
Scalable, Multithreaded, Partially-in-place Sorting

David J. Haglin
and Robert D. Adolf

Pacific Northwest National Laboratory
Richland, Washington 99352, USA

Email: david.haglin@pnnl.gov
Email: robert.adolf@pnnl.gov

Greg E. Mackey
Sandia National Laboratories
Albuquerque, NM 87185, USA
Email: gemacke@sandia.gov

Abstract

A recent trend in hardware development is producing
computing systems that are stretching the number
of cores and size of shared-memory beyond where
most fundamental serial algorithms perform well. The
expectation is that this trend will continue. So it makes
sense to rethink our fundamental algorithms such as
sorting. There are many situations where data that
needs to be sorted will actually fit into the shared
memory so applications could benefit from an efficient
parallel sorting algorithm. When sorting large data
(at least hundreds of Gigabytes) in a single shared
memory, there are two factors that affect the algorithm
choice. First, does the algorithm sort in-place? And
second, does the algorithm scale well beyond tens
of threads? Surprisingly, existing algorithms possess
either one of these factors, but not both. We present
an approach that gracefully degrades in performance
as the amount of available working memory decreases
relative to the size of the input.

1. Introduction

As shared-memory computing systems grow in num-
ber of cores and size of memory, it will be increas-
ingly important to have fundamental data structures
and algorithms available to application developers in
order to effectively take advantage of these systems.
Some examples of these large-scale data structures are
described in [1], [2], [3].

For our study, we assume a fixed machine (fixed
memory size and fixed number of concurrent proces-
sors) and examine how the machine performs when
sorting integer arrays residing in a significant portion
of the memory. Let M be the size of the total memory
available to a program and let |A| be the size of the

array (in the same units as M). Then, we can use the
ratio α = |A|/M to represent the portion of memory
required for the data. Note that we assume that 1− α
is available for work space during sorting.

Given a fixed M , if our data size produces an α =
0.5, then we have many options for sorting algorithms,
including merge sort and radix sort. However, if we
have a data size such that α > 0.5, then using these
algorithms is no longer an option and we must resort
to either a completely in-place sorting algorithm such
as Batcher’s bitonic sort [4], or use an algorithm that
requires only limited extra work space.

We might consider quicksort [5], which uses only
O(log n) working memory for the recursion book-
keeping. But the parallelization of that algorithm is
typically done by recursively sorting the left and right
partitions in parallel with different threads. The par-
tition step is typically done in serial, so the early
stages of parallel quicksort are dominated by serial
computations. This approach is effective on systems
with small numbers (single digits) of threads, but
when massive parallelism is required, this approach is
ineffective.

This paper proceeds as follows. In section 2 we
present a sorting algorithm that can “gracefully” adapt
to the amount of available extra memory and in section
3 we discuss other parallel sorting algorithms used
in this study. Section 4 describes our experimental
process and section 5 presents our findings. Then, a
discussion of related work is followed by conclusions.

2. Algorithm Description

Our approach can be thought of as a combination
of two algorithms: a parallel version of the partition-
ing step from quicksort, and a not-in-place sorting
algorithm that runs well with massive parallelism. We

call this general strategy the parallel partitioning sort
(PPsort). These algorithms are composed in such a way
that if there is sufficient memory to do the not-in-place
sorting, then that is the only algorithm needed. But if
there is insufficient memory, the parallel partitioning
algorithm is invoked as a pre-processing step to (recur-
sively) arrange the input into smaller, and smaller array
sections until the not-in-place sorting algorithm can be
used on each of the sections. This strategy is similar to
other approaches to accelerate quicksort, but we focus
on achieving good performance on massively parallel
systems with large shared-memory. Unlike acceleration
techniques used for serial quicksort such as invoking
an insertion sort when the array section becomes small
(say 25) [6], we see the partitioning step as purely
overhead required by the lack of available working
memory, so we stop the recursion as early as possi-
ble. We note that by stopping the recursion as early
as possible, we avoid the worst-case performance of
quicksort (O(n2)) caused by linear depth of recursion
due to unfortunate pivot choices.

