
 1IEEE Power and Energy Society General Meeting 2009, Calgary, Canada

Massive Contingency Analysis with High
Performance Computing

Massive Contingency Analysis with High
Performance Computing

Zhenyu Huang, Senior Member, IEEE, Yousu Chen, Member, IEEE, Jarek Nieplocha, Member, IEEE Zhenyu Huang, Senior Member, IEEE, Yousu Chen, Member, IEEE, Jarek Nieplocha, Member, IEEE

Abstract—Contingency analysis is a key function in the

Energy Management System (EMS) to assess the impact of
various combinations of power system component failures based
on state estimates. Contingency analysis is also extensively used
in power market operation for feasibility test of market solutions.
Faster analysis of more cases is required to safely and reliably
operate today’s power grids with less marginal and more
intermittent renewable energy sources. Enabled by the latest
development in the computer industry, high performance
computing holds the promise of meet the need in the power
industry. This paper investigates the potential of high
performance computing for massive contingency analysis. The
framework of “N-x” contingency analysis is established and
computational load balancing schemes are studied and
implemented with high performance computers. Case studies of
massive 300,000-contingency-case analysis using the Western
Electricity Coordinating Council power grid model are presented
to illustrate the application of high performance computing and
demonstrate the performance of the framework and
computational load balancing schemes.

Abstract—Contingency analysis is a key function in the
Energy Management System (EMS) to assess the impact of
various combinations of power system component failures based
on state estimates. Contingency analysis is also extensively used
in power market operation for feasibility test of market solutions.
Faster analysis of more cases is required to safely and reliably
operate today’s power grids with less marginal and more
intermittent renewable energy sources. Enabled by the latest
development in the computer industry, high performance
computing holds the promise of meet the need in the power
industry. This paper investigates the potential of high
performance computing for massive contingency analysis. The
framework of “N-x” contingency analysis is established and
computational load balancing schemes are studied and
implemented with high performance computers. Case studies of
massive 300,000-contingency-case analysis using the Western
Electricity Coordinating Council power grid model are presented
to illustrate the application of high performance computing and
demonstrate the performance of the framework and
computational load balancing schemes.

Index Terms—Contingency Analysis, Energy Management
System, Parallel Computing, Computational Load Balancing.

Index Terms—Contingency Analysis, Energy Management
System, Parallel Computing, Computational Load Balancing.

I. INTRODUCTION I. INTRODUCTION

EAL time power grid operations heavily rely on computer
simulation. A key function in the Energy Management

System (EMS) is contingency analysis, which assesses the
ability of the power grid to sustain various combinations of
power grid component failures based on state estimates. The
outputs of contingency analysis, together with other EMS
functions, provide the basis for operation preventive and
corrective actions. Contingency analysis is also extensively
used in power market operation for feasibility test of market
solutions.

EAL time power grid operations heavily rely on computer
simulation. A key function in the Energy Management

System (EMS) is contingency analysis, which assesses the
ability of the power grid to sustain various combinations of
power grid component failures based on state estimates. The
outputs of contingency analysis, together with other EMS
functions, provide the basis for operation preventive and
corrective actions. Contingency analysis is also extensively
used in power market operation for feasibility test of market
solutions.

Due to heavy computation involved, today’s contingency
analysis can be updated only every few minutes for only a
select set of “N-1” contingency cases. A typical example is the
EMS system at Bonneville Power Administration (BPA), one

of the well-maintain system, runs 500 contingency cases in a
time interval of five minutes. However, the trend of operating
power grids closer to their capacity and integrating more and
more intermittent renewable energy demands faster analysis of
massive contingency cases to safely and reliably operate
today’s power grid.

Due to heavy computation involved, today’s contingency
analysis can be updated only every few minutes for only a
select set of “N-1” contingency cases. A typical example is the
EMS system at Bonneville Power Administration (BPA), one

of the well-maintain system, runs 500 contingency cases in a
time interval of five minutes. However, the trend of operating
power grids closer to their capacity and integrating more and
more intermittent renewable energy demands faster analysis of
massive contingency cases to safely and reliably operate
today’s power grid.

This work is supported in part by the CASS-MT program funded by the

Department of Defense and the Electricity Infrastructure Operations Initiative
of the Pacific Northwest National Laboratory. The Pacific Northwest National
Laboratory is operated by Battelle for the U.S. Department of Energy under
Contract DE-AC06-76RL01830.

This work is supported in part by the CASS-MT program funded by the
Department of Defense and the Electricity Infrastructure Operations Initiative
of the Pacific Northwest National Laboratory. The Pacific Northwest National
Laboratory is operated by Battelle for the U.S. Department of Energy under
Contract DE-AC06-76RL01830.

