Toward Parallel Document Clustering

Jace A. Mogill, David J. Haglin

Pacific Northwest National Laboratory
Richland, WA, 99354 USA
{jace.mogill, david.haglin} @pnl.gov

Abstract—A key challenge to automated clustering
of documents in large text corpora is the high cost of
comparing documents in a multi-million dimensional
document space. The Anchors Hierarchy is a fast
data structure and algorithm for localizing data
based on a triangle inequality obeying distance met-
ric, the algorithm strives to minimize the number of
distance calculations needed to cluster the documents
into ‘“‘anchors” around reference documents called
“pivots”. We extend the original algorithm to increase
the amount of available parallelism and consider two
implementations: a complex data structure which
affords efficient searching, and a simple data struc-
ture which requires repeated sorting. The sorting
implementation is integrated with a text corpora
“Bag of Words” program and initial performance
results of end-to-end document processing workflow
are reported.

I. INTRODUCTION

Automated clustering of documents in large text
corpora begins with the construction of document
signatures in the form of sparse vectors of word
frequencies. This phase is a “Bag of Words” (BoW)
calculation, which is described in section II-A. The
BoW processing is followed by anchors hierarchy’s
clustering of points into “anchors”, which are sets
of points ordered by distance from a “pivot”. The
notion is similar to a cluster with a centroid but is
relaxed in the sense a pivot is not the geometric
center of a cluster, rather it is one of the data
points serving as the point of reference for the other
points in the anchor, and for that anchor relative to
other anchors. The data structure explicitly stores
inter-pivot distances in sorted lists to reduce re-
calculation and accelerate searching for points.

The serial clustering process, seen in figure 1,
is not suitable for use on parallel computers due
to decreasing amounts of concurrency as clustering
proceeds. Parallelizing the serial algorithm requires

restructuring loops and data structures to break data
dependencies which would normally be enforced
through the serial outer loop. This technique is
presented in II-C.

We conclude with early results for a multi-
threaded implementation of the anchors hierarchy
applied to large text corpus, and identify several
areas of further research both in algorithmic effi-
cacy and execution performance on both the Cray
XMT and ordinary multi-core x86 systems.

II. ALGORITHMS

The two major components of our application are
the parsing and indexing of the text corpus, and the
clustering of the documents. The text processing is
dominated by a Bag of Words operation, described
in section II-A, and deals with tokenization of
strings, mapping unique words (tokens) to integers,
and counting the frequency of word occurrence per
document. The Anchors Hierarchy phase, described
in section II-B, performs the clustering of the
documents into a navigable structure.

A. Bag of Words

Given a document of words—such as a web
page with text on it, an email, or a book—it is
possible to characterize the document by count-
ing the frequency of each word it contains. Note
that this characterization ignores the order of the
words within the document. The collection of word-
to-frequency mappings is called a Bag of Words
(BoWw).

One of the most important applications of BoW
is to provide document signatures—a strategy for
characterizing documents within a corpus—and to
use these signatures as a way to measure similarity
between documents. The similarity measure can

(a) Point cloud P.

(c) The furthest point is se-
lected as a new pivot, each
point is associated with it’s
nearest pivot. The gray line
marks the half-plane separat-
ing the two anchors.

(e) Step d is repeated until
the desired number of an-
chors have been created.

)

(b) A point is chosen at ran-
dom to be the first pivot, all
the points are sorted relative
to the initial pivot, caching
distances in D.

o

(d) The furthest point from
any of the pivots is selected
as a new pivot, each point
is associated with it’s nearest
pivot.

e
@ _
(f) Completed anchor for-

mation. The half-plane lines
form a Voronoi diagram of

=

the anchor space.

Fig. 1: Serial anchor formation. Anchors are added one
at a time until the desired number have been formed.

then be used to search for clusters [1] of similar
documents.

The signature is a sequence of (wordID, fre-
quency) pairs. This information can be interpreted
as a sparse vector whose size is the number of
unique words in the entire corpus, each wordID
represents a position within the vector, and the fre-
quency represents the magnitude in that dimension.
Thus, the BoW places documents into R™ space,
where n is the number of unique words found in
the entire corpus, and any distance measure in the
n-dimensional space can be used as a similarity
measure. This vector depiction is called a sparse

vector since most documents contain a small subset
of the n words in the lexicon, which means the
magnitude of most dimensions is zero. Considering
a document signature as a sparse vector is a well-
established approach to characterizing documents
[2].

