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Abstract 
 
Commonly represented as directed graphs, social networks depict relationships and behaviors among 
social entities such as people, groups, and organizations.  Social network analysis denotes a class of 
mathematical and statistical methods designed to study and measure social networks.  Beyond sociolo-
gy, social network analysis methods are being applied to other types of data in other domains such as 
bioinformatics, computer networks, national security, and economics.  For particular problems, the 
size of a social network can grow to millions of nodes and tens of millions of edges or more.  In such 
cases, researchers could benefit from the application of social network analysis algorithms on high-
performance architectures and systems. 
 
The Cray XMT is a third generation multithreaded system based on the Cray XT-3/4 platform.  Like 
most other multithreaded architectures, the Cray XMT is designed to tolerate memory access latencies 
by switching context between threads.  The processors maintain multiple threads of execution and util-
ize hardware-based context switching to overlap the memory latency incurred by any thread with the 
computations from other threads.  Due to its memory latency tolerance, the Cray XMT has the poten-
tial of significantly improving the execution speed of irregular data-intensive applications such as 
those found in social network analysis. 
 
In this paper, we describe our experiences in developing and optimizing three implementations of a 
social network analysis method known as triadic analysis to execute on the Cray XMT.  The three im-
plementations possess different execution complexities, qualities, and characteristics.  We evaluate 
how the various attributes of the codes affect their performance on the Cray XMT.  We also explore 
the effects of different compiler options and execution strategies on the different triadic analysis im-
plementations and identify general XMT programming issues and lessons learned. 
 
1 INTRODUCTION 
 
1.1 Cray XMT 
 
The Cray XMT system is a third generation multithreaded system from Cray.  The XMT infrastructure 
is based on the Cray XT-3/4 platform, including its high-speed interconnect and network 3D-Torus 
topology, as well as service and I/O nodes.  The compute nodes of the XMT utilize a configuration 
based on 4 multithreaded processors – called Threadstorms -- instead of 4 AMD Opteron processors.  
Each Threadstorm maintains 128 hardware threads (streams) and their associated contexts.  Assuming 
all data- and resource-dependencies are met, a stream can be scheduled for instruction issue in a single 
cycle.  Each instruction can hold up to three operations, comprising a control, arithmetic and memory 
operation.  The XMT system enables the execution of applications built entirely for the Threadstorm 
processors, in a similar manner as the previous generation MTA-2 did, as well as the execution of hy-
brid applications, in which portions of the application execute on the Threadstorm processors and por-
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tions execute on mainstream AMD Opteron processors.  The two types of processing elements coordi-
nate their execution and exchange data through a high-performance communications library. 
 
Our large scale-out experimental runs were made on a 128 processor, 1 TB shared memory, XMT sys-
tem in Cray's development lab (in Seattle, Washington) using Threadstorm 3.0.X pre-production pro-
cessors that run at 500MHz.  Each processor is attached over HT to 8GB DDR1 memory.  Network 
capability between the 32 compute blades is provided by a 3D-Torus Seastar-2 interconnect that exhi-
bits a round trip latency of 1.8us.  For code development and testing purposes we used a smaller 16 
processor, 128GB shared memory system located at Pacific Northwest National Laboratory in Rich-
land, Washington. This system is equipped with 500MHz Threadstorm 2.X processors.  The smaller 
system is configured as a 2D-Torus. 
 
1.2 Graph Analysis 
 
Graph algorithms fall into an important class of applications that are becoming memory-bound due to 
the increasing gap between memory and processor speeds.  Their performance is determined by the 
speed of the memory subsystem (the processor will spend most of its time waiting for data to arrive 
from memory without any useful work to execute).  This class of applications exhibit irregular memo-
ry access pattern that cannot be predicted statically at programming or compile time.  Dynamic latency 
reduction techniques that exploit spatial locality are limited by scant discovery of the application’s 
sparse data set shape and the data structures’s dynamic traversal pattern.  In addition, large data struc-
ture sizes will render temporal locality techniques mostly ineffective. Applications that fall into this 
class tend to focus on deriving scientific knowledge from vast repositories of empirical data.  As time 
progresses, their data structures will change and as knowledge is accumulated, their traversal might 
change as well. 
 