Z. Huang, Y. Chen and J. Nieplocha are with Battelle – Pacific Northwest
National Laboratory, Richland, WA 99352 USA (e-mails:
zhenyu.huang@pnl.gov, yousu.chen@pnl.gov, and jarek.nieplocha@pnl.gov).

Z. Huang, Y. Chen and J. Nieplocha are with Battelle – Pacific Northwest
National Laboratory, Richland, WA 99352 USA (e-mails:
zhenyu.huang@pnl.gov, yousu.chen@pnl.gov, and jarek.nieplocha@pnl.gov).

One consequence of operating power grids closer to the
edge is massive blackouts resulting in significant disruption of
electricity supplies and economic losses [1][2]. Power grid
blackouts often involve failure of multiple elements as
revealed in recent examples. Preventing and mitigating
blackouts requires “N-x” contingency analysis. The North
American Electricity Reliability Corporation (NERC) moves
to mandate contingency analysis from “N-1” to “N-x” in its
grid operation standards [3]. All this calls for a massive
number of contingency cases to be analyzed. As an example,
the Western Electricity Coordinating Council (WECC) system
has about 20,000 elements. Full “N-1” contingency analysis
constitutes 20,000 cases, “N-2” is roughly 108 cases, and the
number increase exponentially with “N-x”.

One consequence of operating power grids closer to the
edge is massive blackouts resulting in significant disruption of
electricity supplies and economic losses [

It is obvious that the computational workload is beyond
what a single personal computer can achieve within a
reasonable time frame for real-time operation. Parallel
computers or multi-core computers as emerging in the high
performance computing (HPC) industry hold the promise of
accelerating power grid contingency analysis. Contingency
cases are relatively independent of one another, so
contingency analysis is inherently a parallel process.
Mathematically, there is a relatively straightforward
parallelization path, but the issue with parallelization schemes
remains due to the unevenness in computation time of
individual cases.

It is obvious that the computational workload is beyond
what a single personal computer can achieve within a
reasonable time frame for real-time operation. Parallel
computers or multi-core computers as emerging in the high
performance computing (HPC) industry hold the promise of
accelerating power grid contingency analysis. Contingency
cases are relatively independent of one another, so
contingency analysis is inherently a parallel process.
Mathematically, there is a relatively straightforward
parallelization path, but the issue with parallelization schemes
remains due to the unevenness in computation time of
individual cases.

Previous work in parallel computing for contingency
analysis has been focused on “N-1” analysis with a small set
of cases [4][5]. Scalability remains to be an issue when more
processors are used and more cases are analyzed. This paper
investigates the application of high performance computing
for massive “N-x” contingency analysis. Parallelization
schemes for computational load balancing of massive
contingency analysis are investigated. The schemes include
static load balancing scheme and task-counter based dynamic
load balancing scheme. Test results are presented with actual
WECC contingency cases. Superior linear scalability of
parallel contingency analysis is demonstrated with 470 times
speedup achieved for 150,000 and 300,000 WECC “N-1” and

Previous work in parallel computing for contingency
analysis has been focused on “N-1” analysis with a small set
of cases [

1][2]. Power grid
blackouts often involve failure of multiple elements as
revealed in recent examples. Preventing and mitigating
blackouts requires “N-x” contingency analysis. The North
American Electricity Reliability Corporation (NERC) moves
to mandate contingency analysis from “N-1” to “N-x” in its
grid operation standards [3]. All this calls for a massive
number of contingency cases to be analyzed. As an example,
the Western Electricity Coordinating Council (WECC) system
has about 20,000 elements. Full “N-1” contingency analysis
constitutes 20,000 cases, “N-2” is roughly 108 cases, and the
number increase exponentially with “N-x”.

4][5]. Scalability remains to be an issue when more
processors are used and more cases are analyzed. This paper
investigates the application of high performance computing
for massive “N-x” contingency analysis. Parallelization
schemes for computational load balancing of massive
contingency analysis are investigated. The schemes include
static load balancing scheme and task-counter based dynamic
load balancing scheme. Test results are presented with actual
WECC contingency cases. Superior linear scalability of
parallel contingency analysis is demonstrated with 470 times
speedup achieved for 150,000 and 300,000 WECC “N-1” and

 R

 2

“N-2” contingency cases on a 512-processor parallel
computer.

This paper starts with an overview of the trend in the HPC
industry in Section II and the high performance computers
used in our studies in Section III, followed by Section IV on
the need of applying HPC to contingency analysis. Load
balancing schemes, performance analysis, and actual case
studies of massive contingency analysis are presented in
Sections V, VI, and VII. Section VIII discusses relevant issues
on contingency selection and decision support capabilities in
the context of massive contingency analysis. Section IX
concludes the paper with future work suggested.