For our initial exploration we chose the parallel
radix sort as our not-in-place sorting algorithm. It
would be interesting to try using a parallel merge sort
instead, which would produce an overall algorithm that
is completely comparison-based.

2.1. Algorithm Overview

A high-level overview of our algorithm is presented
in Algorithm 1. The “If” condition at statement 2 can
be handled in the C language by doing a malloc and
checking for a null pointer (indicating insufficient
memory). The radixSort (called at statement 3) we
use is an implementation that runs well with many
threads [7]. Note that the PARTITION function called
at statement 4 is presented later in Algorithm 2. If there
is insufficient free memory available the statements
5 through 8 are essentially the same as a quicksort
algorithm, with statement 7 recursively sorting the left
partition, and statement 8 recursively sorting the right
partition.

As the algorithm proceeds, the recursion may de-
scend several levels until the array section to be sorted
is small enough to invoke the not-in-place (radixSort)
algorithm. This may not result in recursion of uniform
depth, but it does result in calling the not-in-place
sorting algorithm as early as possible. This aspect is
important because the amount of work to sort each of
the pieces is essentially the same amount of work as
sorting the entire array (had there been enough working
memory), so the partitioning step(s) are all overhead.

Algorithm 1 Parallel Partioning Sort algorithm
1: procedure PPSORT(array, arrayLength)
2: if sufficient memory exists to allocate a buffer

to hold arrayLength then
3: radixSort(array, arrayLength)
4: else
5: p ← PARTITION(array, arrayLength)
6: // recursively sort each part
7: PPsort(array, p)
8: PPsort(&array[p+1], arrayLength - p)
9: end if

10: end procedure

2.2. Parallel Partitioning Step

The usual notion of “parallel quicksort” is to do
the partitioning step in serial and then launch separate
threads for each partition. While this may be effective
for smaller numbers of threads, the lack of early paral-
lelism with this approach renders parallel performance
with hundreds to thousands of processors ineffective.

We consider running the partitioning step in parallel
to be mandatory to achieve desired performance. Our
approach is based on [8].

1) We first select a pivot value that will be used by
all of the threads.

2) We then do a logical striping of the data, one
stripe for each thread (see Figure 1).

3) Each stripe is then partitioned by the associated
thread using the traditional serial partitioning
algorithm [5].

Algorithm 2 Parallel Partitioning Step
1: function PARTITION(array, arrayLength)
2: pivot ← avg(p values)
3: for each thread i of p do
4: ci ← SerialPartition(array, stripe i, pivot)
5: end for
6: l← min1≤i≤p{ci}
7: r ← max1≤i≤p{ci}
8: PPSORT(array[l..r], r − l + 1) . sort middle
9: m← binary search(array[l..r], pivot)

10: return m
11: end function

2.2.1. Pivot Selection. The selection of the pivot
in statement 2 is usually done using either: random
selection; choosing one of the elements, say the first or
last; or picking the median of three (first, middle, and
last). Selecting a good pivot is important for quicksort

Figure 1. Partitioning layout. Each thread is as-
signed its own stripe across the data and performs
a traditional quicksort partitioning step on its stripe.

to avoid skewed recursion leading to linear depth and
therefore O(n2) running time. In our case the selection
of a good pivot—which results in an approximately
equal sized left and right partitions—will lead to earlier
termination of the recursion and therefore less over-
head. Given our assumptions of massive parallelism,
we have the opportunity to be more careful on the pivot
selection than using the techniques mentioned above.

It turns out that we do not need to select one of the
values in the array as our pivot; we merely need some
reference point to define (and create) the left and right
partitions. Our approach is to select p values from the
array at evenly spaced locations and use the mean of
those p values as our pivot, where p is the number of
threads. Computing this pivot can be done in O(log p)
time.