In statistical text modeling, a common assump-
tion used by models like Latent Dirichlet Allocation
[3] is that of exchangeability of words within a
document [4], which requires that the probability
of a given sequence of words is independent of the
order those words appear. Under this assumption,
a given corpus can be faithfully represented by a
BoW representation.

The fundamentals of the BoW problem induce
algorithmic solutions that will exhibit both regular
and irregular memory access patterns. The reasons
are that the input corpus is typically read in a
sequential manner with very high spatial locality,
while the assignment of unique identifiers to words
is inherently irregular, since this assignment can
be efficiently done using a hash-based mapping of
strings to integers. Given the unpredictable appear-
ances of words in the input corpus the accesses to
such mapping will be highly irregular.

B. Anchors Hierarchy

The Anchors Hierarchy [5] gets around problems
of high-dimensionality by ignoring the concrete
data representation enitirely, and instead leveraging
the properties of a general metric space. For any
points z, y, and z, we require:

d(z,y) = 0iffz =y
d(z,y) = d(y,)
d(z,z) < d(z,y)+d(y,=2)

The last of the above is called the triangle
inequality. The primary cost savings in the anchors
hierarchy comes from reducing the number of dis-
tance calculations by paying careful attention to the
implications of the triangle inequality.

For the experiments in this paper, we define the
distance between two document vectors x and y
using the cosine distance

-y
d(x,y) = arccos () .
[l Iy

If z and y are normalized to have unit length, this
simplifies to d (x,y) = arccos(x -y). The docu-
ment vectors are normalized to intersect the unit
sphere, and the distance between two documents
is the great circle distance on the sphere. Maximal
distance occurs when documents have no words in
common, in which case the dot product is zero,
leading to a distance of 7 /2.

Rather than implement cosine distance from nor-
malized words frequencies directly as we have, it is
more common to use an approach like tf-idf [6] that
takes into account the occurrence of a term across
documents. We do not anticipate any difficulties
in parallelizing tf-idf normalization, and expect to
implement it in a later phase of the project. We
look forward to future work experimenting with a
variety of different distance metrics.

Given a large text corpus, we first build the bag
of words representation, as described in [7]. The
resulting sparse vectors are then passed to build a
set of anchors, which are then merged hierarchi-
cally as described in section II-D. Following this,
a typical analysis would feed to any number of
summarization algorithms or query tools; we do not
yet address these.

1) Constants and Notation: The two important
constants in the parallel algorithm are K, the total
number of anchors to create, and e, the number
of new anchors to add simultaneously. It is not
necessary for the value of e to be constant — the
value may be recomputed before new anchors are
chosen. The following notation is used:

e N is the number of points

e n is the number of dimensions

e K is the total number of anchors to create

e k is the number of anchors presently

e P is the set of all points, where:

P = {plv"pr}

o A is the set of pivots, A= {ay,....,ax}
o S is the set of anchors, S = {Cy,...,Cx }
e C; is an anchor of points:

Cie{1.k} = Pida(ijef1r.1c.|})
e D is the set of distances from points to their
anchors, Dicr1.xy = 1 Ai — Pidw(ijeqr..icp |l

The function idz(7, j) converts an anchor name
¢ and rank index j of a point in the anchor C; to
the index of the point in P, the set of all points.

A point is in exactly one anchor, such that P =
Cide(ie{1. k},jef1.]C]})-

The conventional set notation is used throughout
the examples carrying the additional semantics that
elements in the set are ordered and are individually
accessible by indexes. Specifically, point p;g,; ;) 18
the j*" most distant point in anchor 4 from the pivot,
A;. Furthermore, when set union and subtraction
are performed, we imply the ordering is preserved.
For example, C;\ P;qy(;,m) indicates the mt* point in
anchor ¢ is removed from that anchor, implying that
points Pp, 11 |c,| are renamed P, ¢, _1|. Similarly,
C’UPidx(i’m) inserts the point P;g,(; m) into the set
C' at the index position corresponding to it’s rank
in the distance ordered list from the anchor’s pivot,
Aj;, and the points C%m"k} are renamed C%m—&-l..kz—&-l}'

2) Serial Algorithm: The serial Anchors Hier-
archy algorithm, shown in figure 2 proceeds as
follows: Initialization begins by selecting a first
pivot at random from the set of points and assigning
the remaining points to the anchor of the initial
pivot (lines 1-2). The distance from each point to
the pivot is calculated and cached in D (line 3).
The outer loop has K — 1 iterations, each iteration
will turn exactly one point from an ordinary anchor
point into a pivot point for a new anchor.

