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• Design goals (why build an MTGL?) 

• Current status (what does it do now?) 

• MTGL elements (how do you code?) 

• Performance of primitives (what’s the overhead?) 

• Future (what’s the vision for using it?)  
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Design Goals 

• Enable a generic C++ library on multithreaded platforms 

– Once an algorithm is benchmarked in C on the Cray XMT 

• We may want to compose it with other algorithms 

– Accept the graph data structures they produce 

– Produce output that other algorithms can accept 

• We may want to allow programmers to customize it 

– E.g. Run it seamlessly on only blue and red edges 

– E.g. Execute a user analytic upon events like vertex visits 

• We don’t want users to change key multithreaded code 

– Encapsulate these portions in the library 

– Allow users enough access to tailor without endangering themselves 

• Retain good multithreaded performance on the Cray XMT! 

• Run/debug on more conventional multicore or even serial 
workstations 



Current Status 

• Open-Source:  http://software.sandia.gov/trac/mtgl 

– Expanding set of tutorials, documentation 

• Active development associated with several projects 

• Converging on efficient primitives, API 

– Not settled; community input welcomed 

• eldorado-graph@sandia.gov 

• jberry@sandia.gov 

• Notable recent research activity 

– Triangles, rectangles, community detection 

• Berry,Hendrickson,LaViolette,Phillips, 2009    
http://arxiv.org/abs/0903.1072 

– “MEGRAPHS” graph database system uses the MTGL 

– Barrett, Berry, Murphy, Wheeler, MTAAP 2009 

• MTGL/Qthreads for XMT/Niagara/Operteron portability 



MTGL Elements 

• Each graph type stores its traits 

– E.g. vertex descriptor, size_type 

– No hardcoding of types like “int”  
• Algorithm A will run on Joe’s data structure that uses “unsigned long” 

and Bob’s structure that uses “uint32_t” 

• Important to get this right since auto typecasting can kill XMT 
performance 

– The algorithms retrieve these traits to determine typing of 
variables 

• Each graph type exports a common API 

– How do you get the adjacencies of a vertex? 

– How do you get the id of a vertex? .. etc. 

• The programming associates auxiliary data with vertices and 
edges via property maps 

– E.g. global vertex id 

– E.g. distance, capacity, flow, component number, etc. 



MTGL Prerequisites 

• C++ experience at the complexity level of the C++ Standard 

Template Library (STL) 

• Basic mta-pe (Cray XMT programming environment) 

The MTGL is simpler than the Boost Graph Library,  

but also less generic 

It’s fine to start with C and “mtgl-ize” later 



MTGL Performance Considerations 

• Test case 1:  traversing all adjacencies in a graph 

– A) to do something very simple 

– B) to do something generic that the user provides 

• Test case 2: breadth-first search 

– A) with the best XMT algorithm for simple data 

– B) with “mtgl-ized” versions of A) 

– C) with an alternative algorithm 

“Simple data” : ~2B edge Erdos-Renyi Random Graphs 

“Realistic data”: ~0.5B edge power-law distributed data 

(Much tougher than R-MAT) 



Traversing All Adjacencies in a Graph 

• Algorithm 1 (pure C):  Use the compiler’s “Manhattan Loop 

Collapse” 

Seeing this PP:m is good! 

2 memops, 2 instructions! 



Traversing All Adjacencies in a Graph 

• Algorithm 2 (generic C):  What if the inner loop calls a generic 

function via function pointer?  The compiler can’t inline. 

So far so good! 

But now we have > 10x memrefs and  

instructions!  The code is unusable on  

large data. 

   my_func(i,j):  return (i < j); 



Traversing All Adjacencies in a Graph 

• Algorithm 3 (generic C++):  What if the inner loop calls a 

method of a generic function object (“functor”)? 

The same code! but now my_func is an object 

This will scale! 



• Algorithm 4 (partial MTGL):  Use generic C++ strategy with 

loop merge, but use the MTGL API. 

Traversing All Adjacencies in a Graph 

Extracting information 

From graph API 

The key work 

The same number of instructions and 

memory references as C++ alg. 3 

in the merged loop. 



Traversing All Adjacencies in a Graph 

• Algorithm 5 (“visit_adj” in the MTGL):  Manually load 

balance among adjacencies – fully generic 

thread 0 thread 1 thread 2 

Why do this? Stay tuned for BFS. 



