
1

Implementing and Evaluating Multithreaded Triad Census Algorithms on the
Cray XMT

George Chin Jr.1, Andres Marquez1, Sutanay Choudhury1, and Kristyn Maschhoff2

1High-Performance Computing
Pacific Northwest National Laboratory

{George.Chin, Andres.Marquez, Sutanay.Choudhury}@pnl.gov
2Cray, Inc. kristyn@cray.com

Abstract

Commonly represented as directed graphs, social networks depict relationships and behaviors among
social entities such as people, groups, and organizations. Social network analysis denotes a class of
mathematical and statistical methods designed to study and measure social networks. Beyond sociolo-
gy, social network analysis methods are being applied to other types of data in other domains such as
bioinformatics, computer networks, national security, and economics. For particular problems, the
size of a social network can grow to millions of nodes and tens of millions of edges or more. In such
cases, researchers could benefit from the application of social network analysis algorithms on high-
performance architectures and systems.

The Cray XMT is a third generation multithreaded system based on the Cray XT-3/4 platform. Like
most other multithreaded architectures, the Cray XMT is designed to tolerate memory access latencies
by switching context between threads. The processors maintain multiple threads of execution and util-
ize hardware-based context switching to overlap the memory latency incurred by any thread with the
computations from other threads. Due to its memory latency tolerance, the Cray XMT has the poten-
tial of significantly improving the execution speed of irregular data-intensive applications such as
those found in social network analysis.

In this paper, we describe our experiences in developing and optimizing three implementations of a
social network analysis method known as triadic analysis to execute on the Cray XMT. The three im-
plementations possess different execution complexities, qualities, and characteristics. We evaluate
how the various attributes of the codes affect their performance on the Cray XMT. We also explore
the effects of different compiler options and execution strategies on the different triadic analysis im-
plementations and identify general XMT programming issues and lessons learned.

1 INTRODUCTION

1.1 Cray XMT

The Cray XMT system is a third generation multithreaded system from Cray. The XMT infrastructure
is based on the Cray XT-3/4 platform, including its high-speed interconnect and network 3D-Torus
topology, as well as service and I/O nodes. The compute nodes of the XMT utilize a configuration
based on 4 multithreaded processors – called Threadstorms -- instead of 4 AMD Opteron processors.
Each Threadstorm maintains 128 hardware threads (streams) and their associated contexts. Assuming
all data- and resource-dependencies are met, a stream can be scheduled for instruction issue in a single
cycle. Each instruction can hold up to three operations, comprising a control, arithmetic and memory
operation. The XMT system enables the execution of applications built entirely for the Threadstorm
processors, in a similar manner as the previous generation MTA-2 did, as well as the execution of hy-
brid applications, in which portions of the application execute on the Threadstorm processors and por-

2

tions execute on mainstream AMD Opteron processors. The two types of processing elements coordi-
nate their execution and exchange data through a high-performance communications library.

Our large scale-out experimental runs were made on a 128 processor, 1 TB shared memory, XMT sys-
tem in Cray's development lab (in Seattle, Washington) using Threadstorm 3.0.X pre-production pro-
cessors that run at 500MHz. Each processor is attached over HT to 8GB DDR1 memory. Network
capability between the 32 compute blades is provided by a 3D-Torus Seastar-2 interconnect that exhi-
bits a round trip latency of 1.8us. For code development and testing purposes we used a smaller 16
processor, 128GB shared memory system located at Pacific Northwest National Laboratory in Rich-
land, Washington. This system is equipped with 500MHz Threadstorm 2.X processors. The smaller
system is configured as a 2D-Torus.

1.2 Graph Analysis

Graph algorithms fall into an important class of applications that are becoming memory-bound due to
the increasing gap between memory and processor speeds. Their performance is determined by the
speed of the memory subsystem (the processor will spend most of its time waiting for data to arrive
from memory without any useful work to execute). This class of applications exhibit irregular memo-
ry access pattern that cannot be predicted statically at programming or compile time. Dynamic latency
reduction techniques that exploit spatial locality are limited by scant discovery of the application’s
sparse data set shape and the data structures’s dynamic traversal pattern. In addition, large data struc-
ture sizes will render temporal locality techniques mostly ineffective. Applications that fall into this
class tend to focus on deriving scientific knowledge from vast repositories of empirical data. As time
progresses, their data structures will change and as knowledge is accumulated, their traversal might
change as well.

At a varying degree, multithreaded architectures do not rely on exploiting reference locality and in-
stead leverage performance gains from latency hiding techniques in the form of concurrent data traver-
sal. Maintaining massive concurrency is costly in terms of scheduling and synchronization overhead
and therefore these architectures try to strike a balance between sequential and concurrent execution.
The XMT represents one multithreading extreme, similar to pure data-flows machines, by providing
low cost scheduling for thousands of concurrent actors in conjunction with low cost fine-grained syn-
chronization capabilities. The XMT’s peculiar fine grained thread management techniques make the
machine an ideal candidate to process this class of applications.

Various graph applications have been implemented and evaluated on Cray MTA-2 and XMT systems
including general graph theory [1], power system state estimation [2], partial dimension trees [3], and
Boolean satisfiability solvers [4]. The research described in this paper will add to this evolving body
of research.

1.3 Social Networks and Triadic Analysis

Applied widely in social and behavioral sciences, social network analysis [5] encompasses mathemati-
cal and statistical methods for studying and measuring social networks. A social network describes
relationships among social entities and is often conveyed as a directed graph that shows ties or rela-
tionships among people, groups, and/or organizations. The shape and properties of a social network
helps determine the network's usefulness to a person, group, or organization. For example, a dense or
tight network may illustrate close social and/or working relationships among members, but may also
indicate an environment where the generation of new ideas and views are limited due to the effects of
groupthink and peer pressure.

