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Abstract

String searching is at the core of many security and network applications like search
engines, intrusion detection systems, virus scanners and spam filters. The growing size
of on-line content and the increasing wire speeds push the need for fast, and often real-
time, string searching solutions. For these conditions, many software implementations
(if not all) targeting conventional cache-based microprocessors do not perform well.
They either exhibit overall low performance or exhibit highly variable performance
depending on the types of inputs. For this reason, real-time state of the art solutions
rely on the use of either custom hardware or Field-Programmable Gate Arrays (FPGAs)
at the expense of overall system flexibility and programmability.

This paper presents a software based implementation of the Aho-Corasick string
searching algorithm on the Cray XMT multithreaded shared memory machine. Our so-
lution relies on the particular features of the XMT architecture and on several algorith-
mic strategies: it is fast, scalable and its performance is virtually content-independent.
On a 128-processor Cray XMT, it reaches a scanning speed of ≈ 28 Gbps with a per-
formance variability below 10 %. In the 10 Gbps performance range, variability is
below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz
achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the
type of input and dictionary size.

1 Introduction

Network intrusion detection systems (NIDS) are an effective way to provide security to
computers connected to a network. String searching algorithms are at the heart of NIDS
allowing them to make decisions based not only on the packet headers, but on the actual
content of the data flow. Modern, high-performance NIDS have to scan the entire inbound
traffic against a large database of threat signatures (e.g. 100,000 and more) in real time
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tectures (CASS-MT) at the Dept. of Energy’s Pacific Northwest National Laboratory. Pacific Northwest
National Laboratory is operated by Battelle Memorial Institute under Contract DE-ACO6-76RL01830.

1



on fast links (e.g. 10 Gbps Ethernet and beyond) while trying to minimize their impact on
latency and bandwidth.

In addition to the technological advances in network communication, we are also experi-
encing an explosion in the number of malicious threats. A recent report by Symantec, one
of the leading firms in network security, shows that in the last years the number of malicious
Internet threat signatures has grown at an exponential rate [17]. In total, Symantec detected
1,122,311 malicious code threats, of which almost two thirds were created during 2007.

Due to the advance in network speeds, it is becoming increasingly difficult for software-
based NIDS to keep up with the line rates. Moreover, as the number of threats grows,
conventional cache-based architectures exhibit a large performance variability depending on
the content and size of both the searched input and matching patterns [12]. Intuitively, as the
number of threat signatures increases (faster than architectural improvements in cache size
and capabilities), the string matching engine becomes inefficient, achieving high performance
only when the matching patterns (or their representation) are found in the caches and low
performance when they have to be retrieved from main memory. In a searching process
driven by unknown inputs (the input streams of a network), the string search engine has
to access data in unpredictable locations of the main memory, leading to highly variable
performance. This behavior is unacceptable for most real-time NIDS since it exposes the
system to content-based attacks.

For these reasons, several hardware-based techniques have been employed for implement-
ing real-time packet inspection applications. In most cases, special algorithms have been
developed on Field-Programmable Gate Arrays (FPGAs) [7, 14], exploiting the potentially
high level of parallelism available on these devices. Unfortunately, the flexibility and ease of
programming is greatly compromised. Most importantly, the amount of matching patterns
is limited by the available memory on the devices, which usually is not very large. Most state
of the art NIDS indeed are composed of a fast and “not-exact” hardware-based front-end
(FPGA on regular expressions) which selectively triggers a slow software backend on exact
patterns [10].

A typical example is the implementation of Bloom filters or Deterministic Finite State
Automata (DFAs) on FPGAs [5, 9, 11]. DFAs can efficiently implement algorithms such as
Boyer-Moore [2] and Aho-Corasick [1], which allow exact string searches in a given dictionary.
There are numerous FPGA-based implementations of Aho-Corasick search algorithms [4, 15,
18, 16, 8], with different degrees of performance and dictionary size.