2.2.2. Striped Partitioning. Each thread has its own
stripe of the data that is independent of all other
threads’ stripes. Consequently, all threads can perform
the serial partitioning of their stripe without any need
for synchronization. Once all of the threads have
completed their partitioning work, they each have a
“crossover” point where the pivot would rest within
their stripe (see Figure 2). There are three regions
of the original array. These regions are demarcated
by the smallest and largest thread crossover points.
Everything to the left of the smallest crossover point
is smaller than the pivot. Everything to the right of the
largest crossover point is larger than the pivot. Between
the two extremal crossover points is an “unknown”
region for which no relation is known between the
elements of the region and the pivot. The expectation is
that the middle region is quite small and can therefore
be sorted using standard techniques (perhaps parallel
radix or merge sort) which leaves the final location
of the pivot value somewhere in the sorted middle
region. The final pivot location can be discovered using
a binary search of the middle region. This completes
the parallel partitioning step. At this point, all values
to the left of the pivot are smaller than the pivot and
all values to the right of the pivot are larger than the
pivot.

One observation about the middle region is that we

Left RightMiddle

Figure 2. Partitioning layout. When all threads
have completed the partitioning of their associated
stripe, the crossover points for each thread are
noted, and the max and min of these crossover
points are determined leaving the original array
separated into three sections. The left section
contains numbers all smaller than the pivot, the
right section contains numbers all greater than the
pivot, and the middle section contains numbers
with no known relationship to the pivot.

assume there is sufficient working memory to be able
to use a not-in-place sorting algorithm on that portion.
If the middle region is too large to fit in available
working memory, a bitonic sort could be used instead.

2.2.3. Recursion. After finding the location m in
statement 9 of Algorithm 2 and returning this location
to Algorithm 1, statement 5, we can proceed in manner
similar to the traditional quicksort algorithm. That is,
we can independently sort the left and right partition
in-place resulting in a totally ordered array. Note that
the left and right partitions here are not the same as
those depicted in Figure 2. The left and right partitions
used in the recursion include the appropriate portion
of the middle region shown in the figure. Sorting
the three parts of Figure 2 (left, middle, and right)
independently could result in order violations, as no
ordering relationship is known between elements in the
left region and elements left of the pivot in the middle
region. A similar situation exists for the right region
and elements right of the pivot in the middle region.
It is necessary to redefine the left and right partitions
after finding the m location in Algorithm 2 to include
the appropriate elements from the middle region.

3. Other Parallel Sorting Algorithms

We use two parallel sorting algorithms to provide
the framework within which we assess our PPsort
algorithm. The first is the parallel merge sort included
in the multithreaded graph library (MTGL) [1]. This
parallel merge sort has been optimized for massive
parallelism. An open source version of MTGL is
available1. The MTGL software library is designed to
run on the Cray XMT as well as other platforms, but its

1. https://software.sandia.gov/trac/mtgl

support of OpenMP is currently limited. We modified
the merge sort implementation to insert OMP pragmas
around the same for loops used by the Cray XMT
system to run in parallel.

Our second algorithm is a simple bitonic sort as
shown in Algorithm 3. The out_of_order function
at statement 6 must determine, for each call, whether
to sort in ascending or descending order. An efficient
way to do that is to pass in the value m and compute
x = m bitwise AND i. A zero value of x implies
ascending order and a non-zero implies descending
order. Once the sort order is determined, a check is
made to determine if the two array locations are out
of order.

Algorithm 3 Bitonic
1: procedure BITONIC(array, arrayLength)
2: for (m = 2; m < |A|; m = m× 2) do
3: for (r = m/2; r > 0; r = r/2) do
4: for (i = 0; i < |A|; i++) do . Parallel
5: j = i bitwise XOR r
6: if out of order(a[i], a[j], m) then
7: swap(a[i], a[j])
8: end if
9: end for

10: end for
11: end for
12: end procedure

The outer-most for loop at statement 2 runs log n
times (serially), and the for loop at statement 3 runs
between 1 and log n times, also serially. So the for
loop at statement 4 runs O(log2 n) times, with a barrier
between each run. The inner-most loop can be run in
parallel without synchronization.

Consider sorting an array of 32 billion (235) el-
ements, which has a memory footprint of 256GB.
The bitonic sort runs the O(n) inner-loop 630 times.
Compare this to a radix sort using an 8-bit “digit”
for each phase. This radix sort will run an O(n)
operation exactly 8 times to sort an array of 64-bit
keys. Moreover, the constant of proportionality on
both algorithms is very low, so the radix sort has
approximately two orders of magnitude less work to
do when sorting data of this size.