3

Triadic methods in social network analysis are statistical methods focused on the concept of a triad. A
triad is a subgraph of size 3 consisting of three actors and all the directed relationships among them.
Overall, a directed graph has exactly n(n − 1)(n – 2)/6 triads, where n = number of nodes. Triadic me-
thods are considered local methods in the sense they separately examine the properties of subsets of
actors as opposed to global methods that simultaneously examine the properties of all actors in the so-
cial network.

A triad had sixty-four possible states based on the existence of directed edges among the three actors.
Triad states indicate important properties about the triad. For example, the triad states shown in Figure
1 exhibit properties of reciprocity, transitivity, and intransitivity. As shown in Figure 2, we can build a
triad census by capturing the frequencies in which the triads of a network fall into one of the 64 possi-
ble triad states. We may condense a 64-element triad census down to a 16-element triad census by
considering isomorphic cases, where certain triad types are structurally-equivalent and may directly
map onto one another.

Transitivity IntransitivityReciprocity Transitivity IntransitivityReciprocity

Figure 1. Triads with specific graph properties.

Figure 2. Creation of a triad census.

A triad census may be statistically compared to the triad census of a directed graph with a random dis-
tribution to examine which triad states and their associated properties are more or less prominent in the
social network under analysis. For example, if we believe that a particular social network should exhi-
bit an overall transitive property, then the frequencies of triads in transitive triad states should be
greater than that of a randomly distributed graph. Through triadic methods, we analyze the overall
structural properties of a social network based on local views into that network.

Social network and triadic analysis methods represent compelling applications for the Cray XMT.
Such methods may be applied to very large networks or graphs, which are data representations that the
XMT architecture is well-suited to support as previously described. Furthermore, these analysis me-
thods have wide applicability across many fields and disciplines, and their migration to high-
performance systems can only benefit scientists in allowing them to attack and solve larger networks
and scientific problems.

Triadic analysis has been applied in a variety of areas including the study of organizations [6, 7, 8],
Internet network traffic [9], email traffic [10], online communities [11], international trade [12], and
intelligence analysis [13]. Like other social network analysis methods, triadic analysis examines and

4

reveals properties about the general structure of networks, and thus, should have wide applicability to
other kinds of network analyses such as in biology and electric power grids.

2 TRIADIC ANALYSIS ALGORITHMS

In terms of published triadic analysis algorithms, two are generally well-known. Moody [14] devel-
oped a triad census algorithm with a computational complexity of O(n2), where n is the number of
nodes. Batagelj and Mrvar [9] offer a triad census algorithm with a subquadratic computational com-
plexity for sparse networks. In our social network research efforts, we have adapted from Batagelj and
Mrvar’s algorithm as well as developed many of our own.

2.1 Brute Force

A brute force triad census approach involves iterating through and examining every three possible
combination of nodes in the network as shown in Figure 3. In this algorithm, the input G = (V, E) is a
directed graph, where V is the set of vertices and E  V  V is the set of directed edges. The output is
the triad census stored in a 16-element Census array. The 16 array elements conform to the 16 possi-
ble isomorphic triad states. Each Census array element acts as a counter that sums up the number of
triads in graph G found in the associated state.

Figure 3. Brute force subquadratic triad census algorithm.

In step 1, we initialize the Census array. In steps 2, 2.1, and 2.1.1, we iterate through the nodes of V in
three nested loops to assign the three nodes of a triad. To ensure that we do not count the same triad
multiple times (e.g., (u, v, w) is equivalent to (w, u, v)), we canonically select the triads such that nodes
u > v > w is always true.

Once we have selected the three nodes u, v, and w of a triad, we call the IsoTricode function in step
2.1.1.1 to identify the isomorphic triad state. In step 2.1.1.2, the triad state is then used to index into
the Census array and to increment the counter for the corresponding triad state.

The brute force triadic analysis algorithm has a computational complexity of O(n3) for all networks.

2.2 Subquadratic

INPUT: G = (V, E)
OUTPUT: Census array with frequencies of triadic types

1 for i := 1 to 16 do Census[i] := 0; \\ initialize census
2 for each u  V do begin
2.1 for each v  V do if v < u then begin
2.1.1 for each w  V do if w < v then begin
2.1.1.1 TriType := IsoTricode(u,v,w);
2.1.1.2 Census[TriType] := Census[TriType] + 1;

 end;
end;

 end;

5

We implemented a variation of Batagelj and Mrvar’s algorithm as presented in Figure 4. In the algo-
rithm, the inputs include a directed graph G = (V, E), where V is the set of vertices and E  V  V is
the set of directed edges, and an array of neighbor lists N, which may be indexed by a node number.
The output Census array is the triad census. Given nodes u and v, the relation uEv is true should a di-
rected edge exist from u to v in E or {u,v} E. The relation uÊv is true should u be a neighbor of v.

Figure 4. Modified Batagelj and Mrvar’s subquadratic triad census algorithm.

The algorithm works by following existing edges in the network. In step 2, u is assigned to every ver-
tex in V. In step 2.1, v is assigned to every neighbor of u that has a smaller value. In step 2.1.4, w is
assigned to each node of S, which is the union of the neighbors of u and v. u, v, and w make up the
nodes of the triad that is currently being processed. In the inner processing of the algorithm, u will al-
ways have the smallest value among u, v, and w.