NIDS designers are challenged at the same time along a multi-dimensional space: per-
formance (throughput), performance variability, dictionary size and flexibility (system cus-
tomization). Most FPGA solutions are very difficult to program / customize but are able
to provide relatively high and stable performance on small dictionaries. Other solutions
are highly customizable, can support large dictionaries, but have a limited and variable
performance (Snort [12] on general purpose processors). Alternative approaches offer a rela-
tively stable performance with medium-size dictionaries (Aho-Corasick on Cell B.E. proces-
sors [13, 19]), but require a significant programming effort. As far as we know, no single exact
string matching solution is capable of simultaneously achieving content-independent, high
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performance on very large dictionaries in a highly productive programmable environment.
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Figure 1: String matching solutions, represented in a throughput vs. dictionary size 2D
space. Results are normalized (when possible) against an average pattern length of 8 symbols.

A promising solution, capable at the same time of handling very large pattern sets, and
arbitrary input streams in a productive programmable environment, relies on the use of
highly multithreaded processors. The Cray XMT is the new multithreaded shared memory
multiprocessor machine developed by Cray (code name “Eldorado”) [6]. Each Threadstorm
multithreaded processor supports 128 hardware thread contexts which can be scheduled on a
cycle-by-cycle basis to hide memory access latencies, common in irregular applications such
as string matching.

This paper presents a software based implementation of the Aho-Corasick string matching
algorithm on the Cray XMT multithreaded shared memory architecture. Our solution relies
on the particular features of the XMT architecture and on several algorithmic strategies.
It is flexible, fast and scalable. At the same time its performance is virtually content-
independent. Our results show linear scaling accross a 128-processor XMT machine, with
different types of input as well as with different amounts and types of searched patterns
(> 105 patterns). On a 128-processor configuration, it reaches a scanning speed of almost
28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range,
variability is below 2.5%. Figure 1 shows, in a 2D space of performance (throughput) and
dictionary size (number of patterns), some notable state of the art solutions compared to
our Cray XMT solution.

The paper is organized as follows. Section 2 presents background material on the details
of the Aho-Corasick string searching algorithm and the Cray XMT system. Section 3 presents
our algorithmic design on the Cray XMT while Section 4 discusses our experimental results
and compares them to results obtained with other programmable architectures. Finally,
Section 5 presents our conclusions.
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2 Background

2.1 Aho-Corasick String Matching Algorithm

The Aho-Corasick algorithm [1] scans an input text T of length m and detects any exact
occurrence of each of the patterns of a given dictionary, including partially and completely
overlapping occurrences. The Aho-Corasick algorithm is particularly attractive in security
applications because it can be implemented to deliver input- and content- independent perfor-
mance, which can guarantee immunity from content-based attacks. It is employed in software
solutions such as Snort [12] (although the performance is far from being content indepen-
dent), in FPGA implementations [10, 4, 15, 18, 16, 8] and in Cell-based solutions [13, 19].
It is also the basis of our Cray XMT solution.

We call a pattern a finite sequence of symbols from an alphabet, and a dictionary a set
of patterns P = {p1, p2, . . . , pk}. The algorithm constructs an automaton on the basis of the
dictionary. The automaton takes as an input a given text and enters a final state every time
a match is encountered. Each final state corresponds one-to-one with the set of matching
patterns. There are two variants of the algorithm, called AC-fail and AC-opt. We introduce
AC-fail first, and present AC-opt as an improvement of it.
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(a) The keyword tree (or trie) corresponding to an
example dictionary containing the words { the, that,
math }.
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(b) Aho-Corasick NFA automaton corresponding
to the example dictionary. Regular transitions
are represented with solid lines; failure transitions
with dashed lines.

Figure 2: Aho-Corasick trie and NFA for the example dictionary { the, that, math }.

The AC-fail automaton is based on the keyword tree (also known as a trie) of the given
dictionary. For each pattern, there is a path in the trie which starts from the root node and
whose edges are labeled as the symbols in the pattern. Edges leaving a node have distinct
labels. Figure 2(a) shows the trie corresponding to the dictionary { the, that, math }. We
call the label L(v) of a node v, the concatenation of the edge labels encountered on the path
from the root to v. For each pattern pi ∈ P there is a single leaf node v with L(v) = pi (gray
nodes in the figure).