4. Experiment Setup

Showing “scalability” is an experimental process
that has been evolving recently [9]. As datasets grow
in size, and as shared memory, multithreaded systems
grow and become more ubiquitous, showing scalability

is no longer a matter of showing behavior with pro-
cessor growth, but focused more on showing behavior
on a particular machine as the dataset grows.

Given a fixed system (with a specific shared memory
size and number of processors), we vary the amount
of data to be sorted. The smallest amount we consider
is half of the system memory size, in which case any
parallel sorting algorithm that uses n working memory
can be used. At the other extreme, if our entire memory
is holding the data to be sorted, we have very few
options. In our experiments, we sorted this case using
a bitonic sort [4]. Since the simplest formulation of a
bitonic sort requires that the data be a perfect power
of two, all of our experiments used a fixed system
memory size that reflects this constraint.

Using terminology presented in section 1, we run
our algorithm with varying values of the α ratio for
a given memory size M . As a comparison we also
run a parallel merge sort on an array of size M/2
(α = 0.5), and we run a bitonic sort on an array of
size M . Our goal is to show that our algorithm can
sort data between these 0.5 and 1.0 ratios with graceful
degradation between the two extremes.

Each data point is collected by running the same al-
gorithm five times on different datasets and computing
an average. We understand that this is not a thorough
exploration of our sorting techniques, but the salient
point of our approach is the graceful degradation
enabled by the parallel partitioning step(s), which is
not dependent upon the data as much as it is dependent
upon the choice of pivot. Of course, if a significant
portion of the data were all the same value, then
parallel partitioning performance would be different
than on our randomly generated data.

We run a sweep over the α range from 0.5 up to
0.95 for several “fixed” memory sizes on each platform
(described later). The fixed memory size is artificially
imposed by our testing software. The largest fixed
memory size is only half of the physical memory on
each platform. This limit is due to the runtime system
needing some of the system memory, and a bitonic sort
requiring array sizes that are a power of two.

On both of our platforms, we use 64-bit integers as
the basic element of the array.

4.1. Platforms

We use two platforms in our experiments that exhibit
different properties. The Cray XMT 1 system is typical
of a high-end shared memory system with lots of
parallelism designed to hide latencies. Commodity
x86 systems are emerging into this arena with larger

memories and more cores. Our x86 system has 48
cores and 256GB of shared memory.

4.1.1. Cray XMT1. Cray XMT is the commercial
name for the shared-memory multithreaded machine
developed by Cray under the code name “Eldo-
rado” [10], [11]. The system is composed of dual-
socket Opteron AMD service nodes and custom-
designed multithreaded compute nodes with Thread-
storm processors. The entire system is connected using
the Cray Seastar-2.2 high speed interconnect. The
system we use in this study has 128 processors and
1 TB of shared memory with 16,384 threads. More
details of this architecture are given in [2].

Each Threadstorm processor is able to schedule 128
fine-grained hardware threads (the XMT terminology
for this is stream) to avoid memory-access generated
pipeline stalls on a cycle-by-cycle basis. At runtime,
a software thread is mapped to a hardware stream
comprised of a program counter, a status word, 8
target registers and 32 general purpose registers. Each
Threadstorm processor has a VLIW (Very Long In-
struction Word) pipeline containing operations for the
Memory functional unit, the Arithmetic unit and the
Control unit.

Each Threadstorm is associated with a memory
system that can accommodate up to 32GB of 128-bit
wide DDR memory. Each memory controller is com-
plemented with a 128KB, 4-way associative data cache
to reduce access latencies (this is the only data cache
present in the entire memory hierarchy). Memory is
structured with full-empty-, pointer forwarding- and
trap- bits to support fine grained thread synchroniza-
tion with little overhead. The memory is hashed at a
granularity of 64 bytes and fully accessible through
load/store operations to any Threadstorm processor
connected to the Seastar-2.2 network, which is con-
figured in a 3D toroidal topology. While memory is
completely shared among Threadstorm processors, it is
decoupled from the main memory in the AMD Opteron
service nodes. Communication between Threadstorm
nodes and Opteron nodes is performed through a
Lightweight Communication Library (LUC). Contin-
uous random accesses to memory by the Threadstorm
processor will top memory bandwidth at around 100M
requests per second.