XMT Results: Adjacency List Traversal 

Simple Data  

(~2B edge Erdos-Renyi) 

Realistic Data  

(~0.5B edge power law) 

• “auto MTGL” code semi-generic at no efficiency cost 

• “manual MTGL” code fully-generic at 2-3X 



• Q is a circular queue that 
contains the search vertices. 

• A is the virtual adjacency list 
for the vertices in Q. 

• For each level of the search: 

– Divide current level vertices in Q 
into equal sized chunks. 

– Each thread grabs the next 
unprocessed vertex chunk and 
the next output chunk in Q. 

Petr Konecny’s BFS Algorithm (2007) 

– Each thread visits the adjacencies of every vertex in its input chunk 

writing the next level of vertices to its output chunk.  New output 
chunks are grabbed as needed.  Unused portion of output chunk 

filled with marker to indicate no vertex. 

Inner loop: 

3 loads, 

3 stores! 



• Partial 

– Generic for compressed sparse row (CSR structures) 

– Inner loop does the same number of instructions and memrefs as 

the pure C code 

– Thanks to Mike Ringenburg & Kristi Maschhoff of Cray for helping 

find a troublesome auto typecast problem  (which had added 2 

memrefs/adjacency and prevented scaling past 32p) 

• Full 

– Fully generic for any MTGL graph adapter 

– Inner loop does the same number of memrefs, 2 more instructions, 

and one more register spill 

– Haven’t yet worked with Cray to see if this can be improved 

MTGL-ized Versions of Petr’s C code 



BFS Results for “Fake” Data 

• Petr C:  original C code 

• Petr Partial MTGL 

– Perfomance almost 

identical (same 

#instructions, memrefs) 

• Petr Fully MTGL 

– The extra 2 instructions 

and 1 spill currently slows 

scaling past 32p 

• Visit_adj MTGL uses Alg 2 

– Looks hopeless, but wait.. 

~2 Billion edge Erdos-Renyi 



BFS Results for Realistic Data 

• Petr Partial MTGL 

– Algorithmic issue: high-

degree vertex early in 

search means serialization 

• Visit_adj MTGL uses Alg 2 

– Chunks over adjacencies, 
not the bfs queue 

~0.5 Billion edge power-law 

We know of no efficient 

algorithm to scale past 

16p on these data! 



Vision: Compose Kernels 

• MTGL Example: Hierarchical community 

detection 

– Weight edges using a mathematical 

programming optimization 

– Run a filtered connected components 

that respects heavy edges  

– Derive a contracted graph by 

appealing to the result 

– Recurse, maintaining mappings 

between levels 



Vision: Compose Kernels 

• MTGL Example: Subgraph Isomorphism 

– Filter out edges that couldn’t match (returns an edge-

induced subgraph) 

– Take an Euler tour in the pattern graph 

• “Duplicate adapter” translates directionality 

– Build a bipartite graph representing potential matches 

– Backwards search, then find connected components 

– Run more exact algorithm on each component 



MEGRAPHS 
(Modular Environment for Graph Research and Analysis with Persistent Hierarchical Storage) 

Simplifies graph application implementation on Cray XMT 

• Maintains persistent copies of graphs/vectors 

• Allows user processes to attach to these objects 
• Provides a suite of commonly used primitives 

• Uses MTGL as the underlying graph library 

Contact: Curt Janssen cljanss@sandia.gov 



Future 

• Finalize basic API 

• More tutorials at http://software.sandia.gov/trac/mtgl 

• Expand set of MTGL algorithms 

• Supply MEGRAPHS with user-defined engines 
encapsulating MTGL (and other algorithms) 

• ? Merge with Boost Graph Library (Boost MultiThreaded 
Graph Library?) 

• Explore synergy with GraphCT, PNNL applications 



Acknowledgements 

MultiThreading Background 

Simon Kahan (formerly Cray) 

Petr Konecny (Google, formerly Cray) 

Kristyn Maschhoff (Cray) 

David Mizell (Cray) 

Mike Ringenburg (Cray) 

MTGL Algorithm Design and Development 

Brian Barrett (Sandia) 

Vitus Leung (Sandia) 

Kamesh Madduri (Lawrence Berkeley Labs) 

Brad Mancke (BBN, formerly Sandia) 

William McLendon (Sandia) 

Cynthia Phillips (Sandia) 

Kyle Wheeler (Sandia) 

Generic Software Background 

Nick Edmonds (Indiana U.) 

Douglas Gregor (Apple, formerly Indiana U.) 

Andrew Lumsdaine (Indiana U.) 

Jeremiah Willcock (Indiana U.) 