A trie can be used to determine whether a given string belongs in the dictionary or
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(a) A failure transition is replaced with regular tran-
sitions.
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(b) DFA corresponding to the example dictio-
nary (dashed lines represent default transitions
for symbols not explicitly matched).

Figure 3: Aho-Corasick NFA (with failure transitions) and derived DFA for the example
dictionary { the, that, math }.

not, as follows: to look up a string s, start at the root node and follow the path labeled
with the characters of s, as long as possible. If the path leads to a node with an identifier
i, then the string belongs in the dictionary, and it is pattern pi. The trie does not match
multiple, possibly overlapping, occurrences. The AC-fail algorithm serves that purpose. AC-
fail employs an automaton which is improperly called a Non-deterministic Finite Automaton
(NFA) as discussed below. The NFA (Figure 2(b)) is derived from the trie as follows. First,
nodes and edges of the trie become respectively states and transitions of the automaton.
The root node becomes the initial state, and the nodes with identifiers associated with them
(the gray nodes) become final states. A transition is added from the root node to itself, for
each symbol in the alphabet which does not have a transition leaving the root node “0” (in
the example, all the symbols except ‘t’ and ‘m’). Finally, failure transitions must be added
to each state.

Figure 2(b) represents the NFA, with failure transitions drawn as dashed arrows. The
automaton takes a failure transition when the current input symbol does not match any
regular transition leaving the current state. Failure transitions reuse information associated
with the last input symbols (suffix) to recognize patterns which begin with that suffix, with-
out restarting from the initial state (for example, the input ‘mathat’ matches the patterns
‘math’ and ‘that’). The first four symbols lead from state 0 to state 3 (matching pattern
‘math’). Then, symbol ‘a’ does not correspond to any regular transition from node 3 (in
fact, there are no transitions leaving node 3 at all). So, the automata takes the failure tran-
sition, reaching the node corresponding to path ‘th’. The remaining symbols ‘at’ cause the
automaton to end up in node 2, completing the second match.

Although AC-fail is deterministic, its automaton is called an NFA because of transitions
which do not consume input (traditionally called ε-transitions). For this reason, the AC-fail
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suffers from a potential performance drawback: on a failure, multiple state transitions can
happen per single input symbol.

When the size of the dictionary grows, the performance of AC-fail decreases quickly due
to failure transitions [20]. An improved version of AC-fail, called AC-opt, solves this issue
by employing a Deterministic Finite Automaton (DFA) in place of the NFA, at the cost of
increased memory requirements. The DFA is obtained from the NFA by replacing all the
failure transitions with regular ones. The equivalent DFA has exactly one transition per each
state and input symbol.

Figure 3(a) illustrates how a failure transition (crossed-out) is replaced with regular tran-
sitions. The final DFA is shown in Figure 3(b) and it is the final dictionary representation
used in our solution due to its one-symbol, one-transition property. A more detailed discus-
sion of the derivation of the DFA and the AC-opt algorithm can be found in [20].

2.2 Cray XMT

The Cray XMT is the commercial name for the new shared-memory multithreaded machine
developed by Cray under the code name “Eldorado” [6, 3]. The system is composed of
dual-socket Opteron AMD service nodes and custom-designed multithreaded compute nodes
with Threadstorm processors. The entire system is connected using the Cray Seastar-2.2
high speed interconnect. The XMT system can scale up to 8,192 Threadstorm processors
and 128 TB of shared memory.

Each Threadstorm processor is able to schedule 128 fine-grained hardware threads to
avoid memory-access generated pipeline stalls on a cycle-by-cycle basis. At runtime, a soft-
ware thread is mapped to a hardware stream comprised of a program counter, a status word,
a target register and 32 general purpose registers. Each Threadstorm processor has a VLIW
(Very Long Instruction Word) pipeline containing operations for the Memory functional unit,
the Arithmetic unit and the Control unit1.