II. DRIVE FROM HIGH PERFORMANCE COMPUTING

TECHNOLOGIES

Computer processor hardware has been significantly
improved over the last decade from about 300MHz in 1997 to
almost 4GHz today. However, looking back in the history
(Figure 1), one can see that the single processor speed (i.e.
clock frequency) is reaching a plateau and no longer follows
Moore’s Law [6], due to thermal limitations with the current
CMOS process technologies. Therefore, the computational
capacity of single core processors is no longer increasing
much.

As technological limits on the clock speed of CMOS
microprocessors are being approached, computer vendors are
offering multiple-processor cores per socket while the
performance of each microprocessor core remains relatively
flat. Currently, microprocessors with eight cores per socket
are available from Sun (multithreaded Sun Niagara [7]), four
cores per socket from Intel, and two cores from AMD and
IBM. Commodity computers with these multi-core processors
are available in today’s market. In addition, many-core
processors are being developed. Experimental 80-core
processors were announced by Intel and 128-core by IBM.
Many-core processors are expected to enter the mainstream
market in the near future.

Built with the multi-core/many-core processors, two major
types of HPC architectures are available: shared-memory
architecture and distributed-memory architecture. When
applying HPC technologies, a key success factor is the match
of computer architectures with problem characteristics. The
shared memory architecture has the main memory block
commonly accessible by all the processors in a random non-
uniform manner. Many shared memory systems such as SGI
Altix, Cray MTA-2, Cray XMT, or Sun Niagara provide a
natural memory latency hiding capability and thus can
efficiently execute applications with irregular memory
references. Shared memory architecture is useful for efficient
implementation of sparse matrix and irregular computations
[8] such as power system state estimation. The distributed
memory architecture consists of processors with local
memory. High-speed data links are used between processors
for communication. This architecture does not have the issue
with main memory access, but inter-processor communication
can be a bottleneck if an application requires frequent data

exchange between processors. The distributed memory
architecture well suits applications which can be divided into
sub-tasks with minimum data communication requirements.
Power system contingency analysis is one of such problems.

Early HPC applications to power system problems such as
state estimation and contingency analysis have achieved
promising results [9][10][11].

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

Maximum Intel Processor Operating
Frequency

0

1

2

3

4

5

6

1997 1998 1999 2000 2001 2002 2003 2004 2005

Year Introduced

F
re

q
u
n
cy

 (
G

H
z)

Figure 1 Increase of clock frequency of single-core Intel processors

III. HIGH-PERFORMANCE COMPUTERS AND PARALLEL

PROGRAMMING ENVIRONMENT

Two high-performance computers – Colony2A and HP
MPP2 – are used in this paper. They both are PC clusters with
distributed memory.

Colony2A has 24 Itanium-2 computer nodes from Hewlett
Packard. Each node has two 1.0 GHz processors (total 48
processors), 6 GB memory, and 36 GB disk space. Front-end
login/compilation node is a 900 MHz Itanium-2 sinlge
processor node with 1 GB memory. The network protocols
include Myrinet-2000, Infiniband, Ethernet and GigE on all
nodes. These provide high speed communication among the
computing nodes.

The MPP2 machine consists of 980 Hewlett-Packard Longs
Peak nodes with dual Intel 1.5 GHz Itanium-2 processors and
HP’s zx1 chipset. There are two types of nodes on the system:
FatNodes with 10 GB of memory (5 GB per processor) and
430 GB of local disk space and ThinNodes with 10 GB of
memory (5 GB per processor) and 10 GB of local disk space.
Fast inter-processor communication is obtained using a single
rail QSNetII/Elan-4 interconnect from Quadrics.

The program environment is Message Passing Interface
(MPI). The MPI is a library specification for message-passing
and a language-independent communications protocol used to
program parallel computers. The message-passing model
posits a set of processors that have only local memory but are
able to communicate with other processors by sending and
receiving messages, while each processor in the shared-
memory model has access to all of a single, shared address
space at the usual level of load and store operations [12].

IV. NEED FOR HIGH PERFORMANCE CONTINGENCY ANALYSIS

Contingency analysis is an essential part of power grid and
market operations. Traditionally, contingency analysis is
limited to be selected “N-1” cases within a balancing

 3

authority’s boundary. Power grid operators manage the system
in a way that ensures any single credible contingency will not
propagate into a cascading blackout, which approximately
summarizes the “N-1” contingency standard established by the
North American Electric Reliability Corporation (NERC)
[13].

Though it has been a common industry practice, analysis
based on limited “N-1” cases may not be adequate to assess
the vulnerability of today’s power grids due to new
development in power grid and market operations.