At a varying degree, multithreaded architectures do not rely on exploiting reference locality and in-
stead leverage performance gains from latency hiding techniques in the form of concurrent data traver-
sal.  Maintaining massive concurrency is costly in terms of scheduling and synchronization overhead 
and therefore these architectures try to strike a balance between sequential and concurrent execution. 
The XMT represents one multithreading extreme, similar to pure data-flows machines, by providing 
low cost scheduling for thousands of concurrent actors in conjunction with low cost fine-grained syn-
chronization capabilities.  The XMT’s peculiar fine grained thread management techniques make the 
machine an ideal candidate to process this class of applications. 
 
Various graph applications have been implemented and evaluated on Cray MTA-2 and XMT systems 
including general graph theory [1], power system state estimation [2], partial dimension trees [3], and 
Boolean satisfiability solvers [4].  The research described in this paper will add to this evolving body 
of research. 
 
1.3 Social Networks and Triadic Analysis 
 
Applied widely in social and behavioral sciences, social network analysis [5] encompasses mathemati-
cal and statistical methods for studying and measuring social networks.  A social network describes 
relationships among social entities and is often conveyed as a directed graph that shows ties or rela-
tionships among people, groups, and/or organizations.  The shape and properties of a social network 
helps determine the network's usefulness to a person, group, or organization.  For example, a dense or 
tight network may illustrate close social and/or working relationships among members, but may also 
indicate an environment where the generation of new ideas and views are limited due to the effects of 
groupthink and peer pressure. 
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Triadic methods in social network analysis are statistical methods focused on the concept of a triad.  A 
triad is a subgraph of size 3 consisting of three actors and all the directed relationships among them.  
Overall, a directed graph has exactly n(n − 1)(n – 2)/6 triads, where n = number of nodes.  Triadic me-
thods are considered local methods in the sense they separately examine the properties of subsets of 
actors as opposed to global methods that simultaneously examine the properties of all actors in the so-
cial network. 
 
A triad had sixty-four possible states based on the existence of directed edges among the three actors.  
Triad states indicate important properties about the triad.  For example, the triad states shown in Figure 
1 exhibit properties of reciprocity, transitivity, and intransitivity.  As shown in Figure 2, we can build a 
triad census by capturing the frequencies in which the triads of a network fall into one of the 64 possi-
ble triad states.  We may condense a 64-element triad census down to a 16-element triad census by 
considering isomorphic cases, where certain triad types are structurally-equivalent and may directly 
map onto one another. 
 

Transitivity IntransitivityReciprocity Transitivity IntransitivityReciprocity  

Figure 1.  Triads with specific graph properties. 
 

 

Figure 2.  Creation of a triad census. 
 
A triad census may be statistically compared to the triad census of a directed graph with a random dis-
tribution to examine which triad states and their associated properties are more or less prominent in the 
social network under analysis.  For example, if we believe that a particular social network should exhi-
bit an overall transitive property, then the frequencies of triads in transitive triad states should be 
greater than that of a randomly distributed graph.  Through triadic methods, we analyze the overall 
structural properties of a social network based on local views into that network. 
 
Social network and triadic analysis methods represent compelling applications for the Cray XMT.  
Such methods may be applied to very large networks or graphs, which are data representations that the 
XMT architecture is well-suited to support as previously described.  Furthermore, these analysis me-
thods have wide applicability across many fields and disciplines, and their migration to high-
performance systems can only benefit scientists in allowing them to attack and solve larger networks 
and scientific problems. 
 
Triadic analysis has been applied in a variety of areas including the study of organizations [6, 7, 8], 
Internet network traffic [9], email traffic [10], online communities [11], international trade [12], and 
intelligence analysis [13].  Like other social network analysis methods, triadic analysis examines and 
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reveals properties about the general structure of networks, and thus, should have wide applicability to 
other kinds of network analyses such as in biology and electric power grids. 
 