The algorithm computes three different types of triads: null, dyadic, and complete. Dyadic triads have
edges between two of three vertices. Given a pair of connected nodes, we can compute the number of
dyadic triads arising from the connected pair as n − |S| − 2 as shown in step 2.1.3. If a third node con-
nects to either node of the connected pair, we then have a connected triad, where each node of the triad
is connected to at least one edge. In step 2.1.4, we examine every node in S as the possible third node
to the current triad. Here, we wish to avoid counting the same three nodes through different iterations
of the code by only counting the canonical selection from (u, v, w) and (u, w, v). If u < w < v and
uÊw, then (u, w, v) had already been considered in the algorithm. However, if ￢uÊw, then (u, w, v) is
the canonical selection. In step 2.1.4.1, given the nodes of a connected triad, the IsoTricode function
identifies the triad’s isomorphic state, which may then be used to index into the Census array. In step
5, the number of null triads is computed as (1/6)n(n − 1)(n − 2) – sum, which is the total number of
possible triads minus the number of triads with at least one edge.

For sparse graphs, the complexity of the algorithm is O(k(n)*n), where k(n) << n. For complete
graphs, the complexity is O(n3).

INPUT: G = (V, E), N – array of neighbor lists
OUTPUT: Census array with frequencies of triadic types

1 for i := 1 to 16 do Census[i] := 0; \\ initialize census
2 for each u  V do begin
2.1 for each v  N[u] do if u < v then begin
2.1.1 S := N[u]  N[v];
2.1.2 if uEv  vEu then TriType := 3 else TriType := 2;
2.1.3 Census[TriType] := Census[TriType] + n − |S| − 2;
2.1.4 for each w  S do if v < w  (u < w  w < v  ￢uÊw) then begin
2.1.4.1 TriType := IsoTricode(u,v,w);
2.1.4.2 Census[TriType] := Census[TriType] + 1;
 end;
 end;
 end;
3 sum := 0;
4 for i := 2 to 16 do sum := sum + Census[i];
5 Census[1] := (1/6)n(n − 1)(n − 2) − sum;

6

2.3 Parallel Tasks

For the parallel tasks triad census algorithm, we use our knowledge of the logic of the subquadratic
algorithm to load balance the execution of the triad census computation. In examining the subquadrat-
ic algorithm in Figure 4, we see that the amount of processing that occurs within the second nested
loop at step 2.1 is variable depending on the size of S. As shown in Figure 5, to load balance, we can
construct task queues containing node pairs that identify two of the three nodes of a triad. The two
nodes u and v are assigned in steps 3 and 3.1 in the same way the subquadratic algorithm assigns the
first two nodes of a triad (steps 2 and 2.1 in Figure 4). In step 3.1.2, we maintain a counter that sums
the sizes of combined neighbor sets we have encountered for the current queue D[i]. We continue to
add node pairs to the task queue until a certain MaxNeighborSetSize is reached in step 3.1.3, upon
which a new task queue is started.

Figure 5. Task queue generation in parallel tasks triadic census algorithm.

As shown in Figure 6, the triad census portion of the parallel tasks algorithm loops through the task
elements of each queue in steps 2 and 2.1 to pull out node pairs for processing. Given the first two
nodes u and v of a triad, the rest of the code follows the same logic as the subquadratic algorithm to
identify the third node and to compute the census elements.

The computational complexity of the parallel tasks algorithm should be the same as the subquadratic
algorithm, which is O(k(n)*n), where k(n) << n, for sparse graphs and O(n3) for complete graphs. This
assumes that the number of task queues is small enough such that no task queues are empty.

3 XMT PROGRAMMING FEATURES

A salient characteristic of the MTA architecture and its latest incarnation, the XMT, is the underlying
programming model. Although the programmer is required to expose parallelism to the compiler in
the form of loop parallelism and/or task parallelism (futures), there is no requirement to reason about
locality. Given enough exploited parallelism, the programming model abstraction gives the illusion of
single unit instruction latency. This is in contrast to other noteworthy programming models such as
OpenMP that provide semantically similar parallelism constructs, yet do not make any latency hiding
guarantees.

INPUT: G = (V, E), N – array of neighbor lists
OUTPUT: D – array of task queues

1 i := 1;
2 counter := 0;
3 for each u  V do
3.1 for each v  N[u] do if u < v then begin
3.1.1 D[i] := D[i]  (u, v);
3.1.2 counter := counter + |N[u]| + |N[v]|;
3.1.3 if counter > MaxNeighborSetSize then begin
3.1.3.1 i := i + 1;
3.1.3.2 counter := 0;
 end;
 end;
 end;

7

Figure 6. Main part of parallel tasks triadic census algorithm.

In practice the “unit latency” contract can break down in situations that are either application or ma-
chine driven: The former would manifest itself as an application’s lack of strong scaling capabilities.
The latter might be observed in limit cases by oversubscribing the network or memory. The XMT
programming model’s characteristics are underwritten by a strong compiler platform that is able to ex-
tract automatically parallelism from well-formed loops. Hence, a major XMT coding task consists in
generating such loops. Explicit parallelism is supported by task-parallelism constructs (futures) and
several intrinsics that support fine grain synchronization in hardware. The compiler handles inter pro-
cedural analysis and is capable of detecting and rewriting linear recurrences as well as reductions.

3.1 General Code Optimization

In optimizing the triad census codes to run on the Cray XMT, we generally programmed for implicit
parallelism [15] using standard C language constructs and relied on the compiler to automatically par-
allelize loops in the code. We iterated on the development and optimization of the codes by repeatedly
analyzing the codes using Cray’s Compile Analysis (Canal) [16] tool to identify and address depen-
dencies and parallelization issues.

One common modification we made to the original sequential codes was to replace linked list data
structures that are inherent to graphs with compact data structures. With a compact data structure, we
allocate a large chunk of memory upfront and use array indices for random access into the data. This
allows the program to access the data through inductive loops, for which the compiler may identify the
number of iterations a loop contains before the loop is entered. A compact data structure also replaces
a large number of dynamic memory allocations, which may be computationally expensive.