On the power market side, one example is the introduction
of Financial Transmission Rights (FTR) [14][15]. FTR
provides market participants a means to hedge risks due to
power transmission congestions. It is operated as an auction
market. When clearing the FTR market, the feasibility of the
FTR solution has to be evaluated by contingency analysis.
There exist multiple FTR categories such as annual FTRs,
seasonal FTRs and monthly FTRs. Each category requires
contingency analysis of a full system-size model. Multiple
categories couple the contingency problem and multiply the
size of the model. The result is the number of cases is
multiplied. With regular personal computers, it takes hours
and even days to clear the FTR auction market.

As for power grid operation, recent cascading failures [2]
reveal the need of “N-x” contingency analysis. The old
assumption is that a cascading failure is caused by a single
credible contingency. However, multiple unrelated events may
occur in a system and result in cascading failures. Therefore,
“N-2” and even higher order (“N-x”) contingency events need
to be analyzed.

Another new challenge in power grid operation is the
separation of administrative boundaries – called Balancing
Areas (or BAs) – which own, operate, and/or manage their
own areas of the grid. When performing contingency analysis,
each BA looks no further than its own boundaries. For areas
within an interconnection where several BAs reside next to
each other, seams issues may come into play. If the BAs all
evaluate their system to be “OK” with the contingencies
within their own systems, they will not prepare for the
simultaneous occurrence of multiple contingencies.
Individually, model results from each BA may show that each
contingency does not cause a problem. However, if these
contingencies occur simultaneously, there will likely be a very
large system-wide impact, but the urgency to restore the
system is not fully recognized with today’s “N-1” contingency
analysis. This indicates the need for “N-x” contingency
analysis, i.e. analysis of simultaneous occurrence of multiple
contingencies in multiple BAs.

“N-x” contingency analysis or even just more
comprehensive “N-1” analysis is very challenging due to the
combinatory number of contingencies and the extremely large
amount of computational time. Our tests show that full “N-1”
WECC contingency analysis has about 20,000 cases and takes
about 15,000 seconds (~4 hours) to solve, and 150,000 “N-2”
WECC cases take about 93,000 seconds (~26 hours).
Obviously, high performance computing application is a must

for meeting the need of massive power system contingency
analysis. The performance of high-performance computing
application for contingency analysis heavily relies on
computational load balancing. A well-designed computational
load balancing scheme considering the CPU speed, network
bandwidth and data exchange latency is key to the success.

V. COMPUTATIONAL LOAD BALANCING SCHEMES FOR

MASSIVE CONTINGENCY ANALYSIS

Contingency analysis is naturally a parallel process because
multiple contingency cases can be easily divided onto multiple
processors and communication between different processors is
very minimal. Therefore, cluster-based parallel machines are
well suited for contingency analysis. For the same reason, the
challenge in parallel contingency analysis is not on the low-
level algorithm parallelization but on the computational load
balancing (task partitioning) to achieve the evenness of
execution time for multiple processors.

The framework of parallel contingency analysis is shown
in Figure 2. Each contingency case is essentially a power flow
run. In our investigation, full Newton-Raphson power flow
solution is implemented. Given a solved base case, each
contingency updates its admittance matrix with an incremental
change from the base case. One processor is designated as the
master process (Proc 0 in Figure 2) to manage case allocation
and load balancing, in addition to running contingency cases.

Proc 0:
(1) Distribute base case Y0 matrix

Figure 2 Framework of parallel contingency analysis

The straightforward load balancing of parallel contingency

analysis is to pre-allocate equal number of cases to each
processor, i.e. static load balancing. The master processor only
needs to allocate the cases once at the beginning. Due to
different convergence performance for different cases, the
power flow run may require different number of iterations and
thus take different time to finish. The extreme case would be
non-converged cases which iterate until the maximum number
of iterations is reached. The variations in execution time result
in unevenness, and the overall computational efficiency is
determined by the longest execution time of individual
processors. Computational power is not fully utilized as many
processors are idle while waiting for the last one to finish.

Another load balancing scheme is to allocate tasks to
processors based on the availability of a processor, i.e.
dynamic load balancing. In another word, the contingency
cases are dynamically allocated to the individual processors so

Proc 0

Proc 1 Proc 2 Proc N

Proc 0

Proc 1

(2) Perform load balancing (static/dynamic)

Proc 2 … Proc N

(3) Distribute case information to other processors
(4) Perform contingency analysis

Other Proc’s:
(1) Update Y matrix based on case information: Y = Y0 + Y
(2) Perform contingency analysis

 4

that the cases are more evenly distributed in terms of
execution time by significantly reducing processor idle time.
The scheme is based on a shared task counter updated by
atomic fetch-and-add operations. The master processor (Proc
0) does not distribute all the cases at the beginning. Instead, it
maintains a task counter. Whenever a processor finishes its
assigned case, the processor requests more tasks from the
master processor and the task counter is updated. This process
is illustrated in Figure 3. Different from the evenly-distributed
number of cases on each processor with the static scheme, the
number of cases on each processor with the dynamic scheme
may not be equal, but the computation time on each processor
is optimally equalized.