2 TRIADIC ANALYSIS ALGORITHMS 
 
In terms of published triadic analysis algorithms, two are generally well-known.  Moody [14] devel-
oped a triad census algorithm with a computational complexity of O(n2), where n is the number of 
nodes.  Batagelj and Mrvar [9] offer a triad census algorithm with a subquadratic computational com-
plexity for sparse networks.  In our social network research efforts, we have adapted from Batagelj and 
Mrvar’s algorithm as well as developed many of our own. 
 
2.1 Brute Force 
 
A brute force triad census approach involves iterating through and examining every three possible 
combination of nodes in the network as shown in Figure 3.  In this algorithm, the input G = (V, E) is a 
directed graph, where V is the set of vertices and E  V  V is the set of directed edges.  The output is 
the triad census stored in a 16-element Census array.  The 16 array elements conform to the 16 possi-
ble isomorphic triad states.  Each Census array element acts as a counter that sums up the number of 
triads in graph G found in the associated state.   
 

Figure 3.  Brute force subquadratic triad census algorithm. 
 
In step 1, we initialize the Census array.  In steps 2, 2.1, and 2.1.1, we iterate through the nodes of V in 
three nested loops to assign the three nodes of a triad.  To ensure that we do not count the same triad 
multiple times (e.g., (u, v, w) is equivalent to (w, u, v)), we canonically select the triads such that nodes 
u > v > w is always true. 
 
Once we have selected the three nodes u, v, and w of a triad, we call the IsoTricode function in step 
2.1.1.1 to identify the isomorphic triad state.  In step 2.1.1.2, the triad state is then used to index into 
the Census array and to increment the counter for the corresponding triad state. 
 
The brute force triadic analysis algorithm has a computational complexity of O(n3) for all networks. 
 
2.2 Subquadratic 
 

INPUT: G = (V, E)  
OUTPUT: Census array with frequencies of triadic types 

 
1  for i := 1 to 16 do Census[i] := 0; \\ initialize census 
2  for each u  V do begin 
2.1   for each v  V do if v < u then begin 
2.1.1   for each w  V do if w < v then begin 
2.1.1.1     TriType := IsoTricode(u,v,w); 
2.1.1.2    Census[TriType] := Census[TriType] + 1;  

   end; 
end; 

  end; 
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We implemented a variation of Batagelj and Mrvar’s algorithm as presented in Figure 4.  In the algo-
rithm, the inputs include a directed graph G = (V, E), where V is the set of vertices and E  V  V is 
the set of directed edges, and an array of neighbor lists N, which may be indexed by a node number.  
The output Census array is the triad census.  Given nodes u and v, the relation uEv is true should a di-
rected edge exist from u to v in E or {u,v} E.  The relation uÊv is true should u be a neighbor of v. 
 

Figure 4.  Modified Batagelj and Mrvar’s subquadratic triad census algorithm. 
 
The algorithm works by following existing edges in the network.  In step 2, u is assigned to every ver-
tex in V.  In step 2.1, v is assigned to every neighbor of u that has a smaller value.  In step 2.1.4, w is 
assigned to each node of S, which is the union of the neighbors of u and v.  u, v, and w make up the 
nodes of the triad that is currently being processed.  In the inner processing of the algorithm, u will al-
ways have the smallest value among u, v, and w.   
 
The algorithm computes three different types of triads:  null, dyadic, and complete.  Dyadic triads have 
edges between two of three vertices.  Given a pair of connected nodes, we can compute the number of 
dyadic triads arising from the connected pair as n − |S| − 2 as shown in step 2.1.3.  If a third node con-
nects to either node of the connected pair, we then have a connected triad, where each node of the triad 
is connected to at least one edge.  In step 2.1.4, we examine every node in S as the possible third node 
to the current triad.  Here, we wish to avoid counting the same three nodes through different iterations 
of the code by only counting the canonical selection from (u, v, w) and (u, w, v).  If u < w < v and 
uÊw, then (u, w, v) had already been considered in the algorithm.  However, if  ￢uÊw, then (u, w, v) is 
the canonical selection.  In step 2.1.4.1, given the nodes of a connected triad, the IsoTricode function 
identifies the triad’s isomorphic state, which may then be used to index into the Census array.  In step 
5, the number of null triads is computed as (1/6)n(n − 1)(n − 2) – sum, which is the total number of 
possible triads minus the number of triads with at least one edge. 
 