The software environment on the Cray XMT in-
cludes a custom, multithreaded operating system for
the Threadstorm compute nodes (MTX), a parallelizing
C/C++ cross-compiler targeting Threadstorm, a stan-
dard Linux 64-bit environment executing on the service
and I/O nodes, as well as the necessary libraries to
provide communication and interaction between the

two parts of the XMT system. The parallelizing C/C++
compiler generates multithreaded code that is mapped
to the threaded capabilities of the processors automat-
ically. Parallelism discovery happens fully or semi-
automatically by the addition of pragmas (directives)
to the C/C++ source code. The compiler’s parallelism
discovery focuses on analyzing loop nests and mapping
each loop’s iterations in a data-parallel manner to
threads.

4.1.2. 48-Core OpenMP Server. Our OpenMP shared
memory server integrates 4 AMD Opteron 6176SE
processors, code name “Magny Cours”. The Opteron
6176SE is a dual die processor that integrates 12 cores
(6 per die). Each core has private instruction and data
L1 caches of 64 KB each, and a private L2 cache of
512 KB. Each die has a shared cache of 6 MB and
two DDR3 channels The two dies in a processor are
connected through a HyperTransport coherent connec-
tion. The processor operates at a frequency of 2.3 GHz,
giving a theoretical memory bandwidth for a 12-core
processor of 42.7 GB/. However, the northbridge in
each die runs at only 1.8 GHz, limiting the bandwidth
to a maximum of 28.8 GB/s. The four processors in our
system are connected through HyperTransport links,
and the overall system has 256 GB of DDR3 memory
at 1333 MHz.

4.2. Datasets

We use the system RANDOM() function to generate
all of our data on both platforms. We generate the giga-
bytes of data for each of the five trials. In many cases,
our platform spent more time generating the data than
it spent sorting the data. The Cray XMT platform has
special library functions for generating lots of random
numbers in parallel using all of the available threads.

5. Experiment Results

On each of our two platforms we artificially imposed
memory limits of several sizes up to half the size of
the physical memory. For each of these scenarios, we
ran a merge sort on half of the artificial limit, did a
parameter sweep on the ratio α on PPsort, for α =
0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. Finally, we ran bitonic
sort on the full amount of the artificial limit.

5.1. Cray XMT

The Cray XMT has 128 processors and 1024GB of
shared memory. We ran five sets of experiments on this
machine with fixed memory sizes of 512GB, 256GB,

0.5 0.6 0.7 0.8 0.9

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

Array Memory Portion

T
im

e
 (

s
e

c
o

n
d

s
)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 64GB

 128GB

 256GB

 512GB

Figure 3. Results on the Cray XMT1. Each curve
shows performance on a fixed memory capacity
while varying the size of the array to be sorted
in that memory. The x-axis represents the ratio
of the size of the array to be sorted to the size
of the machine. For example, the red line shows
the performance on a 64GB machine. At the 0.6
axis point, the red line indicates the time required
to sort a 38GB array on a 64GB memory space (so
there are only 26GB of available memory). The y-
axis indicates time in seconds.

128GB, 64GB, and 32GB. Table 1 shows the results
for the five fixed memory sizes on the parallel merge
sort, PPsort on various α values, and the bitonic sort.
For convenience, we placed the size of the array to be
sorted underneath the running time in seconds.

The plot in Figure 3 shows only the PPsort algorithm
performance. Including the bitonic performance in this
plot would have changed the scale too much. Note
that the gray line starting from each of the plot points
at α = 0.5 shows a linear increase in running time
relative to the size of the array. This provides a
comparison between an optimistic linear growth and
actual performance of PPsort. We assume that the radix
sort is essentially linear in growth, so the difference
between the PPsort performance and the gray “ideal”
is due to the overhead of the partitioning step(s).