Figure 3 Task-counter-based dynamic computational load balancing scheme

Both computational load balancing schemes are tested with

512 “N-1” contingency cases of the 14,000-bus WECC
system on the Colony2A machine. The results are shown in
Figure 4. For the static scheme, though computational
efficiency continuously increases when more processors are
used, the performance is not scalable and exhibits the
tendency of saturation. The performance of dynamic load
balancing, in comparison with its static counterpart, shows
much better linear scalability. The dynamic scheme achieves
eight times more speedup with 32 processors as shown in
Figure 4, and the difference is expected to be greater with
more processors.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Number of processors

S
p

e
e

d
u

p

Dynamic load balancing

Static load balancing

Figure 4 Performance comparison of static and dynamic computation load
balancing schemes with 512 WECC contingency cases

Figure 5 further compares the processor execution time for

the case with 32 processors. With dynamic load balancing, the
execution time for all the processors is within a small
variation of the average 23.4 seconds, while static load

balancing has variations as large as 20 seconds or 86%. The
dynamic load balancing scheme successfully improves
speedups. It is also worth pointing out that the contingency
analysis process of 512 WECC cases with full Newton-
Raphson power flow solutions can be finished within about 25
seconds. It is a significant improvement compared to several
minutes in current industry practice.

0
5

10
15
20
25
30
35
40
45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Processor #

T
im

e
(s

ec
)

Static Load Balancing
Dynamic Load Balancing23.4 sec

Figure 5 Evenness of execution time with different computational load
balancing schemes

VI. COMPUTATIONAL PERFORMANCE ANALYSIS OF THE

DYNAMIC LOAD BALANCING SCHEME

The dynamic computational load balancing scheme
balances execution time among processors better than the
static scheme. But the cost is the overhead of managing the
task counter. As shown in Figure 3, the execution time of each
case consists of four parts: tc – the computation time spent on
solving one contingency case, tio – the I/O time used to write
the results to disks, tcnt – the time to update the task counter,
and tw – the time to wait for the master processor to respond
with a new case assignment when counter congestion occurs.

Running all the cases on only one processor would take a
total time as estimated in (1):

 iocC

N

i

i
io

i
ctotal ttNttt

C

1

)()((1)

where NC is the total number of cases, and ct and iot are the

average computation time and I/O time, respectively. On one
processor, there is no counter management needed, so no tcnt
and tw should be included in (1).

Running the cases on multiple processors with dynamic
load balancing scheme would evenly distribute the total time
in (1), but involves counter management. If the total number
of processor is NP, the worst-case scenario with counter
congestion is that all the NP counter updates arrive at the same
time at the master processor. Then the first processor has not
waiting time, the second waits for time tw, and the last one has
the longest waiting time (NP 1)tw. The average waiting time
of a processor can be estimated as:

2

1
1

1

,
wP

P

C

P

N

i
w

P

C

Nw

tN

N

N

N

ti
N

N

t

P

P

 (2)

Proc 0 Proc 0

Proc 1 Proc 1

Proc 2 Proc 2

Proc N Proc 3

I/O Counter Update Computation
Time tc Time tio Time tcnt

Waiting
Time tw

 5

Therefore, the total wall clock time required to run all the

contingency cases can be estimated as (3):

2

1

2

11

)()(

,

wP
cntioc

P

C

wP

P

C
cnt

P

C

P

N

i

i
io

i
c

Ntotal

tN
ttt

N

N

tN

N

N
t

N

N

N

tt
t

C

P (3)

The speedup performance of dynamic load balancing

scheme can be expressed as the following conservative
estimate:

2

1

2

1

,

wP
cntioc

ioc
P

wP
cntioc

P

C

iocC

Ntotal

total
N

tN
ttt

tt
N

tN
ttt

N

N
ttN

t

t
S

P

P

 (4)

Several observations can be drawn from (4):
1) It is clearly shown that the dynamic load balancing

scheme is scalable with the number of cases as the
speedup performance is irrelevant to the number of
cases, NC.

2) If the counter update is instantaneous and no counter
congestion would occur, i.e. tcnt = 0 and tw = 0, then
the ideal speedup performance would be NP, equal to
the number of processors.