For sparse graphs, the complexity of the algorithm is O(k(n)*n), where k(n) << n.  For complete 
graphs, the complexity is O(n3). 
 

INPUT: G = (V, E), N – array of neighbor lists 
OUTPUT: Census array with frequencies of triadic types 

 
1   for i := 1 to 16 do Census[i] := 0; \\ initialize census 
2   for each u  V do begin 
2.1       for each v  N[u] do if u < v then begin 
2.1.1    S := N[u]  N[v]; 
2.1.2    if uEv  vEu then TriType := 3 else TriType := 2; 
2.1.3    Census[TriType] := Census[TriType] + n − |S| − 2; 
2.1.4    for each w  S do if v < w  (u < w  w < v  ￢uÊw) then begin  
2.1.4.1         TriType := IsoTricode(u,v,w); 
2.1.4.2            Census[TriType] := Census[TriType] + 1; 
    end; 
          end; 
  end; 
3   sum := 0; 
4  for i := 2 to 16 do sum := sum + Census[i]; 
5  Census[1] := (1/6)n(n − 1)(n − 2) − sum; 
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2.3 Parallel Tasks 
 
For the parallel tasks triad census algorithm, we use our knowledge of the logic of the subquadratic 
algorithm to load balance the execution of the triad census computation.  In examining the subquadrat-
ic algorithm in Figure 4, we see that the amount of processing that occurs within the second nested 
loop at step 2.1 is variable depending on the size of S.  As shown in Figure 5, to load balance, we can 
construct task queues containing node pairs that identify two of the three nodes of a triad. The two 
nodes u and v are assigned in steps 3 and 3.1 in the same way the subquadratic algorithm assigns the 
first two nodes of a triad (steps 2 and 2.1 in Figure 4).  In step 3.1.2, we maintain a counter that sums 
the sizes of combined neighbor sets we have encountered for the current queue D[i].  We continue to 
add node pairs to the task queue until a certain MaxNeighborSetSize is reached in step 3.1.3, upon 
which a new task queue is started. 
 

Figure 5.  Task queue generation in parallel tasks triadic census algorithm. 
 
As shown in Figure 6, the triad census portion of the parallel tasks algorithm loops through the task 
elements of each queue in steps 2 and 2.1 to pull out node pairs for processing.  Given the first two 
nodes u and v of a triad, the rest of the code follows the same logic as the subquadratic algorithm to 
identify the third node and to compute the census elements. 
 
The computational complexity of the parallel tasks algorithm should be the same as the subquadratic 
algorithm, which is O(k(n)*n), where k(n) << n, for sparse graphs and O(n3) for complete graphs.  This 
assumes that the number of task queues is small enough such that no task queues are empty. 
 
3 XMT PROGRAMMING FEATURES 
 
A salient characteristic of the MTA architecture and its latest incarnation, the XMT, is the underlying 
programming model.  Although the programmer is required to expose parallelism to the compiler in 
the form of loop parallelism and/or task parallelism (futures), there is no requirement to reason about 
locality.  Given enough exploited parallelism, the programming model abstraction gives the illusion of 
single unit instruction latency.  This is in contrast to other noteworthy programming models such as 
OpenMP that provide semantically similar parallelism constructs, yet do not make any latency hiding 
guarantees.  
 

INPUT: G = (V, E), N – array of neighbor lists 
OUTPUT: D – array of task queues 

 
1   i := 1; 
2        counter := 0; 
3   for each u  V do 
3.1   for each v  N[u] do if u < v then begin 
3.1.1   D[i]  := D[i]  (u, v);  
3.1.2    counter := counter +  |N[u]| + |N[v]|; 
3.1.3   if counter > MaxNeighborSetSize then begin 
3.1.3.1    i := i + 1;  
3.1.3.2    counter := 0; 
    end; 
   end; 
  end; 
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Figure 6.  Main part of parallel tasks triadic census algorithm. 
 

