing the
processor from being held up while it waits for data to arrive.

The multithreaded technology powering our Cray XMT is ideally
suited to perform pattern matching, scenario development, behavioral
prediction, anomaly identification, and graph analysis.

Try it for yourself. We seek to create collaborations and provide
expertise for porting and optimizing applications. The opportunity to
use our Cray XMT system is available to internal and external research
partners.

John Feo,
CASS-MT Director
(509) 375-3768
John.feo@pnl.gov
cass-mt.pnl.gov/

programmers to specify the node types
that should be used for each sub-
computation within their program.
As an example, a user could specify
that a large unstructured graph
computation should execute on the
realm representing a Cray XMT’s
compute nodes while a distinct part
of the program requiring dense linear
algebra could execute simultaneously
using the XMT’s service nodes or the
compute nodes of a more traditional
external system.

How we do it

To improve the mapping of Chapel
programs to the Cray XMT, the
Chapel team has been modifying
the Chapel compiler and its standard
modules to generate C loops and
XMT-specific pragmas in order to
generate the parallelism required
to make effective use of the Cray
XMT. In addition, the team has been
implementing new scalar optimizations
in order to reduce memory traffic and
generate performance competitive
with user-written C for the Cray XMT.
To support the realm concept, the
Chapel compiler and runtime libraries
have been improved to better support
distinct target architectures, potentially
with different native data sizes and
formats.

Future Applications

	 Further tuning of the Chapel
compiler to better support the Cray
XMT

	 Using the Lightweight User
Communication Environment
(being developed by a distinct
research team within CASS-MT)
to support the realm concept for the
Cray XMT

	 Exploring the applicability and
benefits of Chapel and realms
for the application areas being
researched by other teams within
CASS-MT

Brad Chamberlain
Task Lead
Cray Inc.
bradc@cray.com