Every iteration begins with selection of a new
pivot point, a’, which is the point furthest from any
existing pivot. It is then removed from the anchor it
comes from (lines 5-7). The set of points associated
with the new anchor, C’, is initialized as empty (line
8).

The new pivot is compared to every existing
pivot, if the distance from the new pivot to the
pivot under consideration (|la’ — a;||) is more than
twice the radius of that anchor (||C;,, — a;||), no
points in the anchor under consideration can be
nearer to the new pivot than it’s current pivot and
the entire anchor may be skipped (lines 10-12).
If it is possible for points in the anchor under
consideration to be closer to the new pivot, the
points in the anchor are considered one at a time, in
order of descending distance to the old pivot (lines
13-18). Points which are closer to the new pivot
than the old pivot are moved from the old anchor,
C;, to the new anchor, C’, on lines 13-18. When the
distance of the point being considered to it’s old
pivot is less than half the distance from the new

Procedure: Serial Anchors Hierarchy Al-
gorithm

Input: Point cloud P = {p1,...,pn}
Input: K = Number of anchors to form

Output: Anchors of points
C = Pido(ic{1..k} je{1./ci1})
Output: Set of pivots A = {ay,...,ax}

1: a3 < Anchor point, selected randomly
from P

2: C1 <P \ ai

3: Dieqr.ky = lAi = Pidaijefr.jcapll

4: for all k£ in {1.K — 1} do

50 u < argmax Dige(u,|c.|)
ue{l..k}

6: a' < Pide(u,c.))

7: Cu — C“ \ a/

8-

9

C'+0
: for all 4in {1..k} where i #u do
10 h+ 3lla’ — ai]
11: m <« |C]
12: while m > 0 and D;q,(;,m) > h do
13: d <+ ||a’ - Pid.t(i,m) ||
14: if d < Didz(iﬂn) then
15: C'«+C'U Pidz(i,m)
16: Ci < Ci \ Pida(i,m)
17: D'« D uUd
18: D; «+ D; \ d
19: end if
20: m+«—m-—1
21: end while
22: end for

23: A+ Aud
24: C+Cul
25: D+ DUD
26: end for

Fig. 2: Serial Anchors Hierarchy Algorithm.

pivot to the old pivot the search may stop. After
all the existing anchors have been considered, the
new pivot and it’s associated points are committed
to the sets of completed anchors (lines 23-25).

C. Parallel Algorithm

The Parallel Anchors Hierarchy algorithm ex-
tends the serial algorithm by adding multiple an-
chors simultaneously. This is made possible by
breaking the dependence carried by the outer loop
through allocating temporary storage to perform a

reduction incrementally, the reduction can then be
moved inside it’s own dedicated parallel loop.

1) Initialization: The initialization of the paral-
lel algorithm randomly selects the initial pivot and
computes the distance from every other point to the
pivot to form the first anchor.

2) New Anchor Selection: Instead of associating
points to the new anchor before selecting the next
new anchor as in the serial algorithm, the parallel
algorithm selects e anchors simultaneously. This
process can be deterministic, but does not produce
the same results as the serial algorithm. Because
the results will not match the serial results, imple-
menters are free to use any point selection method,
for example: furthest e points from any pivot(s),
furthest point from each of e pivots, random, etc.

The examples in this paper uses the furthest of
e pivots method. The point is moved to the set of
new anchors, A’, and removed from the cluster it
comes from, C;.

The number of new anchors to introduce at one
time, e, may be any value 1..K, Moore suggests
V/N in [5]. A value of 1 introduces only one
new anchor at a time, and exactly replicates the
semantics of the original serial algorithm. At the
other extreme, a value of K introduces all the new
anchors at once, which is equivalent to a brute force
search.