In practice the “unit latency” contract can break down in situations that are either application or ma-
chine driven:  The former would manifest itself as an application’s lack of strong scaling capabilities. 
The latter might be observed in limit cases by oversubscribing the network or memory.  The XMT 
programming model’s characteristics are underwritten by a strong compiler platform that is able to ex-
tract automatically parallelism from well-formed loops.  Hence, a major XMT coding task consists in 
generating such loops.  Explicit parallelism is supported by task-parallelism constructs (futures) and 
several intrinsics that support fine grain synchronization in hardware.  The compiler handles inter pro-
cedural analysis and is capable of detecting and rewriting linear recurrences as well as reductions.  
 
3.1 General Code Optimization 
 
In optimizing the triad census codes to run on the Cray XMT, we generally programmed for implicit 
parallelism [15] using standard C language constructs and relied on the compiler to automatically par-
allelize loops in the code.  We iterated on the development and optimization of the codes by repeatedly 
analyzing the codes using Cray’s Compile Analysis (Canal) [16] tool to identify and address depen-
dencies and parallelization issues. 
 
One common modification we made to the original sequential codes was to replace linked list data 
structures that are inherent to graphs with compact data structures.  With a compact data structure, we 
allocate a large chunk of memory upfront and use array indices for random access into the data.  This 
allows the program to access the data through inductive loops, for which the compiler may identify the 
number of iterations a loop contains before the loop is entered.  A compact data structure also replaces 
a large number of dynamic memory allocations, which may be computationally expensive. 
 
In our codes, we removed multiple exit conditions from for loops, which the compiler had difficulty 
parallelizing.  We also consistently used the int_fetch_add generic function to synchronize updates to 
data without using locks. This function accesses the underlying atomic int_fetch_add machine opera-
tion.  We also made of habit of “inlining” functions, so that we could better diagnose and optimize 
code near function calls. 

INPUT: G = (V, E), N – array of neighbor lists, D – array of task queues 
OUTPUT: Census array with frequencies of triadic types 

1   for i := 1 to 16 do Census[i] := 0; 
2   for each T  D do 
2.1          for each (u, v)  T do  
2.1.1    S := N[u]  N[v]; 
2.1.2    if uEv  vEu then TriType := 3 else TriType := 2; 
2.1.3    Census[TriType] := Census[TriType] + n − |S| − 2; 
2.1.4    for each w  S do if v < w  (u < w  w < v  ￢uÊw) then begin  
2.1.4.1         TriType := IsoTricode(u,v,w); 
2.1.4.2            Census[TriType] := Census[TriType] + 1; 
    end; 
          end; 
  end; 
3   sum := 0; 
4  for i := 2 to 16 do sum := sum + Census[i]; 
5  Census[1] := (1/6)n(n − 1)(n − 2) − sum; 
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For fast I/O, we utilized the Lightweight User Communication (LUC) library [17], which gave us 
access to Linux service nodes to perform faster sequential I/O operations than the XMT compute 
nodes.  This provided significant reduction in the time required to load large input datafiles. 
 
4 PERFORMANCE EVALUATION AND RESULTS 
 
Our performance evaluation focuses specifically on the triad census generation portions of the triadic 
analysis codes.  Each implementation, however, requires a certain level of preprocessing of the input 
data prior to triad census generation.  For the brute force algorithm, the network is directly read in 
from a file in a specific graph format. The subquadratic algorithm requires as input both a network and 
neighbor lists for each of the nodes.  In this case, the subquadratic implementation reads a file contain-
ing node adjacency lists, which are used to generate both the network and the neighbor lists.  The task 
parallel algorithm requires as input the network, the neighbor lists, and the task queues.  Like the sub-
quadratic implementation, the parallel tasks implementation also reads in a file containing adjacency 
lists to construct the network and neighbor lists, but then generates the task queues as described back 
in Figure 5. 
 