In our codes, we removed multiple exit conditions from for loops, which the compiler had difficulty
parallelizing. We also consistently used the int_fetch_add generic function to synchronize updates to
data without using locks. This function accesses the underlying atomic int_fetch_add machine opera-
tion. We also made of habit of “inlining” functions, so that we could better diagnose and optimize
code near function calls.

INPUT: G = (V, E), N – array of neighbor lists, D – array of task queues
OUTPUT: Census array with frequencies of triadic types

1 for i := 1 to 16 do Census[i] := 0;
2 for each T  D do
2.1 for each (u, v)  T do
2.1.1 S := N[u]  N[v];
2.1.2 if uEv  vEu then TriType := 3 else TriType := 2;
2.1.3 Census[TriType] := Census[TriType] + n − |S| − 2;
2.1.4 for each w  S do if v < w  (u < w  w < v  ￢uÊw) then begin
2.1.4.1 TriType := IsoTricode(u,v,w);
2.1.4.2 Census[TriType] := Census[TriType] + 1;
 end;
 end;
 end;
3 sum := 0;
4 for i := 2 to 16 do sum := sum + Census[i];
5 Census[1] := (1/6)n(n − 1)(n − 2) − sum;

8

For fast I/O, we utilized the Lightweight User Communication (LUC) library [17], which gave us
access to Linux service nodes to perform faster sequential I/O operations than the XMT compute
nodes. This provided significant reduction in the time required to load large input datafiles.

4 PERFORMANCE EVALUATION AND RESULTS

Our performance evaluation focuses specifically on the triad census generation portions of the triadic
analysis codes. Each implementation, however, requires a certain level of preprocessing of the input
data prior to triad census generation. For the brute force algorithm, the network is directly read in
from a file in a specific graph format. The subquadratic algorithm requires as input both a network and
neighbor lists for each of the nodes. In this case, the subquadratic implementation reads a file contain-
ing node adjacency lists, which are used to generate both the network and the neighbor lists. The task
parallel algorithm requires as input the network, the neighbor lists, and the task queues. Like the sub-
quadratic implementation, the parallel tasks implementation also reads in a file containing adjacency
lists to construct the network and neighbor lists, but then generates the task queues as described back
in Figure 5.

To focus on the triad census generation portions of the algorithms is reasonable provided that the triad
census generation is more computationally-intensive than the preprocessing stages. We have opti-
mized the preprocessing portions of the brute force and subquadratic implementations such that they
execute much faster than the triad census computation. Further optimization, however, is required for
the queue generation portion of the parallel tasks implementation, which is not parallelizable in its cur-
rent form because the queues are sequentially filled one at a time. We are exploring other strategies to
filling the queues such as using hash maps or presorting the task elements going into the queues and
expect that we can reduce the execution time of the preprocessing stage to be much smaller than that of
the triad census computation.

4.1 Triad Census Algorithm Comparison on 16-processor XMT

In our first evaluation, we examined the performance of the three triad census algorithms on a mod-
erate-sized sparse random graph consisting of 10,000 nodes and 100,000 edges for different numbers
of processors on the 16-processor XMT. Through testing, we found that the parallel tasks algorithm
executed most efficiently with 1,000 task queues for the specified network and configured the parallel
tasks code accordingly. As shown in the performance results of Table 1, the brute force algorithm re-
quired hours of execution to complete compared to the subquadratic and parallel tasks algorithms,
which completed in seconds. The higher computational complexity of the brute force algorithm signif-
icantly hampered its performance compared to the other triad census algorithms.

Table 1. Execution times (in seconds) of triad census algorithms processing a 10,000-node,
10,000-edge sparse random graph. Execution is conducted on a 16-processor Cray XMT.

Triadic Analysis Algorithms - Execution Time (s)
(10,000-node, 100,000-edge Random Graph)

Processor Count Brute Force Subquadratic Parallel Tasks
1 154239.83 3.21 6.22
2 85182.29 1.71 4.66
4 47168.17 0.93 4.01
8 25982.44 0.66 3.69
12 16948.09 0.48 3.40
16 13086.49 0.36 3.23

9

With respect to speedup, all three algorithms exhibited linear speedup rates up to 16 processors, but the
brute algorithm was the most efficient, presumably due to its relative simplicity and tight production of
available work as shown in Figure 7. Total memory utilization for the brute force algorithm was about
1.5 GB, while maximum CPU utilization stood at about 46%. We did not collect memory and CPU
utilization data for the subquadratic and parallel tasks algorithms, since they executed so quickly.

Figure 7. Speedup rates of triad census algorithms processing a 10,000-node, 10,000-edge
sparse random graph. Execution is conducted on a 16-processor Cray XMT.

Next, we ran the three triad census algorithms on a much larger network consisting of 3.8 million
nodes and 16.5 million edges. The network links US patents granted between 1963 to 1999 to patent
citations made between 1975 and 1999. With this network, the brute force algorithm did not complete
after 96 hours of dedicated execution on the 16-processor XMT. We configured the parallel tasks al-
gorithm to use 1.6 million queues, which we found to be optimal by testing different queue counts. As
shown in Figure 8a, the subquadratic algorithm executed faster than the parallel tasks algorithm on the
patents network. Both these algorithms showed comparable linear scaling as shown in Figure 8b. In
terms of utilization rates, the subquadratic algorithm consumed up to 12.6 GB of memory while the
parallel tasks algorithm consumed up to 13.3 GB, presumably requiring a little more memory to store
and manage the task queues. Processor utilization was comparable with the subquadratic algorithm
achieving up to 66% CPU utilization and the parallel tasks algorithm reaching 64%. From our expe-
riences with the Cray XMT, these CPU utilization rates are extremely high. Most graph applications
that we observed in the past had achieved around 30% CPU utilization.