3) For practical implementation, improving speedup
performance would require to minimize the overhead
tcnt and tw.

4) Counter update time tcnt is mainly determined by the
network bandwidth and speed. Minimizing tcnt
usually means to choose high-performance network
connection between processors.

5) Waiting time tw is due to counter congestion. Though
more processors would improve the speedup, but
they also increase the possibility of counter
congestion as shown in (4).

VII. CASE STUDIES OF MASSIVE CONTINGENCY ANALYSIS

The massive “N-x” contingency analysis framework with
the dynamic computational load balancing scheme is
implemented with both the Colony2A and MPP2 cluster
machines. The 14,000-bus WECC power grid model is used to
test the performance of the massive contingency analysis.
Four scenarios of cases are selected for the studies:

1) 20,094 full “N-1” cases, which consist of 2748

generator outage cases and 17346 line outage cases.
Generator outages do not need to update the
admittance matrix, but line outages do by adding an
incremental change to the admittance matrix.

2) 150,000 “N-2” cases, which randomly choose 50,000
cases from each of the three combinations: double-
generator outages, double-line outages, and
generator-line outages.

3) 300,000 “N-2” cases, including 100,000 cases from
the three combinations mentioned above.

The “N-2” scenarios have many more divergence cases as
power flow would be more difficult to solve with double
elements outaged.

Figure 6 shows the performance comparison of the
Scenario 1 analysis on Colony2A with static and dynamic load
balancing schemes. The dynamic load balancing scheme again
exhibits superior speedup performance over the static one
because the dynamic scheme perfectly balances execution
time among all the processors as shown in Figure 6(b).
Compared with Figure 4, the performance curve of the static
scheme considerably approaches that of the dynamic scheme
in Figure 6(a). This attributes to the increased number of cases
on each processor: 16 (=512/32) in Figure 4 vs. 628
(=20,094/32). With more cases on each processor, the
randomness effect with the static scheme tends to smooth out
the unevenness in execution time. With more processors used
and less number of cases on each processor, the two curves
are expected to further depart, and the dynamic scheme will
have much speedup performance than the static one.

14,000-bus WECC Full N-1 Analysis

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Number of processors

S
p

e
e

d
u

p

Static load balancing

Dynamic load balancing

(a)

800

850

900

950

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Processor #

T
im

e
(s

ec
o

n
d

s)

Stat ic Load Balancing

Dynamic Load Balancing

Average: 834 sec

(b)

Figure 6 Full WECC “N-1” contingency analysis on Colony2A (a) speedup
performance and (b) execution time

The massive contingency analysis framework with the

dynamic balancing scheme is further tested on the larger

 6

MPP2 machine with all the scenarios including Scenario 1.
The results are summarized in Table 1. 512 MPP2 processors
are used, and excellent speedup performance is achieved:
about 500 times with the “N-2” scenarios and slightly less
with the “N-1” scenario. For all the scenarios, the counter time
is very insignificant compared to the computation time. It
indicates that the implementation of the dynamic balancing
scheme using a counter adds very little overhead to the overall
process and good scalability can be ensured.

TABLE 1 SUMMARY RESULTS OF THE MASSIVE CONTINGENCY ANALYSIS ON

THE MPP2 MACHINE

512
Processors
used

Wall
Clock
Time
(seconds)

Total
Computation
Time
(seconds)

Total I/O
Time
(seconds)

Total
Counter
Time*
(seconds) Speedup

Scenario 1
(20,094
N-1 cases)

31.0

14235.2

82.7

0.899 462

Scenario 2
(150,000
N-2 cases)

187.5

93115.5

489.1

5.550 503

Scenario 3
(300,000
N-2 cases)

447.9

226089.8

1087.1

9.984 507

* Includes waiting time.

As stated earlier, dynamic computational load balancing

aims to balance execution time on each processor by
dynamically distributing cases based on the availability of
processors. This is cleared confirmed by Figure 8(a). It shows
that the number of cases processed by individual processors
varies from 20 to 50, but the computation stays flat across the
processors. A noticeable larger time on Processor #51 is due
to the last case on this processor being a diverged one and
taking longer to solve.

26

27

28

29

30

31

32

1 51 101 151 201 251 301 351 401 451 501

Processor #

T
im

e
(s

ec
o

n
d

s)

0

20

40

60

80

100

N
u

m
b

er
 o

f
ca

se
s

Total time
Number of cases

Figure 7 Total time vs the number of cases on each processor of Scenario 1

Figure 8(b) shows the increase in counter time with the

increase in the number of cases on each processor for Scenario
1. This is understandable as more cases would need more
counter update requests. For the MPP2 machine, the
communication between processors is done with very high
speed networking. One counter update takes about 10-5
seconds. The counter time is minimal compared to the
computation time. But in other situations such as slow
Ethernet-connected computers, the communication between
processors is much slower and the counter time would be
much larger. This would more likely cause counter congestion

and should be taken into consideration when design the load
balancing schemes.