Each Threadstorm is associated with a memory system that can accommodate up to 8GB
of 128-bit wide DDR memory. Each memory controller is complemented with a 128KB, 4-
way associative data cache to reduce access latencies (this is the only data cache present in
the entire memory hierarchy). Memory is structured with full-empty-, pointer forwarding-
and trap- bits to support fine grained thread synchronization with little overhead. The
memory is hashed at a granularity of 64 bytes (see Figure 4) and fully accessible through
load/store operations to any Threadstorm processor connected to the Seastar-2.2 network,
which is configured in a 3D toroidal topology. While memory is completely shared among
Threadstorm processors, it is decoupled from the main memory in the AMD Opteron ser-
vice nodes. Communication between Threadstorm nodes and Opteron nodes is performed
through a Lightweight Communication Library (LUC). Continuous random accesses to mem-
ory by the Threadstorm processor will top memory bandwidth at around 100M requests per
second.

1The Arithmetic unit is capable of performing a floating-point multiply-add per cycle. In conjunction
with the control unit doubling as arithmetic unit, a Threadstorm is capable of achieving 1.5 GFlops at a
clock rate of 500MHz. A 64KB, 4-way associative instruction cache helps in exploiting code locality.
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Figure 4: Cray XMT Threadstorm memory subsystem.

The software environment on the Cray XMT includes a custom, multithreaded operating
system for the Threadstorm compute nodes (MTX), a parallelizing C/C++ cross-compiler
targeting Threadstorm, a standard Linux 64-bit environment executing on the service and
I/O nodes, as well as the necessary libraries to provide communication and interaction be-
tween the two parts of the XMT system. The parallelizing C/C++ compiler generates
multithreaded code that is mapped to the threaded capabilities of the processors automati-
cally. Parallelism discovery happens fully or semi- automatically by the addition of pragmas
(directives) to the C/C++ source code. The compiler’s parallelism discovery focuses on
analyzing loop nests and mapping the loop’s iterations in a data-parallel manner to threads.

3 Algorithmic Design & Implementation

Our algorithm design is based on the following cornerstones: a) minimize the number of mem-
ory references and b) reduce memory contention. As explained in Section 2.1, the searched
patterns are represented as a Deterministic Finite Automaton (DFA) (see Figure 3(b)). As
the input symbols are scanned, the search algorithm traverses the different nodes of the
DFA. For each possible input symbol there is always a valid transition to another node in
the graph. This key feature guarantees that for each input symbol there is always the same
amount of work to perform. In detail, the Aho-Corasick string matching algorithm works as
shown in Algorithm 1.

For a given dictionary the data structures in main memory (DFA and input symbols) are
read-only. The parallelization strategy involves the use of multiple threads that concurrently
execute the above algorithm. Each thread has a current node and operates on a distinct
section of the input. All threads access the same DFA structure. At run-time the input
stream is split into chunks and assigned to the different threads. The chunks overlap partially
to allow matching of those patterns that cross a boundary. The necessary overlapping is equal
to the length of the longest pattern in the dictionary minus 1 symbol. The inefficiency of

7



Algorithm 1 Basic steps of the DFA-based Aho-Corasick string matching algorithm
1. Load node “0” (or root) from main memory (DFA) in current node.
2. Load one input symbol from main memory in symbol.
3. Load the next node from main memory (DFA) (following the link from the current node, labeled

by symbol).
4. Check if the transition to next node is final (if it is, the last symbols are a matching pattern).
5. Assign next node to current node.
6. Repeat starting from step 2 until there are no more input symbols.

the overlapping (replicated work) is measured as (longest pattern − 1)/(size of the chunk).
In our experiments, we chose chunks of 2 KBytes and longest patterns of 16 bytes resulting
in a negligible inefficiency of ≈ 0.008%.

For each input symbol there are conceptually 2 loads to perform, one for the symbol itself
(Step 2) and one for the next node in the DFA (Step 3). Although Step 4 could conceivably
involve a load operation (as we need to check if the transition is final or not) it does not. Our
implementation, as we describe later, indeed does not involve an extra load. Step 2 loads
contiguous symbols of 8 bits each (ASCII alphabet in our experiments) from main memory.
In a 64 bit architecture (as the Threadstorm), the frequency of this load can be reduced to
only one load for every 8 symbols, shifting and masking 7 times to extract the right symbol.
Furthermore, accessing the scanned symbols has very high spatial locality.