5.2. OpenMP

The OpenMP server has 48 cores and 256GB of
shared memory. We ran four sets of experiments on this

0.5 0.6 0.7 0.8 0.9

2
0

0
4
0

0
6

0
0

8
0

0

Array Memory Portion

T
im

e
 (

s
e

c
o

n
d

s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 16GB

 32GB

 64GB

Figure 4. Results on an OpenMP shared memory
server. Each curve shows performance on a fixed
memory capacity while varying the size of the array
to be sorted in that memory. The x-axis represents
the ratio of the size of the array to be sorted to
the size of the machine. For example, the red line
shows the performance on a 64GB machine. At
the 0.6 axis point, the green line indicates the time
required to sort a 38GB array on a 64GB memory
space (so there are only 26GB of available mem-
ory). The y-axis indicates time in seconds.

machine with fixed memory sizes of 128GB, 64GB,
32GB, and 16GB. Similar to our Cray XMT results,
Table 2 shows the results for the four fixed memory
sizes on the parallel merge sort, PPsort on various
α values, and the bitonic sort. For convenience, we
placed the size of the array to be sorted underneath
the running time in seconds.

As in the plot for the Cray XMT results, we include
only PPsort times in the plot for the OpenMP server
in Figure 4. It is interesting to compare the raw times
for the memory sizes that appear in the results of both
platforms.

We notice that the overhead cost on the OpenMP
server seems to be higher than on the Cray XMT. The
curves rise faster on the OpenMP results, where the
times reported at the α = 0.95 ratio are higher than
the next larger memory size ideal gray line. Whereas,
the times reported on the Cray XMT results at the
α = 0.95 ratio remain below the next larger memory
size ideal gray line.

Table 1. This table shows runs on a Cray XMT1 with 128 processors. All times are shown in seconds. For
convenience, the size of the array to be sorted is shown underneath the row of times for each of the

machine memory sizes. As an example, if the machine size is 32GB and the α ratio is 0.6, then the size of
the array to be sorted is 32GB×0.6 ≈19GB.

Memory MergeSort 0.5 0.6 0.7 0.8 0.9 0.95 Bitonic

32GB 22 13 18 25 28 36 43 1178

Array Size 16GB 16GB 19GB 22GB 26GB 29GB 30GB 32GB

64GB 45 24 32 43 52 69 80 1882

Array Size 32GB 32GB 38GB 45GB 51GB 58GB 61GB 64GB

128GB 95 45 61 79 96 134 153 3992

Array Size 64GB 64GB 77GB 90GB 102GB 115GB 122GB 128GB

256GB 191 89 118 151 181 242 296 8454

Array Size 128GB 128GB 154GB 179GB 205GB 230GB 243GB 256GB

512GB 404 178 233 297 364 457 537 17875

Array Size 256GB 256GB 307GB 358GB 410GB 461GB 486GB 512GB

Table 2. This table shows runs on an OpenMP server with 48 cores and 256 GB of shared memory. All
times are shown in seconds. For convenience, the size of the array to be sorted is shown underneath the

row of times for each of the machine memory sizes. As an example, if the machine size is 32GB and the α
ratio is 0.6, then the size of the array to be sorted is 32GB×0.6 ≈19GB.

Memory Size MergeSort 0.5 0.6 0.7 0.8 0.9 0.95 Bitonic

16GB 65 55 83 113 146 201 250 1626

Array Size 8GB 8GB 10GB 11GB 13GB 14GB 15GB 16GB

32GB 142 114 170 241 295 390 496 3333

Array Size 16GB 16GB 19GB 22GB 26GB 29GB 30GB 32GB

64GB 238 225 321 448 570 769 956 3800

Array Size 32GB 32GB 38GB 45GB 51GB 58GB 61GB 64GB

128GB 336 366 604 837 1020 1382 1873 4097

Array Size 64GB 64GB 77GB 90GB 102GB 115GB 122GB 128GB

6. Related Work

Sorting is one of the most studied problems in the
computing literature. Here we highlight some related
works most closely aligned with our work and have
ignored the vast majority of the research in sorting
due to scope and space limitations.