0

0.001

0.002

0.003

0.004

1 51 101 151 201 251 301 351 401 451 501
Processor #

T
im

e
(s

ec
o

n
d

s)

0

20

40

60

80

100

N
u

m
b

er
 o

f
C

as
es

Counter time

Number of cases

Figure 8 Counter time vs the number of cases on each processor of Scenario 1

VIII. DISCUSSION

The scalability of dynamic load balancing schemes with the
number of processors is likely to be limited by counter
congestion. More processors mean more counter update
requests would be sent to the single master processor, which
significantly increases the chances to have “traffic jam” on the
path to the master processor. Ongoing work investigates
multi-counter schemes and some other congestion-hiding
schemes to minimize the impact of counter congestion.

Though HPC is expected to improve the computational
efficiency of contingency analysis, smart contingency
selection is still an important element of practical
implementation. As mentioned in the Introduction section, the
number of cases increases exponentially as the “x” in “N-x”
increases. Even massive HPC application can not solve all the
contingency cases. How to identify the credible “N-x”
contingencies from a system-wide perspective can be a
challenging task. Many of existing contingency ranking
methods developed for “N-1” analysis [16] can be extended
for “N-x” contingency selection.

High-performance contingency analysis calls for advanced
operator decision support as much more information needs to
be digested by operators within a short time periods of a few
minutes. The technical challenge is how to navigate through
the vast volume of data and help grid operators to manage the
complexity of operations and decide among multiple choices
of actions. The state-of-the-art industrial tools use tabular
forms to present contingency analysis results. When there are
only a few contingencies where the system is not “N-1”
secure, the method of tabular display is adequate. But when
massive “N-x” contingency cases are analyzed and the system
is heavily stressed, the tabular method of display is rapidly
overloaded by significantly more contingencies violations. It
is then impossible for an operator to sift through the large
amounts of violation data and understand the system situation
within several seconds or minutes. However, it is in these
situations that the operators most need the information while
the tabular representation techniques are saturated. Thus the
usefulness of massive contingency analysis is undermined and
the HPC benefit is diminished. To resolve this issue,
visualization and human factors can be good candidate
approaches for enhancing decision support capabilities.

 7

 IX. CONCLUSIONS

A dynamic computational load balancing scheme is
implemented using a shared task counter updated by atomic
fetch-and-add operations to facilitate the work load
management among processors for massive contingency
analysis. The computational performance of the dynamic load
balancing scheme is analyzed, and the results provide
guidance in using high-performance computing machines for
large number of relatively independent computational jobs
such as power system contingency analysis. An “N-x”
massive contingency analysis framework with the dynamic
balancing scheme is tested on two different high performance
cluster machines. The test results indicate excellent scalability
of the dynamic load balancing scheme. On 512 processors,
massive contingency analysis can achieve about 500 times
speedup compared with a single processor, and full “N-1”
WECC contingency analysis can be completed with half a
minute.

Future work on computational load balancing will further
focus on counter congestion management. Beyond load
balancing, massive contingency analysis needs to study smart
contingency screening and advanced decision support through
techniques such as visualization.

X. ACKNOWLEDGEMENT

The authors gratefully acknowledge productive discussions
and dedicated support from Ning Zhou, Kevin Schneider,
Daniel Chavarría, Robert Pratt, Carl Imhoff, and Jeffery
Dagle, all with Pacific Northwest National Laboratory.

XI. REFERENCES

[1] D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model Validation
for the August 10, 1996 WSCC System Outage,” IEEE Trans. Power
Syst., vol. 14, no. 3, pp. 967-979, August 1999.

[2] U.S.-Canada Power System Outage Task Force, “Final Report on the
August 14, 2003 Blackout in the United State and Canada: Causes and
Recommendations”, April 2004. Available at https://reports.energy.gov/.

[3] NERC standards, Transmission System Standards – Normal and
Emergency Conditions, available at www.nerc.com.

[4] Quirino Morante, Nadia Ranaldo, Alfredo Vaccaro, and Eugenio Zimeo,
"Pervasive Grid for Large-Scale Power Systems Contingency Analysis,"
IEEE Transactions on Industrial Informatics, vol. 2, no. 3, August 2006

[5] Chen, R.H.; Jingde Gao; Malik, O.P.; Shi-Ying Wang; Nian-De Xiang;
"Automatic contingency analysis and classification," The Fourth
International Conference on Power System Control and Management,
16-18 April, 1996.