To focus on the triad census generation portions of the algorithms is reasonable provided that the triad 
census generation is more computationally-intensive than the preprocessing stages.  We have opti-
mized the preprocessing portions of the brute force and subquadratic implementations such that they 
execute much faster than the triad census computation.  Further optimization, however, is required for 
the queue generation portion of the parallel tasks implementation, which is not parallelizable in its cur-
rent form because the queues are sequentially filled one at a time.  We are exploring other strategies to 
filling the queues such as using hash maps or presorting the task elements going into the queues and 
expect that we can reduce the execution time of the preprocessing stage to be much smaller than that of 
the triad census computation. 
 
4.1 Triad Census Algorithm Comparison on 16-processor XMT 
 
In our first evaluation, we examined the performance of the three triad census algorithms on a mod-
erate-sized sparse random graph consisting of 10,000 nodes and 100,000 edges for different numbers 
of processors on the 16-processor XMT.  Through testing, we found that the parallel tasks algorithm 
executed most efficiently with 1,000 task queues for the specified network and configured the parallel 
tasks code accordingly.  As shown in the performance results of Table 1, the brute force algorithm re-
quired hours of execution to complete compared to the subquadratic and parallel tasks algorithms, 
which completed in seconds.  The higher computational complexity of the brute force algorithm signif-
icantly hampered its performance compared to the other triad census algorithms. 
 

Table 1.  Execution times (in seconds) of triad census algorithms processing a 10,000-node, 
10,000-edge sparse random graph.  Execution is conducted on a 16-processor Cray XMT. 

Triadic Analysis Algorithms - Execution Time (s) 
(10,000-node, 100,000-edge Random Graph) 

Processor Count Brute Force Subquadratic Parallel Tasks 
1 154239.83 3.21 6.22 
2 85182.29 1.71 4.66 
4 47168.17 0.93 4.01 
8 25982.44 0.66 3.69 
12 16948.09 0.48 3.40 
16 13086.49 0.36 3.23 
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With respect to speedup, all three algorithms exhibited linear speedup rates up to 16 processors, but the 
brute algorithm was the most efficient, presumably due to its relative simplicity and tight production of 
available work as shown in Figure 7.  Total memory utilization for the brute force algorithm was about 
1.5 GB, while maximum CPU utilization stood at about 46%.  We did not collect memory and CPU 
utilization data for the subquadratic and parallel tasks algorithms, since they executed so quickly. 
 

Figure 7.  Speedup rates of triad census algorithms processing a 10,000-node, 10,000-edge 
sparse random graph.  Execution is conducted on a 16-processor Cray XMT. 

 
Next, we ran the three triad census algorithms on a much larger network consisting of 3.8 million 
nodes and 16.5 million edges.  The network links US patents granted between 1963 to 1999 to patent 
citations made between 1975 and 1999.  With this network, the brute force algorithm did not complete 
after 96 hours of dedicated execution on the 16-processor XMT.  We configured the parallel tasks al-
gorithm to use 1.6 million queues, which we found to be optimal by testing different queue counts.  As 
shown in Figure 8a, the subquadratic algorithm executed faster than the parallel tasks algorithm on the 
patents network.  Both these algorithms showed comparable linear scaling as shown in Figure 8b.  In 
terms of utilization rates, the subquadratic algorithm consumed up to 12.6 GB of memory while the 
parallel tasks algorithm consumed up to 13.3 GB, presumably requiring a little more memory to store 
and manage the task queues.  Processor utilization was comparable with the subquadratic algorithm 
achieving up to 66% CPU utilization and the parallel tasks algorithm reaching 64%.  From our expe-
riences with the Cray XMT, these CPU utilization rates are extremely high.  Most graph applications 
that we observed in the past had achieved around 30% CPU utilization. 
 
The Cray XMT programming environment supports a construct known as futures, which designates a 
section of code that may be executed by a newly created thread.  The new thread runs concurrently 
with other threads of a program.  Code depending on values computed by a future will be suspended 
until that future finishes executing.  We may direct the compiler to schedule and manage each iteration 
of a loop as a future by issuing the following pragma statement immediately above the loop in the 
code. 
 

#pragma mta loop future 
 
In the case of a nested loop, the pragma statement would be placed above the outer loop. 
 