3) Associating Points with New Anchors: In
contrast to the serial algorithm which moves a point
to a new anchor as soon as the point is inspected,
the parallel algorithm (figure 3) must first consider
moving each point to every new anchor before
the point is finally moved to the pivot which it
is nearest. This operation can be thought of as
an unstructured reduction, implemented by splitting
the reduction process into two steps: one parallel
region to decide if/where the point should move
(distance minimization), and another to actually
move the point.

The same distance calculations (lines 6-9) as
performed in the serial algorithm (figure 2, lines
9-14) are used to eliminate anchors more than
%(Ha; —a;||—|la;i —D;,, ||) away from the new pivot
being considered. The new candidate anchor’s name
(y) is stored in X; (line 10), indicating to which
anchor this point will move at the end of the phase.

In order to permit unordered updates to new

Procedure: Associate Points with New An-
chors

Input: Anchor of points C

Input: Set of new pivots A’

Input: Number of clusters formed so far, k
Input: Number of new anchors e

Output: Future Anchor associations X

1: X <« Inverse index of C

2: Dicgr.ky = | Ai = Pidatiieqr. el
3: for all ¢in {1.k} do 1 Parallel Loop

4: m+ argmax (||la; — D, ||)
me{l..|D;[}

5: for all jin {l..e} do © Parallel Loop

6: h < 3lla; — a4l

7 while |la; —D;, || <h do

8 t <+ Xim

9: if (|la} —D;,, |l < lla;—D;,,||) then

10: Xim —J

11: end if

12: D, — Dz \ Dim

13: m «+ argmax (|la; — D, ||)

me{1..|Di}

14: end while

15: end for

16: end for

whereas the parallel algorithm uses the storage of
X to schedule their moves in a separate phase.
Figure 4 shows how this is performed.

Procedure: Move Points to New Anchors
Input: Anchors C

Input: Set of new pivots A’

Input: Number of clusters formed so far, &k
Input: Future Anchor associations X
Output: Anchors C

Output: Set of Pivots A

Output: Number of anchors formed at end
of phase, k

C 0
: for all 7 in C, j in C; do © Parallel Loop
t <+ X@
if X;, # i then
Ci < C{UCy,
Ci < Ci \ Cy,
end if

A S o e

8: end for

9: C+~CucC’/
10: A+ Au A
11: k< k+e

Fig. 3: Parallel method for associating points with new
anchors.

anchors stored in X, the updates must be made
atomic with respect to to other iterations as well
as comparisons. Machines such as the Cray XMT
in which synchronization is abundant [8] allow a
specific point (i.e., X;) to be “emptied” prevent-
ing other threads from using that point until it is
“filled”, thereby enforcing atomic update semantics.
On systems where synchronization must be ra-
tioned, the NV possible update sites could be mapped
onto a smaller number of locks. Alternatively, the
threads themselves may be synchronized by turning
lines 8-12 into a critical region in which only
one thread can execute at a time. Fine grained
synchronization affords N degrees of concurrency,
lock coloring reduces the concurrency to L locks,
and critical regions have no concurrency at all. The
three techniques produce identical output.

4) Move Points to New Anchors: The serial algo-
rithm moves points to new anchors incrementally,

Fig. 4: Parallel method for moving points from old
anchors to new anchors and committing new anchors
to the new anchors list.

The point motion loop is embarrassingly parallel
in that every point may be moved simultaneously.
The loop on line 2 iterates through every anchor
and every point in every anchor comparing the new
pivot stored in X to the current pivot. If the point is
to be moved, it is inserted into the new anchor and
removed from the old anchor (lines 4-6). After all
points have been processed, the set of new pivots is
merged with the old set of pivots, and the set of new
anchors is merged with the old set of anchors (lines
9-10). Finally, the number of anchors found so far,
k, is updated to the current number of anchors.

D. Form Hierarchy of Anchors

The second phase of the Anchors Hierarchy, fol-
lowing the clustering of points into anchors, is hi-
erarchy formation where the anchors are combined
into a navigable structure. The hierarchy formation
process recursively merges the two anchors which

when combined form the smallest new possible
anchor. The two anchors are then replaced with
their combined anchor, the process is repeated, the
final hierarchy is illustrated in figure 5.