The Cray XMT programming environment supports a construct known as futures, which designates a
section of code that may be executed by a newly created thread. The new thread runs concurrently
with other threads of a program. Code depending on values computed by a future will be suspended
until that future finishes executing. We may direct the compiler to schedule and manage each iteration
of a loop as a future by issuing the following pragma statement immediately above the loop in the
code.

#pragma mta loop future

In the case of a nested loop, the pragma statement would be placed above the outer loop.

We developed loop future versions of both the subquadratic and parallel tasks algorithms and ran them
with the patents network. As shown in Figure 9a, both loop future implementations executed faster
than the original implicit parallelism implementations. Overall, the loop future parallel tasks imple-

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18

S

p

e

e

d

u

p

Processor Count

Triadic Analysis Algorithms ‐ Speedup
(10,000‐node, 100,000‐edge Random Graph)

Brute Future

Subquadratic

Parallel Tasks

10

mentation outperformed the loop future subquadratic implementation and showed a significant per-
formance improvement over the implicit parallelism parallel tasks implementation. Looking at Figure
9b, the loop future parallel tasks implementation also exhibited the best linear scaling among the im-
plicit parallelism and loop future versions of the subquadratic and parallel tasks triad census algo-
rithms, while the loop future subquadratic implementation exhibited the worst scaling.

Figure 8. a.) Execution times and b.) speedup rates of subquadratic and parallel tasks triad
census algorithms processing a 3,774,768-node, 16,522,438-edge patents network. Execution
is conducted on a 16-processor Cray XMT.

Figure 9. a.) Execution times and b.) speedup rates of implicit parallelism and loop future ver-
sions of the subquadratic and parallel tasks triad census algorithms processing a 3,774,768-
node, 16,522,438-edge patents network. Execution is conducted on a 16-processor Cray XMT.

In reviewing the compile logs for the implicit parallelism and loop future codes, we find that for the
implicit parallelism versions, given well defined iteration spaces, the compiler automatically paralle-
lizes the outer two loops of the triad census computation through a general loop collapse. The generat-
ed iterations are executed on threads across multiple processors. For the loop future versions, the
compiler also automatically optimizes the outer two loops, but schedules only the outer loop iteration
across multiple processes. The inner loop executes on a single processor in what is known as fray
mode, where the compiler implements fork and join operations inline using very short instruction se-
quences. Fray parallelism has low overhead. We believe this contributes to the higher performance of
the loop future versions over the implicit parallelism versions of the triadic analysis algorithms.

1

10

100

1,000

10,000

0 5 10 15 20

E

x

e

c

T

i

m

e

(

s)

Processor Count

Triadic Analysis Algorithms ‐ Execution Time
(3,774,768‐node, 16,522,438‐edge Patents Network)

Subquadratic

Parallel Tasks

0

2

4

6

8

10

12

0 5 10 15 20

S

p

e

e

d

u

p

Processor Count

Triadic Analysis Algorithms ‐ Speedup
(3,774,768‐node, 16,522,438‐edge Patents Network)

Subquadratic

Parallell Tasks

a.) b.)

0

2

4

6

8

10

12

14

16

0 5 10 15 20

S

p

e

e

d

u

p

Processor Count

Triadic Analysis Algorithms ‐ Speedup
(3,774,768‐node, 16,522,438‐edge Patents Network)

Subquadratic

Subquadratic ‐
Loop Futures

Parallell Tasks

Parallel Tasks ‐
Loop Futures

1

10

100

1,000

10,000

0 5 10 15 20

E

x

e

c

T

i

m

e

(

s)

Processor Count

Triadic Analysis Algorithms ‐ Execution Time
(3,774,768‐node, 16,522,438‐edge Patents Network)

Subquadratic

Subquadratic ‐
Loop Futures

Parallel Tasks

Parallel Tasks ‐
Loop Futures

a.) b.)

11

4.2 Triad Census Algorithm Comparison on 128-processor XMT

With limited access to the 128-processor XMT, we continued to evaluate the performance and beha-
vior of the subquadratic triad census algorithm on larger network problems and a larger XMT machine.
For performance testing, we created two random networks consisting respectively of 12 million nodes
with 120 million edges and 35 million nodes with 350 million edges. We continued to evaluate both
the implicit parallelism and loop future versions of the subquadratic algorithm on these two large net-
works. During execution, the processing of the 12 million-node network required up to 85 GB of
memory, while the 35 million-node network required up to 220 GB.

As shown in Figure 10a, the loop future version of the subquadratic algorithm continues to execute
faster than the implicit parallelism version for both large networks. In examining the scaling perfor-
mances of the subquadratic versions in Figure 10b, we may observe that the speedup rate levels off or
tails down for all versions as we move from 96 to 128 processors. The degradation is most pro-
nounced for the implicit parallelism version processing the 35 million-node network and least pro-
nounced for the loop future version also processing the 35 million-node network. Since the degrada-
tion is evident in the processing of both the 12 and 35 million-node networks and is most pronounced
with the 35 million-node network, this behavior is not likely to be attributed to the graph problem be-
ing too small and the processors running out of work. Rather, we believe in these instances that the
codes are saturating some aspect of the system such that the hardware threads are not fighting for ex-
ecution slots but delayed by network latencies of remote loads. These runs may be hitting the network
tuning limits of the system.

Figure 10. a.) Execution times and b.) speedup rates of implicit parallelism and loop future
versions of the triad census algorithms processing a 12 million-node, 120 million-edge network
and a 35 million-node, 350 million-edge network. Execution is conducted on a 128-processor
Cray XMT.