We developed loop future versions of both the subquadratic and parallel tasks algorithms and ran them 
with the patents network.  As shown in Figure 9a, both loop future implementations executed faster 
than the original implicit parallelism implementations.  Overall, the loop future parallel tasks imple-
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mentation outperformed the loop future subquadratic implementation and showed a significant per-
formance improvement over the implicit parallelism parallel tasks implementation.  Looking at Figure 
9b, the loop future parallel tasks implementation also exhibited the best linear scaling among the im-
plicit parallelism and loop future versions of the subquadratic and parallel tasks triad census algo-
rithms, while the loop future subquadratic implementation exhibited the worst scaling. 

 

Figure 8.  a.) Execution times and b.) speedup rates of subquadratic and parallel tasks triad 
census algorithms processing a 3,774,768-node, 16,522,438-edge patents network.  Execution 
is conducted on a 16-processor Cray XMT. 

 

Figure 9.  a.) Execution times and b.) speedup rates of implicit parallelism and loop future ver-
sions of the subquadratic and parallel tasks triad census algorithms processing a 3,774,768-
node, 16,522,438-edge patents network.  Execution is conducted on a 16-processor Cray XMT. 

 
In reviewing the compile logs for the implicit parallelism and loop future codes, we find that for the 
implicit parallelism versions, given well defined iteration spaces, the compiler automatically paralle-
lizes the outer two loops of the triad census computation through a general loop collapse.  The generat-
ed iterations are executed on threads across multiple processors.  For the loop future versions, the 
compiler also automatically optimizes the outer two loops, but schedules only the outer loop iteration 
across multiple processes.  The inner loop executes on a single processor in what is known as fray 
mode, where the compiler implements fork and join operations inline using very short instruction se-
quences.  Fray parallelism has low overhead.  We believe this contributes to the higher performance of 
the loop future versions over the implicit parallelism versions of the triadic analysis algorithms. 
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4.2 Triad Census Algorithm Comparison on 128-processor XMT 
 
With limited access to the 128-processor XMT, we continued to evaluate the performance and beha-
vior of the subquadratic triad census algorithm on larger network problems and a larger XMT machine.  
For performance testing, we created two random networks consisting respectively of 12 million nodes 
with 120 million edges and 35 million nodes with 350 million edges.  We continued to evaluate both 
the implicit parallelism and loop future versions of the subquadratic algorithm on these two large net-
works.  During execution, the processing of the 12 million-node network required up to 85 GB of 
memory, while the 35 million-node network required up to 220 GB. 
 
As shown in Figure 10a, the loop future version of the subquadratic algorithm continues to execute 
faster than the implicit parallelism version for both large networks.  In examining the scaling perfor-
mances of the subquadratic versions in Figure 10b, we may observe that the speedup rate levels off or 
tails down for all versions as we move from 96 to 128 processors.  The degradation is most pro-
nounced for the implicit parallelism version processing the 35 million-node network and least pro-
nounced for the loop future version also processing the 35 million-node network.  Since the degrada-
tion is evident in the processing of both the 12 and 35 million-node networks and is most pronounced 
with the 35 million-node network, this behavior is not likely to be attributed to the graph problem be-
ing too small and the processors running out of work.  Rather, we believe in these instances that the 
codes are saturating some aspect of the system such that the hardware threads are not fighting for ex-
ecution slots but delayed by network latencies of remote loads.  These runs may be hitting the network 
tuning limits of the system. 

 

Figure 10.  a.) Execution times and b.) speedup rates of implicit parallelism and loop future 
versions of the triad census algorithms processing a 12 million-node, 120 million-edge network 
and a 35 million-node, 350 million-edge network.  Execution is conducted on a 128-processor 
Cray XMT. 