The second load (for next node) is quite different. It is not predictable since it depends on
the symbol just loaded and on the current node. This load is the main cause of performance
degradation on conventional cache-based architectures for this class of algorithms. If the
input text contains a large number of patterns that are present in the dictionary, then the
entire graph will likely be accessed during the matching process (“heavy” matching). For
instance, matching the graph in Figure 3(b) against the string ’math that the’ (the same
words of the dictionary) we need to access every node in the graph. On the other hand, if
there is “light” or no matching (i.e. a dictionary against a random pattern) most of the time
the search algorithm will stay on node 0 (root) since the failure transitions jump again on
node 0 itself.

Our first algorithmic decision was to implement a scanning engine that performs Step 3
with only 1 load per symbol. To achieve this goal we represent the DFA graph as a sparse
State Transition Table (STT). The STT is large table composed of as many rows as there
are nodes in the DFA and as many columns as there are symbols of the alphabet.

Each STT line represents a node in the original DFA. Each entry of a STT line (cell)
(indexed by a current node and a symbol) stores the address of the beginning of the STT
line that represents the next node for that transition in the DFA. Figure 5(a) shows the
corresponding STT (with limited transitions) for the example dictionary we have been using
({the, that, math}) in Figure 3(b). The example STT is composed of 10 lines (10 nodes in
the original DFA) and 256 columns (256 symbols of the ASCII alphabet). The STT lines
are 256-byte aligned such that the least significant byte of the address is equal to zero. This
property allows us to store in the least significant bit of each STT cell the boolean information
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indicating if that transition is final or not (red transitions in Figure 5(a)) eliminating the
need for an extra load in Step 4 (see Algorithm 1). Since we want to retrieve the next node
address dereferencing the current node + symbol pointer, STT lines must have always the
same size. Alphabet symbols not used in the dictionary have to be explicitly represented as
failure transitions to the root node.

This sparse STT representation is expensive in terms of the amount of memory it uses,
but it guarantees that Step 3 will only require one load operation. In our experiments, with
190,000 text patterns of average length 16 bytes and the 256-character ASCII alphabet, the
STT size is 9.8 GBytes. However, on the Cray XMT this is not an issue since even on a
16-processor configuration, the total amount of shared memory is 128 GBytes. This is a
typical example where memory space can be traded for access speed.

As discussed previously, the load in Step 3 (see Algorithm 1) is crucial since this operation
could have the highest performance variability 2. Because the objective of our solution is
to provide content-independent performance, we need to obtain a relatively uniform latency
for this load. In comparison to other solutions where absolute latency matters, our highly
multithreaded approach focuses mostly on reducing latency variability. If the latency is
constant or slowly variable, the system is able to schedule a sufficient number of threads to
hide it.

In the XMT implementation, the main cause of variability in the memory access time
is the presence of hot-spots. Hot-spots are memory regions frequently accessed by multiple
threads simultaneously. To minimize hot-spots, the Cray XMT employs a hardware hashing
mechanism which spreads data in all the system’s memory banks with a granularity of 64
bytes (block) [6] (see Section 2). However, if different blocks corresponding to different

2Step 1 is executed only once, Step 2 loads contiguous symbols that most likely are in the cache, Steps
4-5-6 are arithmetic/logic operations on registers
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memory banks have different access ratios, the “pressure” on the memory banks is not
equally balanced, producing variability in the access time. In our implementation there are
two reasons why this can happen:

• Each STT cell is large (8 bytes: address of the STT line + boolean information if
the transition is final). Therefore each STT line (representing a DFA node) uses
alphabet size × 8 bytes. If we consider the 256-symbol ASCII alphabet, each STT
line requires 2048 bytes, or 32 blocks (64 bytes per block). If the scanned input has
particular characteristics in terms of symbol frequency (i.e. English text, decimal
numbers, etc.) the input symbols will only be a subset of the ASCII alphabet and the
different concurrent threads will be accessing a (small) subset of the 32 blocks per STT
line, producing hot-spots.