Fig. 5: The complete Anchors Hierarchy after multiple
rounds of anchor combining.

The hierarchy of anchors can be thought of as
a pennant tree, a special form of a binary tree in
which a parent node has one unique child and itself
for the other child [9]. Instead of combining K
anchors in K — 1 phases, pennant tree construc-
tion can proceed in parallel by opportunistically
combining all pairs of anchors which mutually
form the smallest new anchor. Anchors which do
not mutually pair during one round of combining
are propagated to the next round with the newly
combined anchors (figure 6).

Phase 5 96
Phase 4 6’2\—\‘
Phase 3 3’1\| 34
Phase 2 12/“ 31 15
Phase 1 /T 6 19 K‘s 1N
Radius[2 4 5 1 10 9 15 9 7 19 9 1 5
l Anchor#[1 2 3 4 5 6 7 8 9 10 11 12 13 |

Fig. 6: Parallel formation of a pennant tree by creating
the smallest new anchor from two extant anchors.

III. IMPLEMENTATION

Direct implementation of the parallel Anchors
Hierarchy algorithm presents many challenges for
efficient execution because the parallelism effec-
tively inverts from the outermost loop to innermost
over the course of execution, requiring efficient load

balancing. Worse, serial inner loops may impose
nearly pathological load imbalances. Relative to
x86, the serial performance penalty of the Cray
XMT can be on the order of 100x, and unbalanced
load readily defeats the parallelism of a 100 pro-
cessor system.

Ahmdal’s Law requires us to not only parallelize
but also load balance 99.999% of the program, ef-
fectively eliminating algorithms and data structures
with an implied serial inner loop (i.e.: the linked
list traversal used in figure 3, lines 7-14), or lack
concurrency (AVL trees). To achieve the parallelism
goal, we must express Anchors Hierarchy using
only OpenMP or XMT-C idioms the compiler can
transform for parallel execution at all loop levels.
On the XMT this is a rich set of composable id-
ioms including: general, Manhattan, and triangular
loop collapse; reductions performed with atomic
operations, hoisted out of loops, or performed in
phases; and recurrences solved by parallel prefix.
The compiler automatically performs scalar ex-
pansion, privatization, and allocates intermediate
storage in order to break dependencies to distribute
loops for parallelization.

Using these idioms, we are able to express all
the loops necessary to implement Anchors Hi-
erarchy through repeated sorting. Sorting can be
implemented with no serial loops, meaning it can
achieve the parallel coverage requirement, does not
require sophisticated data structures, and eliminates
problems related to load imbalance. This simplicity
comes at a cost: the sorting method sorts all points
every phase, however anchor-centric data structures
minimize references to points which are not candi-
dates for moving, reducing total work. We intend
to better characterize the difference in total work
with future experiments.

A. Sorting

This section briefly reviews the sorting tech-
niques used in our implementation: counting sort
and radix sort. These methods are stable sort
methods, meaning keys of the same value are not
reordered with respect to each other during sorting.
This trait makes possible the conversion of the data
dependency that serialized the inner loop (and is
responsible for load imbalance) into a dependence
resolved by sorting, which can be efficiently paral-
lelized.

1) Counting Sort: Counting Sort is an efficient
technique when the range of integer keys is known
in advance and is small with respect to the num-
ber of points. Counting Sort has a complexity of
O(n + k), where n is the number of elements to
sort and k is the number of unique keys [10]. The
algorithm, illustrated in figure 7, proceeds by first
histogramming the number of occurrences of each
key, then a prefix operation stores the partial sums
of counts as offsets for the sorted positions, and
finally memory fills the length of the histogrammed
sizes are performed at the offsets to generate the
sorted list.

Input 6 36 3046 900

Count 370 021 073 00

Offset

Output [0 0 0 3 3 4 6 6 6

Fig. 7: Counting sort.

Each of the three phases can be performed in
parallel: histograms are reductions which can be
implemented using atomic increment instructions or
scalable cyclic reductions, the recurrence to calcu-
late offsets can be performed via parallel prefix, and
the memory fill is a parallelizable Manhattan loop.