To test this theory, we re-executed the implicit parallelism subquadratic algorithm using different
stream limits to identify the potential network saturation point. On the XMT, the default stream limit
is 100. One may set the stream limit at runtime in the user environment by issuing the bash command

export MTA_PARAMS=”stream_limit 70”

or csh command

setenv MTA PARAMS “stream_limit 70”

1

10

100

1000

10000

0 20 40 60 80 100 120 140

E

x

e

c

T

i

m

e

(

s)

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(12M‐120M and 35M‐350M Random Graphs)

Subquadratic (12M
nodes, 120M edges)

Subquadratic ‐ Loop
Futures (12M nodes,
120M edges)

Subquadratic (35M
nodes, 350M edges)

Subquadratic ‐ Loop
Futures (35M nodes,
350M edges)

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

S

p

e

e

d

u

p

Processor Count

Subquadratic Triadic Analysis ‐ Speedup
(12M‐120M and 35M‐350M Random Graphs)

Subquadratic (12M
nodes, 120 edges)

Subquadratic ‐ Loop
Futures (12M
nodes, 120 edges)

Subquadratic (35M
nodes, 350 edges)

Subquadratic ‐ Loop
Futures (35M
nodes, 350 edges)

a.) b.)

12

Figure 11 shows the performances of the subquadratic algorithm processing the 12 million-node net-
work with stream limits of 65, 70, 75, and 100. As shown, the performance of the subquadratic algo-
rithm improves with higher stream limits up to 96 processors. At 128 processors, however, the execu-
tion of the algorithm at the higher stream limits degrades. Among the four stream limits, the perfor-
mance of the subquadratic algorithm on the 12 million-node network was best for the stream limit of
70.

Figure 11. Execution times of implicit parallelism versions of the subquadratic triad census
algorithm processing a 12 million-node, 120 million-edge network with different stream limits.
Execution is conducted on a 128-processor Cray XMT.

Examining the speedup rates across the different stream limits, Figure 12a shows the degradation in
the scaling of the 75 and 100 stream limit runs compared to the 65 and 70 stream limit runs. To better
illustrate the stream saturation behavior, we may plot the algorithm speedup rates against the total
number of available hardware threads (number of processors  stream limit). As shown in Figure 12b,
the algorithm performances scale reasonably well for the four stream limits up through about 9000 to-
tal hardware threads, upon which the speedup rates tails off. This finding is consistent with our obser-
vation that running the subquadratic algorithm with a stream limit of 70 is optimal since the total num-
ber of available hardware threads would be 128 x 70 = 8960.

We can repeat this evaluation with the 35 million-node network. As shown in Figure 13, the perfor-
mance of the implicit parallelism subquadratic algorithm is better for the 100 stream limit over the 70
stream limit up to 96 processors. For 128 processors, however, the algorithm performance is better for
the 70 stream limit. Also, the scaling of the algorithm with a 100 stream limit starts to degrade after 96
processors as shown in Figure 14a, and after 9,000 total number of available hardware thread as shown
in Figure 14b, which mirrors the behavior and results found with the 12 million-node network.

4.3 CPU Utilization Profiles

We took a closer look at the CPU utilization of the subquadratic algorithm for both the implicit paral-
lelism and loop future versions. Figure 15 shows the CPU utilization of both subquadratic triad census
versions over time when processing the 12 million-node network using 36 processors on the 128-
processor Cray XMT. The two humps in the figure illustrate two stages of the code. The first hump
plateauing around 20% CPU utilization identifies the input stage of the code where the network is read
in from file, while the second hump identifies the triad census computation. For both the implicit par-

70

700

0 20 40 60 80 100 120 140

E

x

e

c

T

i

m

e

(

s)

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(12M‐node, 120M‐edge Random Graph)

Subquadratic
(65 streams)

Subquadratic
(70 streams)

Subquadratic
(75 streams)

Subquadratic
(100 streams)

13

allelism and loop future versions, the triad census computation reaches about 50-55% CPU utilization.
The CPU utilization of the implicit parallelism version, however, tails downward over an extended pe-
riod of time, while the loop future version maintains the higher CPU utilization longer and then tails
down quickly. These utilization profiles show that the loop future version executes more efficiently
than the implicit parallelism version.

Figure 12. Speedup rates of implicit parallelism versions of the subquadratic triad census al-
gorithm processing a 12 million-node, 120 million-edge network with different stream limits
mapped against total number of a.) processors and b.) available hardware threads. Execution is
conducted on a 128-processor Cray XMT.

Figure 13. Execution times of implicit parallelism versions of the subquadratic triad census
algorithm processing a 35 million-node, 350 million-edge network with different stream limits.
Execution is conducted on a 128-processor Cray XMT.

In an attempt to improve the load balancing of the implicit parallelism version, we inserted the follow-
ing compilation directive into the code above the outer loop of the triad census computation.

#pragma mta interleave schedule

In an interleaved schedule for a parallel loop, the compiler assigns contiguous iterations to distinct
streams. For a loop with 100 iterations and 10 streams available, one stream performs iterations 1, 11,
21, …, another performs iterations 2, 12, 22, ..., etc. An interleaved schedule results in better load ba-

200

2000

0 20 40 60 80 100 120 140

E

x

e

c

T

i

m

e

(

s)

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(35M‐node, 350M‐edge Random Graph)

Subquadratic
(70 streams)

Subquadratic
(100 streams)

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

S

p

e

e

d

u

p

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(12M‐node, 120M‐edge Random Graph)

Subquadratic
(65 streams)

Subquadratic
(70 streams)

Subquadratic
(75 streams)

Subquadratic
(100 streams)

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000 12000 14000

S

p

e

e

d

u

p

Total HW Threads

Subquadratic Triadic Analysis ‐ Execution Time
(12M‐node, 120M‐edge Random Graph)

Subquadratic
(65 streams)

Subquadratic
(70 streams)

Subquadratic
(75 streams)

Subquadratic
(100 streams)

a.) b.)