6.1. Sorting in-place

Franceschini et al. present an in-place radix sort
algorithm that compresses part of the input array
(modifying the keys to be sorted) in order to free up
some space to use as work space during the sort [12].
Their algorithm is both in-place and stable, but it is
difficult to imagine how to run it in parallel. Other in-

place radix sorting algorithms have also been presented
[13], [14], neither of which are conducive to running
with massive parallelism.

Arne Maus explores an adaptive radix sort that
remains stable even while trading speed for extra
space at runtime [15]. This algorithm is presented as a
serial algorithm with no discussion about running on
a parallel machine. Moreover, the sorting experiments
were done on arrays of size less than 1GB (97 million
entries), which is less than 227. Contrast this with our
study exploring data whose sizes are 231 to 235.

6.2. Other results

There are many sorting algorithms developed for
distributed memory architectures (e.g., [14], [16], [17],
[18]), a problem we consider significantly different
from our problem explored here.

There have been many studies, even recently, whose
data size is so much smaller than our study that we
consider it a different problem set. For example, Biggar
et al.[19] explore the impact of branch prediction on
the instruction pipeline within a sorting algorithm.
They consider problem sizes of 212 up to 222 keys.
Süß present various strategies for implementing paral-
lel quicksort using OpenMP [20]. In that study, 100
million keys were sorted. Peters et al. present an
adaptation of the bitonic sorting algorithm for a CUDA
based architecture [21]. The experiments were run on
data sizes ranging from 210 up to 224 keys

Our experiments were run on data of sizes 16GB on
up to 512GB, and each array entry is a 64-bit value.
Thus, our arrays are 2 billion (231) on up to 64 billion
(235) in length. We also ran on platforms with 48 to
128 cores running. In the case of the 128 threadstorm-
core XMT, we ran upwards of 14,000 threads.

7. Conclusion

We have presented an algorithmic strategy for sup-
porting the sorting of data on a multithreaded platform
using an efficient parallel algorithm where the size of
the data is larger than half of the total memory. The
cost of going to some other strategy such as a bitonic
or even an out-of-memory sorting algorithm can be
avoided with relatively little impact.

We note that, on our OpenMP server system, sorting
64GB of data was faster using the parallel merge
sort than using the radix sort (see the 128GB row in
Table 2). It would be interesting to explore using a
parallel merge sort as the not-in-place sorting algo-
rithm, which would produce an overall algorithm that
is completely comparison-based.

Acknowledgment

A part of this work was funded by the Center for
Adaptive Super Computing Software - MultiThreaded
Architectures (CASS-MT) at the U.S. Department of
Energy’s Pacific Northwest National Laboratory. Pa-
cific Northwest National Laboratory is operated by
Battelle Memorial Institute under Contract DE-ACO6-
76RL01830.

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Cor-
poration, for the U.S. Department of Energys National
Nuclear Security Administration under contract DE-
AC04-94AL85000. This paper has a Sandia report
number of 2013-4373 C.

References

[1] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny,
“Software and algorithms for graph queries on multi-
threaded architectures,” Parallel and Distributed Pro-
cessing Symposium, International, vol. 0, p. 495, 2007.

[2] E. L. Goodman, D. J. Haglin, C. Scherrer, D. Chavarria-
Miranda, J. Mogill, and J. Feo, “Hashing strategies
for the Cray XMT,” in 2010 IEEE International Sym-
posium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), Apr. 2010.

[3] E. Goodman, M. N. Lemaster, and E. Jimenez,
“Scalable hashing for shared memory supercomputers,”
in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis, ser. SC ’11. New York, NY, USA:
ACM, 2011, pp. 41:1–41:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063439

[4] K. E. Batcher, “Sorting networks and their
applications,” in Proceedings of the April 30–
May 2, 1968, spring joint computer conference,
ser. AFIPS ’68 (Spring). New York, NY, USA:
ACM, 1968, pp. 307–314. [Online]. Available:
http://doi.acm.org/10.1145/1468075.1468121

[5] C. A. R. Hoare, “Quicksort,” Comput. J., vol. 5, no. 1,
pp. 10–15, 1962.