It is critical all the loops in counting sort are
executed in parallel, particularly the nested loops,
to ensure load balancing. The case in which all
the elements have the same key must perform as
well as the case of monotonically increasing keys.
Counting sort, exposes triply-nested parallelism,
however OpenMP limits us to 1 (occasionally 2)
loop levels of parallelism, and the XMT compiler
exploits only two loop nests of parallelism at a time.
The XMT compiler can be coaxed into parallelizing
either the inner two or outer two loops, allows us
to have both implementations in the same program
and dynamically select at runtime which version
to call based on the expected loop trip counts.
Our future work on this application will include
characterizing which loop nests should be executed
in parallel under which circumstances, and extend

this manually collapsed OpenMP loops.

2) Radix Sort: Radix Sort, seen in figure 8,
works by successively sorting by precision, begin-
ning with the units of least precision and progress-
ing towards the most significant units of precision
[10]. Because radix sort iterates over positions,
it can be used to sort values of any length or
type. In our implementation, the stable sort used
per pass is counting sort (section III-Al), which
allows us to select the exact number of bits being
sorted. Between Radix sort’s iterative approach and
counting sort’s tunable range, it is possible to make
explicit decisions about space-parallelism tradeoffs,
research we intend to explore in the future.

Original Pass 1 Pass 2 Pass 3
421976 438900 8600034 008976
644203 656900 470940 127069
008976 6442003 961413 421976
961413 961413 421976 438900
470940 476216 644203 470940
860034 860034 476216 476216
476216 470940 656900 644203
127069 127069 12[7069 656900
438900 4219776 438900 860034
656900 008976 008976 961413

Fig. 8: Radix sort, radix = 2.

B. Anchors Formation Via Sorting

Instead of directly implementing a data structure
describing a set of anchors, each with one pivot
and zero or more points, we store three arrays: the
pivot each point is associated with, the distance
from the point to it’s pivot, and a sorted rank. The
data is first sorted by the distance field, then again
by pivot. Because the sorting is stable, pivots in the
resulting sorted lists can be indexed using parallel
prefix techniques, and binary searches can be used
to find points within anchors.

1) First and Second Anchor: The creation of
the initial anchor occurs as it does in the serial
algorithm (figure 9(a)). The second pivot is chosen
as the point furthest from the initial pivot, and the
half-plane between the two pivots is calculated.
A binary search is made to find the range of
points which are considered for associating the new
pivot, and all the points are considered in parallel
(figure 9(b)).

To restore the arrays to a sorted order which
can be navigated by anchor and distance the entire

Pivot Dist.
.000
.424
.643
286
.963
.709
.328
.926
.003
.621
.011
.421

OO0 oo o0oo o oo oo
W W doU U WRE OO o

\'_0_/
(a) The initial pivot is cho-
sen at random and all the
points are sorted by distance
to the pivot.

Dist.

Pivot

0 5.328
1 1.822
£ 1 2.483
0 7.621
1 0.581
1 0.000

(b) The furthest point is se-
lected as the new pivot, the
half-plane between the two
pivots determines the range

of points to evaluate, points
are reassigned to the nearer

pivot.
Pivot Dist.
0 0.000 Pivot Dist.
0.000 0 0.000

0.424
0.643
1.286
3.963

0.424 0
0
0
0
0 4.709
0
0
1

0.581
.643
.286
.822

0

1

1

2.483 7.621 4 ____—
3.963

4

5

7

. " 0.000
709 6 1 0.581
.328 . 1 1.822 ¢
.621 1 2.483

(d) The pool of all points
is sorted by anchor (logk
bits are sorted), permitting
the anchors to be indexed
via parallel prefix.

5.328

cococorroOoroOR

(c) The pool of all points is
sorted by distance (64 bits
are sorted).

Fig. 9: Anchor formation via sorting. The first two
anchors are created sequentially.

array is sorted by distance (figure 9(c)), and again
by pivot (figure 9(d)). Sorting by distance involves
all 64 bits of the double precision floating point
numbers used for distances, however the number
of pivots does not require 64 bits of precision.
The radix sort allows sorting of only the log k& bits
needed to identify all the pivots.