14

lancing for triangular loops. With the subquadratic algorithm, the nested loop has some triangular
properties - the variable of the outer loop traverses through every node, while the inner loop traverses
through every neighbor of the outer node but through only those that have a smaller index value.

Figure 14. Speedup rates of implicit parallelism versions of the subquadratic triad census al-
gorithm processing a 35 million-node, 350 million-edge network with different stream limits
mapped against total number of a.) processors and b.) available hardware threads. Execution is
conducted on a 128-processor Cray XMT.

Figure 15. CPU utilization profiles for the implicit parallelism and loop future versions of the
subquadratic triad census algorithm processing a 12 million-node, 120 million-edge network.
Execution is carried out on 36 processors of a 128-processor Cray XMT.

As shown in Figure 16, the interleaved schedule version of the subquadratic algorithm better maintains
the higher CPU utilization rate and avoids the trailing tail found in the utilization profile of the original
implicit parallelism code. Furthermore, the execution time improved to be comparable to the loop fu-
ture version of the code in processing the 12 million-node network over 36 processors. In testing the
scheduled interleave version over a range of processors, we found that both the interleaved schedule
and loop future versions have comparable execution times up to 96 processors as shown in Figure 17.
At 128 processors, the performance of the loop future version is still better than the scheduled inter-
leave version due to the stream saturation effects we previously described.

0

10

20

30

40

50

60

0 5 10 15 20

C

P

U

U

t

i

l

(

%)

Time (s)

Subquadratic Triadic Analysis ‐ CPU Utilization (36 Procs)
(12 M‐node, 120M‐edge Random Graph)

Implicit
Parallelism

Loop Future

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

S

p

e

e

d

u

p

Processor Count

Subquadratic Triadic Analysis ‐ Speedup
(35M‐node, 350M‐edge Random Graph)

Subquadratic
(70 streams)

Subquadratic
(100 streams)

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000

S

p

e

e

d

u

p

Total HW Threads

Subquadratic Triadic Analysis ‐ Execution Time
(35M‐node, 350M‐edge Random Graph)

Subquadratic
(70 streams)

Subquadratic
(100 streams)

a.) b.)

15

Figure 16. CPU utilization profiles for the implicit parallelism, interleaved schedule, and loop
future versions of the subquadratic triad census algorithm processing a 12 million-node, 120
million-edge network. Execution is carried out on 36 processors of a 128-processor Cray
XMT.

Figure 17. Execution times for the implicit parallelism, interleaved schedule, and loop future
versions of the subquadratic triad census algorithm processing a 12 million-node, 120 million-
edge network. Execution is conducted on a 128-processor Cray XMT.

We further tested the interleaved schedule version with the 35 million-node network and did not find
the same improvements as we did with the 12 million-node network. As shown in Figure 18, the CPU
utilization profiles for the implicit parallelism and interleaved schedule versions both had extended
tails. Furthermore, both versions closely tracked one another and continued to trail the loop future ver-
sion in execution time across different numbers of processors as shown in Figure 19.

One possible explanation for the CPU utilization differences might be that the triangular loop pattern is
less pronounced for the 35 million-node network than the 12 million-node network. Both networks
had ten times as many edges as nodes, and thus, each node should average 20 neighbors (each edge
contributes two neighbors). Recall that the inner loop in the triad census computation traverses over
the neighbors (with smaller index values) of the node identified by the variable of the outer loop.
Thus, the size of the bounds of the inner loop should be the same for both networks, but the bounds of
the outer loop is much larger for the 35 million-node network than the 12 million-node network. Giv-

1

10

100

1000

0 20 40 60 80 100 120 140

E

x

e

c

T

i

m

e

(

s)

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(12M‐120M Random Graph)

Implicit Parallelism

Interleaved Schedule

Loop Future

0

10

20

30

40

50

60

0 5 10 15 20

C

P

U

U

t

i

l

(

%)

Time (s)

Subquadratic Triadic Analysis ‐ CPU Utilization (36 Procs)
(12 M‐node, 120M‐edge Random Graph)

Implicit

Parallelism

Interleaved
Schedule

Loop Future

16

en that the triangular pattern was less pronounced for the 35 million-node network, the load-balancing
effects of an interleaved schedule may have been limited.

Figure 18. CPU utilization profiles for the implicit parallelism, interleaved schedule, and loop
future versions of the subquadratic triad census algorithm processing a 35 million-node, 350
million-edge network. Execution is carried out on 36 processors of a 128-processor Cray
XMT.

Figure 19. Execution times for the implicit parallelism, interleaved schedule, and loop future
versions of the subquadratic triad census algorithm processing a 35 million-node, 350 million-
edge network. Execution is conducted on a 128-processor Cray XMT.

Another explanation might simply relate to the variability of random networks. Although the average
number of neighbors of a node in the two networks we tested was the same, any particular node could
have 0 or much more than 20 neighbors. So, for any random network, the shape of the nested loops in
the subquadratic algorithm could appear roughly triangular or totally random. This reminds us that as
we parallelize and optimize particular algorithms, we must also parallelize and optimize for the specif-
ic problems and data that we are addressing.

5 CONCLUSIONS AND FUTURE PLANS

In this paper, we present three difference triad census algorithms, each possessing different structural
and execution characteristic. The brute force algorithm is simple and clean, possesses a triangular

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

C

P

U

U

t

i

l

(

%)

Time (s)

Subquadratic Triadic Analysis ‐ CPU Utilization (36 Procs)
(35M‐node, 350M‐edge Random Graph)

Implicit
Parallelism

Interleaved
Schedule

Loop Future

1

10

100

1000

10000

0 20 40 60 80 100 120 140

E

x

e

c

T

i

m

e

(

s)

Processor Count

Subquadratic Triadic Analysis ‐ Execution Time
(35M‐350M Random Graph)

Implicit Parallelism

Interleaved Schedule

Loop Future

17

loop, and has the highest computational complexity (O(n2), n = number of nodes). The subquadratic
algorithm provides lower computational complexity (O(k(n)*n), n = number of nodes) for sparse net-
works and also possesses a triangular loop. The parallel tasks algorithm also provides lower computa-
tional complexity (O(k(n)*n), n = number of nodes) for sparse networks and attempts to load-balance
triad census computations in code.