[6] R. Sedgewick, “Implementing quicksort programs,”
Commun. ACM, vol. 21, no. 10, pp. 847–857, Oct.
1978. [Online]. Available: http://doi.acm.org/10.1145/
359619.359631

[7] P. Briggs, “Examples: A working document,” Jan. 2011,
a collection of illustrative programming examples for
the Tera MTA.

[8] S. Kahan and L. Ruzzo, “Parallel quicksand: Sorting
on the sequent,” Department of Computer Science,
University of Washington, Tech. Rep. 91–01–01, Jan.
1991.

[9] J. Weaver, “A scalability metric for parallel compu-
tations on large, growing datasets (like the web),” in
Proceedings ofthe Joint Workshop on Scalable and
High-Performance Semantic Web Systems, 2012, pp.
91–96.

[10] D. Chavarrı́a-Miranda, A. Marquez, J. Nieplocha,
K. Maschhoff, and C. Scherrer, “Early Experience
with Out-of-Core Applications on the Cray XMT,” in
Proceedings of the 22nd IEEE International Parallel
and Distributed Processing Symposium, April 2008, pp.
1–8.

[11] J. Feo, D. Harper, S. Kahan, and P. Konecny, “ELDO-
RADO,” in CF ’05: Proceedings of the 2nd conference
on Computing frontiers. New York, NY, USA: ACM,
2005, pp. 28–34.

[12] G. Franceschini, S. Muthukrishnan, and M. Pătraşcu,
“Radix sorting with no extra space,” in Proceedings of
the 15th annual European conference on Algorithms,
ser. ESA’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 194–205. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1778580.1778601

[13] A. Al-Badarneh and F. El-Aker, “Efficient adaptive
in-place radix sorting,” Informatica, vol. 15, no. 3,
pp. 295–302, Aug. 2004. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1413748.1413749

[14] S. Q. Zheng, B. Calidas, and Y. Zhang, “An
efficient general in-place parallel sorting scheme,”
J. Supercomputing, vol. 14, no. 1, pp. 5–17, Jul.
1999. [Online]. Available: http://dx.doi.org/10.1023/A:
1008173729055

[15] A. Maus, “Buffered adaptive radix – a fast, stable
sorting algorithm that trades speed for space at runtime
when needed,” in NIK’2007, Norwegian Informatics
Conference, 2007.

[16] A. Datta, S. Soundaralakshmi, and R. Owens,
“Fast sorting algorithms on a linear array with a
reconfigurable pipelined bus system,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 212–222,
Mar. 2002. [Online]. Available: http://dx.doi.org/10.
1109/71.993203

[17] J. Brest, A. Vreže, and V. Žumer, “A sorting
algorithm on a pc cluster,” in Proceedings of
the 2000 ACM symposium on Applied computing
- Volume 2, ser. SAC ’00. New York, NY,
USA: ACM, 2000, pp. 710–715. [Online]. Available:
http://doi.acm.org/10.1145/338407.338549

[18] A. S. Arefin and M. A. Hasan, “An improvement of
bitonic sorting for parallel computing,” in Proceedings
of the 9th WSEAS International Conference on Comput-
ers, ser. ICCOMP’05. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and Society
(WSEAS), 2005, pp. 15:1–15:4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1369599.1369614

[19] P. Biggar, N. Nash, K. Williams, and D. Gregg, “An
experimental study of sorting and branch prediction,”
J. Exp. Algorithmics, vol. 12, pp. 1.8:1–1.8:39, Jun.
2008. [Online]. Available: http://doi.acm.org/10.1145/
1227161.1370599

[20] M. Süß and C. Leopold, “A users experience with
parallel sorting and openmp,” in In Proceedings of the
Sixth Workshop on OpenMP (EWOMP04), 2004.

[21] H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger,
“Fast in-place sorting with cuda based on bitonic sort,”
in Proceedings of the 8th international conference
on Parallel processing and applied mathematics:
Part I, ser. PPAM’09. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 403–410. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1882792.1882841