After sorting, the arrays can be indexed to find
the locations of all the pivots. This is a parallel
prefix loop the XMT compiler is able to parallelize
but would be extremely challenging to perform
in parallel using OpenMP. Future investigations
will consider how anchor range indexing and other
recurrences can be parallelized for OpenMP.

2) Parallel Anchor Addition: Our parallel algo-

rithm adds multiple anchors simultaneously, trading
work reduction via machine learning for additional

(a) The furthest point from each
of the pivots are selected as new
pivots, half-plane search spaces
are found, and nearest new pivots
are chosen.

Pivot
0

Dist.
.000
.000
.000
.000
.424
.581
643
.286
.558
.822
.963
.328

OCOoOrRrNOOFROWHKEN
O WwWrHFEFRPROOOOOOOo

(b) The pool of all points are sorted by
distance. 64 bits are sorted.

Pivot Dist.
0 0.000
0 0.424
Eﬁ«i 0 0.643
W 0 1.286
0 3.963
0 5.328
1 0.000
1 0.581
1 1.822 S}
2 0.000
2 1.558
3 0.000 m

(c) The points are sorted by anchor, and
the pivots are indexed. Anchor formation
is complete. logk bits are sorted.

Fig. 10: Parallel anchor formation by addition of multiple
pivots. These steps are repeated until the desired number
of anchors have been formed.

concurrency. Because adding multiple anchors si-
multaneously has different semantics than adding
one at a time, any new pivot selection method may
be used. Understanding how new pivot selection
affects the results will be part of our research.

In our current implementation, new pivots are
selected from the furthest point in every extant

TABLE I: Properties of the corpora used in our experi-
ments

enwiki | 15° 500K | filtered
Corpus Size 9.8GB 2.3GB
Total words 1.74B 0.4B 0.335B
Unique words 13.3M 3.3
Number of documents || 4571262 | 5000007 | 366613
Avg words/document 381 808 372
Avg unique words/doc 163 335

Twe extracted the first 500000 documents from enwiki

anchor. This is illustrated in figure 10(a): two new
pivots are added and points are assigned to the pivot
nearest them. The list is sorted first by distance
(figure 10(b)), then by pivot (figure 10(c)), and
the pivots are indexed. Additional anchors can be
formed by repeating the steps in figures 10(a)-
10(c). Note that pivot 3 has no points associated
with it and at most only 3 new pivots can be added
in the next phase.

IV. PRELIMINARY RESULTS

We ran all of the experiments reported here on
our Cray XMT that has 128 processors, 1 TB of
memory, and the Cray XMT 1.4.01 software.

A. English Wikipedia

We downloaded the wikipedia pages-articles file
dated 30-Jan-2010'. A python library was used
to extract the <page> content from non-redirect
pages. The extracted content contained html tags
and some wikipedia-specific encoding structures.
We extracted as much as we could from this
complex encoding. However, we are aware that
this corpus has some non-words and this is borne
out in the data showing so many unique words
(See Table I). We selected only the first 500,000
documents from the over 4.5 million documents
extracted from wikipedia. The high variance of
document signature (non-zero vector entry) sizes
caused load imbalance problems, so we arbitrarily
filtered out all documents with fewer than 100
unique words and those documents with more than
10,000 unique words. Properties of the original and
down-selected datasets are shown in Table I.

'The file we downloaded is enwiki-20100130-pages-
articles.xml.bz2 and was retrieved from http://download.
wikimedia.org/enwiki/20100130/

B. Running times

We ran our code on the down-selected dataset
and captured the time for computing the anchors;
we do not include times for computing BoW. Fig-
ure 11 shows running times for varying number of
processors on our Cray XMT.

V. FUTURE WORK

The importance of triply nested parallel loops
is made clear in Anchors Hierarchy where the
idiom occurs twice in very different contexts. Load
balanced execution is required in both instances
because the work load inverts from the inner loop
to outer. Furthermore, the nested parallelism is the
source of the strong scaling which allows a larger
system to solve a problem in less time than a
smaller system, and larger problems to be run in
the same amount of time as smaller problems by
using larger systems.