We implemented, optimized, and evaluated the three triad census algorithms on the Cray XMT. We
explored the use of various compiler directives to tune the performances of the algorithms. From our
evaluations, we found that the subquadratic and parallel tasks algorithms performed comparably and
magnitudes better than the brute force algorithm. Furthermore, we found that loop futures generally
offered the best performance in terms of load balancing. For certain networks, we were are to able to
achieve comparable performance using interleaved schedules. The loop future versions of the algo-
rithms, however, exhibited less performance degradation at 128 processors than the implicit paral-
lelism and schedule interleave versions.

Our performance evaluation of triad census algorithms would not be complete until we are able to
compare our XMT results with those of other parallel systems and architectures. We are porting and
will be evaluating our triad census codes on other shared memory architectures such as Sun Niagara 2,
Silicon Graphics Altix, Hewlett-Packard Superdome, and SMP (x86, multicore).

Currently, we are also evolving the triad census algorithms to support the analysis of dynamic
networks. In dynamic triadic analysis, we are not only interested in the proportion of triads in the triad
census, but how those proportions change over time. The transition of triads across time intervals or
frames would reveal the dynamic structure and evolution of a social network. As certain types of
triads dissipate and give way to other triad types, we see transitions in behavior of people or entities
over time. In this way, one might see groups or hierarchies forming or disbanding, transactions
moving across the network, or activities decreasing or intensifying – all based on how the triad census
changes over time. Consequently, the added time dimension further increases the complexity of the
triad algorithms.

ACKNOWLEDGMENTS

This work was funded under the Center for Adaptive Supercomputing Software - Multithreaded
Architectures (CASS-MT) at the Dept. of Energy's Pacific Northwest National Laboratory. Pacific
Northwest National Laboratory is operated by Battelle Memorial Institute under Contract DE-ACO6-
76RL01830.

REFERENCES

1. Bader, D.A. and Madduri, K. (2006). Designing multithreaded algorithms for breadth-first search

and st-connectivity on the Cray MTA-2. In Proceedings of the 35th International Conference on
Parallel Processing, Columbus, OH, August 2006, pp. 523-530.

2. Chavarría-Miranda, D., Márquez, A., Maschhoff, K., and Scherrer, C. (2008). Early experience
with out-of-core applications on the Cray XMT. In Proceedings of the 2008 IEEE International
Parallel and Distributed Processing Symposium, Miami, FL, April 2008, pp. 1-8.

3. Nieplocha, J., Márquez, A., Feo, J., Chavarría-Miranda, D., Chin, G., Scherrer, C., and Beagley,
N. (2007). Evaluating the potential of multithreaded platforms for irregular scientific computa-
tions. In Proceedings of the 4th International Conference on Computing Frontiers, Ischia, Italy,
May 2007, pp. 47-58.

18

4. Chin Jr., G., Chavarria, D.G., Nakamura, G.C., and Sofia, H.J. (2008). BioGraphE: high-
performance bionetwork analysis using the Biological Graph Environment. BMC Bioinformatics,
9 Suppl 6:S6.

5. Wasserman, S. and Faust, K. (1994). Social Network Analysis, Cambridge University Press, Cam-
bridge, UK.

6. Batallas, D.A. and Yassine, A. (2004). Information leaders in product development organizational
networks: Social network analysis of the design structure matrix. In Proceedings of the Under-
standing Complex Systems Symposium, University of Illinois at Urbana-Champaign, May 2004.

7. de Nooy, W., Mrvar, A., and Batagelj, V. (2005). Exploratory Social Network Analysis with Pa-
jek, Cambridge University Press, Cambridge, UK.

8. Wittek, R. and Wielers R. (1998). Gossip in organizations. Computational & Mathematical Or-
ganization Theory, 4(2), pp. 189-204.

9. Batagelj, V. and Mrvar, A. (2001). A subquadratic triad census algorithm for large sparse net-
works with small maximum degree. Social Networks, 23(3), pp. 237-243.

10. Diesner, J., Frantz, T., and Carley, K. (2005). Communication networks from the Enron email
corpus “It’s always about the people. Enron is no different.” Computational & Mathematical Or-
ganization Theory, 11(3), pp. 201-228.

11. Aviv, R., Erlich, Z., Ravid, G., and Geva, A. (2003). Network analysis of knowledge construction
in asynchronous learning networks. Journal of Asynchronous Learning Networks, 7(3).

12. Ingram, P., Robinson, J., and Busch, M.L. (2005). The intergovernmental network of world trade:
IGO connectedness, governance, and embeddedness. American Journal of Sociology, 111(3), pp.
824-58.

13. Chin Jr., G., Kuchar, O.A., Whitney, P.D., Powers, M.E., and Johnson, K.E. (2004). Graph-based
comparisons of scenarios in intelligence analysis. In Proceedings of the 2004 IEEE International
Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, October 2004.

14. Moody, J (1998). Matrix methods for calculating the triad census. Social Networks, 20, pp. 291-
299.

15. Cray, Inc. (2008). Cray XMT™ Programming Environment User's Guide, Seattle, WA.

16. Cray, Inc. (2008). Cray XMT™ Performance Tools User's Guide, Seattle, WA.

17. Cray, Inc. (2008). Cray XMT™ System Overview, Seattle, WA.