[6] Moore, Gordon E. “Cramming more components onto integrated
circuits. Electronics”, Vol. 38, No. 8, April 19, 1965.

[7] ---, “Niagara: A Torrent of Threads”. Available at:
http://www.aceshardware.com/reads.jsp?id=65000292

[8] T. Ungerer, B. Robi, and A. Jurij, "A survey of processors with explicit
multithreading," ACM Comput. Surv., vol. 35, pp. 29-63, 2003.

[9] Zhenyu Huang, and Jarek Nieplocha, “Transforming Power Grid
Operations via High-Performance Computing,” in: Proceedings of the
IEEE Power and Energy Society General Meeting 2008, Pittsburgh, PA,
USA, July 20-24, 2008.

[10] J. Nieplocha, A. Marquez, V. Tipparaju, D. Chavarría-Miranda, R.
Guttromson, Zhenyu Huang, “Towards Efficient Power System State
Estimators on Shared Memory Computers,” in: Proceedings of the IEEE

Power Engineering Society General Meeting 2006, Montreal, Canada,
June 18-22, 2006.

[11] Zhenyu Huang, Ross Guttromson, Jarek Nieplocha and Rob Pratt,
“Transforming Power Grid Operations via High-Performance
Computing,” Scientific Computing, April 2007.

[12] Williams Gropp, Ewing Lusk, and Anthony Skjellum, “Using MPI:
Portable Parallel Programming with the Message-Passing Interface
second edition”, The MIT Press, 1999.

[13] ---, ‘NERC Standards: Transmission System Standards – Normal and
Emergency Conditions”, North American Electricity Reliability
Corporation. Available at: www.nerc.com.

[14] ---, “Financial Transmission Rights (FTR) and Auction Revenue Rights
(ARR)”, Midwest ISO, Mar 13, 2008.

[15] ---, “PJM eFTR Users Guide”, PJM, 2007.
[16] Qiming Chen; McCalley, J.D.; Identifying high risk N-k contingencies

for online security assessment, Power Systems, IEEE Transactions on,
Volume 20, Issue 2, May 2005 Page(s):823 – 834.

XII. BIOGRAPHIES

Zhenyu Huang (M’01, SM’05) received his B. Eng. from Huazhong
University of Science and Technology, Wuhan, China, and Ph.D. from
Tsinghua University, Beijing, China, in 1994 and 1999 respectively. From
1998 to 2002, he conducted research at the University of Alberta, McGill
University, and the University of Hong Kong. He is currently a senior research
engineer at the Pacific Northwest National Laboratory, Richland, WA. His
research interests include power system stability and control, high-
performance computing applications, and power system signal processing.

Yousu Chen (M’07) received his B.E. in Electrical Engineering from Sichuan
University, China, his M.S. in Electrical Engineering from Nankai University,
China, and M.S. in Environmental Engineering from Washington State
University. Currently he is a Research Engineer at the Pacific Northwest
National Laboratory in Richland Washington. His main research areas are
power system operations and high-performance computing applications. Mr.
Chen is an IEEE member and the Vice-Chair of the Richland Chapter of the
Power Engineering Society.

Jarek Nieplocha (M’??) is a laboratory fellow and the technical group leader
of the Applied Computer Science Group in the Computational Sciences and
Mathematics Division of the Fundamental Science Division at Pacific
Northwest National Laboratory (PNNL). He is also the chief scientist for high-
performance computing in the Computational Sciences and Mathematics
Division. His area of research has been in optimizing performance of
collective and one-sided communication operations on modern networks,
runtime systems, parallel I/O, and scalable programming models. He received
four best paper awards at conferences in high-performance computing: IPDPS
’03, Supercomputing ’98, IEEE High-Performance Distributed Computing
HPDC-5, and IEEE Cluster ’03 conference, and an R&D-100 award. He has
authored and coauthored more than 80 peer reviewed papers. Dr. Nieplocha
participated in the MPI Forum in defining the MP-2 standard. He is also a
member of the editorial board of the International Journal of Computational
Science and Engineering. He is a member of the IEEE Computer Society.

	I. Introduction
	II. Drive from High Performance Computing Technologies
	III. High-Performance Computers and Parallel Programming Environment
	IV. Need for High Performance Contingency Analysis
	V. Computational Load Balancing Schemes for Massive Contingency Analysis
	VI. Computational Performance Analysis of the Dynamic Load Balancing Scheme
	VII. Case Studies of Massive Contingency Analysis
	VIII. Discussion
	IX. Conclusions
	X. Acknowledgement
	XI. References