The additional parallelism comes at the cost of
redundant calculations — the anchors hierarchy is
a machine learning technique, introducing multiple
new anchors simultaneously reduces opportunities
to eliminate distance calculations via the triangle
inequality rule, increasing total work. It will be
necessary to characterize how the redundant work
is (not) overcome by parallelism and affects total
execution time.

We have partially implemented a direct imple-
mentation of Moore’s algorithm using linked listed
data structures, we would like to complete this im-
plementation and use it as a performance reference
study to gauge the relative efficiency of our sorting
version. The comparatively high single-threaded
execution rate and small number of processors on
a x86 system suggest the complex data structure
technique may execute more effectively on x86 than
the sorting technique.

The initial anchor is selected at random, a deci-
sion which might effect clustering quality. The sen-
sitivity of the clusters formed with respect to initial
pivot selection will be characterized. A related issue
is our parallel implementation adds multiple an-
chors simultaneously, creating differences between
serial and parallel execution. We will investigate
how different pivot selection strategies affect exe-
cution performance and cluster quality.

—— Total time for Anchors Computation

Time (seconds)

1 \0 2\0 T T
Processors

(a) Running times

/

—— Total time for Anchors Computation

S

Speedup(p)

60 80 100 120

Processors

(b) Speedup

Fig. 11: Performance/scalability on the Cray XMT architecture using the Down-selected English Wikipedia corpus

Although the XMT compiler performs extensive
program transformations and rewrites, it fails to
automatically parallelize some triply nested loop
structures requiring transformations. We are inter-
ested in coaxing the compiler into performing these
optimizations automatically, however, we will most
likely need to perform them manually in any case
in order to expose comparable nested parallelism
for the OpenMP implementation.

ACKNOWLEDGMENT

This work was funded under the Center
for Adaptive Supercomputing Software — Multi-
threaded Architectures (CASS-MT) at the Dept.
of Energy’s Pacific Northwest National Laboratory.
Pacific Northwest National Laboratory is operated
by Battelle Memorial Institute under Contract DE-
ACO6-76RLO1830.

REFERENCES

[1] N. Oikonomakou and M. Vazirgiannis, “A Review of
Web Document Clustering Approaches,” Data Mining
and Knowledge Discovery Handbook, pp. 931-948, 2010.
G. Salton, A. Wong, and C. S. Yang, “A vector space
model for automatic indexing,” Commun. ACM, vol. 18,
no. 11, pp. 613-620, 1975.

D. M. Blei, A. Y. Ng, M. L. Jordan, and J. Lafferty, “La-
tent dirichlet allocation,” Journal of Machine Learning
Research, vol. 3, p. 2003, 2003.

D. J. Aldous, “Exchangeability and related topics,” in
Ecole d’été de probabilités de Saint-Flour, XIII—1983,
ser. Lecture Notes in Math. Berlin: Springer, 1985,
vol. 1117, pp. 1-198. [Online]. Available: http://www.
springerlink.com/content/c31v17440871210x/fulltext.pdf

(2]

(3]

(4]

10

[5S1 A. W. Moore, “The anchors hierarchy: Using the trian-
gle inequality to survive high dimensional data,” in In
Twelfth Conference on Uncertainty in Artificial Intelli-
gence. AAAI Press, 2000, pp. 397-405.

G. Salton, E. A. Fox, and H. Wu, “Extended
boolean information retrieval,” Commun. ACM, vol. 26,
pp. 1022-1036, November 1983. [Online]. Available:
http://doi.acm.org/10.1145/182.358466

E. L. Goodman, D. J. Haglin, C. Scherrer, D. Chavarria-
Miranda, J. Mogill, and J. Feo, “Hashing strategies for
the Cray XMT,” in Proceedings of the 24nd IEEE Inter-
national Parallel and Distributed Processing Symposium,
2010.

Cray Inc., Cray XMT Programming Environment User’s
Guide. Cray Inc., 2010.

J.-R. Sack and T. Strothotte, “A characterization of
heaps and its applications,” Inf. Comput., vol. 86,
pp. 69-86, May 1990. [Online]. Available: http:
//dx.doi.org/10.1016/0890-5401(90)90026-E

D. E. Knuth, The art of computer programming, volume
3: (2nd ed.) sorting and searching. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc.,
1998.

(6]

(7]

8]
(9]

(10]