• Typically, a few states in the first levels of the DFA graph3 are responsible for the
majority of hits. Figure 6 shows, for an English dictionary with 20,000 patterns, the
distribution of the accessed nodes in the DFA as function of the levels when scanned
against English Text, a TCP traffic dump, random input and the dictionary itself.
The table in Figure 6 shows the percentage of states in the first two levels and the
percentage of the transitions to them from other levels, while scanning different inputs.
In every situation, except when scanning a dictionary against itself, the first 2 levels are
responsible for most of the accesses. As a result, the memory blocks containing those
states form hot-spots. It is important to notice that for inputs that are similar to the
dictionary, the transitions tend to be distributed more equally on the levels (“Itself”
line in Figure 6) leading to reduced or absent hot-spots.
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Figure 6: Access distribution for an English dictionary with different inputs.

In order to alleviate the above problems we propose two solutions. Both of them are
quantitatively evaluated in Section 4.

• Alphabet Shuffling: The alphabet symbols in a STT line can be shuffled using a
relatively simple linear transformation, to ensure that symbols that are contiguous in
the alphabet (i.e. standard English characters in ASCII) are spread out over multiple

3“Level” corresponds to a Breadth-First Search (BFS) exploration of the DFA graph
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memory blocks. The shuffling function can be inexpensively and effectively computed
as symbol ′ = (symbol × fixed offset) >> 8. This transformation, in conjunction with
the hardware hashing mechanism on the XMT’s memory, can guarantee that accesses
are spread out over distinct memory blocks for certain classes of inputs: English text,
decimal numbers, or other inputs with characters located relatively close to each other
in the ASCII ordering.
On the Cray XMT, an effective alphabet shuffling function does not need to depend
on the state number (line in the STT table), in contrast to what would be neces-
sary in a non-hardware hashed memory hierarchy. Different states will be effectively
shuffled in different ways due to the underlying hardware hashing. Due to the combi-
nation of hardware and software hashing, a simple linear transformation is relatively
secure against content based attacks. Figure 5(b) shows how this mechanism relieves
contention in the accesses to two contiguous logical blocks.

• State Replication: We replicate the STT states corresponding to the first 2 levels
of a Breadth-First Search (BFS) exploration of the DFA. Addresses of the different
replicas of the same logic state (STT line) are randomly stored during the creation
of the STT in the STT cells pointing to that state. This ensures that the memory
pressure is equally balanced when the blocks for that state are accessed by different
threads. This mechanism is greatly simplified by the underlying hardware hashing since
different replicas are spread in different memory banks. We do not need to explicitly
manage the replicas to position them in other memory banks.

4 Experimental Setup and Results

We have implemented the Aho-Corasick parallel algorithm as described in Section 3 for
the Cray XMT multithreaded system. Our implementation has two main phases: building
the State Transition Table (STT) and executing string matches against the built STT. The
STT building phase is performed offline and stored in a file representation and we focus our
experiments on the string matching phase, since this is the critical portion in the realistic
use of this algorithm for network content analysis. Our implementation utilizes the hybrid
capabilities of the XMT to offload expensive I/O operations from the Threadstorm processors
to the Opteron processors on the service nodes.

The multithreaded parallelization of the string matching code, focuses on assigning a
chunk of consecutive input symbols to each thread. Each thread then will try to match its
assigned symbols by following the links in the STT. A per-thread counter is incremented on
a match (reaching a final state in the STT traversal).

We have also built a standard pthreads version of our application that utilizes the same
algorithm as the XMT version, as a way of comparing conventional cache-based systems
against the XMT. The pthreads version shares the same code base as the XMT version
and simple conditional compilation rules are used to produce either the x86-pthreads or the
XMT versions. On the pthreads the input is divided into equal-size chunks and statically
assigned to threads executing on the cores.
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We have used a 128-processor Cray XMT with 1 TB of memory and a Intel Xeon work-
station with dual-socket, quad-core processors running at 2.66 GHz and 16 GB of memory.

Our experiments utilize four different dictionaries: Dict 1: a ≈ 190, 000-pattern data set
with mostly text entries with an average length of 16 bytes; Dict 2: a ≈ 190, 000-pattern
data set with mixed text and binary entries with an average length of 16 bytes; English: a
20,000-pattern data set with the most common words from the English language, with an
average length of 8.5 bytes; and Random: a 50,000-pattern data set with entries generated
at random from the ASCII alphabet with an uniform distribution and an average length
of 8 bytes. Figure 7 presents the distribution of ASCII symbols present in each of the
experimental dictionaries. Dictionaries with more text-like entries have higher frequencies of
alphabetical ASCII symbols. For both our XMT and x86 experiments, the data structures
representing the dictionaries fit completely into the memories.

We also use four different input streams for each dictionary: Text, which corresponds
to the English text of the King James Bible, TCP, which corresponds to captured TCP/IP
traffic, Random, which corresponds to a random sample of characters from the ASCII
alphabet, and Itself, which corresponds to feeding the dictionary itself as an input stream
for string matching. As discussed previously, using the dictionary itself as an input will
exhibit the “heaviest” matching behavior.
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Figure 8: Performance of the original implementation on the 128p Cray XMT
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Figure 9: Performance of the implementation with alphabet shuffling on the 128p Cray XMT
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Figure 10: Performance of the implementation with alphabet shuffling and state replication
on the 128p Cray XMT

Figure 8 presents the performance of our original implementation of Aho-Corasick string
matching on a 128-processor Cray XMT for the four previously discussed dictionaries. The
performance in many cases does not come close to the linear scaling curve due to memory
hot-spots present in accessing the STT representation by large numbers of threads.

Figure 9 presents the performance of our string matching code using alphabet shuffling
as discussed in Section 3. The scalability and absolute performance have improved for
dictionaries and input streams that exhibit large numbers of text-like (alphabetical) patterns
in them (English and Text).

Finally, Figure 10 presents the performance of our code using both alphabet shuffling
and replication of the first two levels in the STT graph (the levels have been replicated
8 times). This transformation relieves all the remaining memory contention pressure and
enables very good scalability and absolute performance, independent of the input stream

13



and the matching dictionary.
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Figure 11: Performance variability of the Cray XMT vs. an 8-core x86 Intel Xeon.

Figure 11 compares the performance variability for the Cray XMT version of the code
and for the x86-pthreads version of the code running on an 8-core Intel Xeon workstation
(2 sockets, 4 cores each). The performance variability of the Intel system can be as high as
95% while the performance variability of the XMT is below 10%. For the 10Gbps range,
the performance variability of the XMT implementation is 2.5% for different combinations
of dictionaries and input streams. We believe that using the same source code base for both
XMT and x86 platforms is appropriate since our implementation minimizes loads and data
structure overhead for both, given the absence of locality. For the x86-pthreads experiments,
we did not use alphabet shuffling or replication since they degraded the performance slightly
due to their control overhead.

5 Conclusions

We have presented the design and performance of a Cray XMT-based implementation of
the Aho-Corasick string searching algorithm. By utilizing the particular features of the
XMT multithreaded architecture and several algorithmic strategies (data structure selection,
alphabet shuffling, state replication), we have achieved scalable high performance, which is
independent from the analyzed input stream, as well as the matching pattern set. The
implementation of our sophisticated algorithmic strategies, was greatly simplified by the
underlying hardware and software support on the XMT.

Our absolute performance is one of the highest reported in the literature, at ≈ 28 Gbps,
for a software solution with very large dictionaries. The performance variability of our solu-
tion is very low, compared to other software implementations, which makes it amenable to
real-time usage. Our implementation has achieved this level of performance with a moderate
programming effort and a much simpler code structure, compared to custom solutions on
FPGAs and multimedia processors such as the IBM Cell/B.E.
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