 
To test this theory, we re-executed the implicit parallelism subquadratic algorithm using different 
stream limits to identify the potential network saturation point.  On the XMT, the default stream limit 
is 100.  One may set the stream limit at runtime in the user environment by issuing the bash command  
 

export MTA_PARAMS=”stream_limit 70” 
 
or csh command 

 
setenv MTA PARAMS “stream_limit 70” 
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Figure 11 shows the performances of the subquadratic algorithm processing the 12 million-node net-
work with stream limits of 65, 70, 75, and 100.  As shown, the performance of the subquadratic algo-
rithm improves with higher stream limits up to 96 processors.  At 128 processors, however, the execu-
tion of the algorithm at the higher stream limits degrades.  Among the four stream limits, the perfor-
mance of the subquadratic algorithm on the 12 million-node network was best for the stream limit of 
70. 
 

Figure 11.  Execution times of implicit parallelism versions of the subquadratic triad census 
algorithm processing a 12 million-node, 120 million-edge network with different stream limits.  
Execution is conducted on a 128-processor Cray XMT. 

 
Examining the speedup rates across the different stream limits, Figure 12a shows the degradation in 
the scaling of the 75 and 100 stream limit runs compared to the 65 and 70 stream limit runs.  To better 
illustrate the stream saturation behavior, we may plot the algorithm speedup rates against the total 
number of available hardware threads (number of processors  stream limit).  As shown in Figure 12b, 
the algorithm performances scale reasonably well for the four stream limits up through about 9000 to-
tal hardware threads, upon which the speedup rates tails off.  This finding is consistent with our obser-
vation that running the subquadratic algorithm with a stream limit of 70 is optimal since the total num-
ber of available hardware threads would be 128 x 70 = 8960. 
 
We can repeat this evaluation with the 35 million-node network.  As shown in Figure 13, the perfor-
mance of the implicit parallelism subquadratic algorithm is better for the 100 stream limit over the 70 
stream limit up to 96 processors.  For 128 processors, however, the algorithm performance is better for 
the 70 stream limit.  Also, the scaling of the algorithm with a 100 stream limit starts to degrade after 96 
processors as shown in Figure 14a, and after 9,000 total number of available hardware thread as shown 
in Figure 14b, which mirrors the behavior and results found with the 12 million-node network. 
 
4.3 CPU Utilization Profiles 
 
We took a closer look at the CPU utilization of the subquadratic algorithm for both the implicit paral-
lelism and loop future versions.  Figure 15 shows the CPU utilization of both subquadratic triad census 
versions over time when processing the 12 million-node network using 36 processors on the 128-
processor Cray XMT.  The two humps in the figure illustrate two stages of the code.  The first hump 
plateauing around 20% CPU utilization identifies the input stage of the code where the network is read 
in from file, while the second hump identifies the triad census computation.  For both the implicit par-
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allelism and loop future versions, the triad census computation reaches about 50-55% CPU utilization.  
The CPU utilization of the implicit parallelism version, however, tails downward over an extended pe-
riod of time, while the loop future version maintains the higher CPU utilization longer and then tails 
down quickly.  These utilization profiles show that the loop future version executes more efficiently 
than the implicit parallelism version. 
 

Figure 12.  Speedup rates of implicit parallelism versions of the subquadratic triad census al-
gorithm processing a 12 million-node, 120 million-edge network with different stream limits 
mapped against total number of a.) processors and b.) available hardware threads.  Execution is 
conducted on a 128-processor Cray XMT. 

 

Figure 13.  Execution times of implicit parallelism versions of the subquadratic triad census 
algorithm processing a 35 million-node, 350 million-edge network with different stream limits.  
Execution is conducted on a 128-processor Cray XMT. 

 
In an attempt to improve the load balancing of the implicit parallelism version, we inserted the follow-
ing compilation directive into the code above the outer loop of the triad census computation. 
 

#pragma mta interleave schedule 
 
In an interleaved schedule for a parallel loop, the compiler assigns contiguous iterations to distinct 
streams.  For a loop with 100 iterations and 10 streams available, one stream performs iterations 1, 11, 
21, …, another performs iterations 2, 12, 22, ..., etc.  An interleaved schedule results in better load ba-
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lancing for triangular loops.  With the subquadratic algorithm, the nested loop has some triangular 
properties - the variable of the outer loop traverses through every node, while the inner loop traverses 
through every neighbor of the outer node but through only those that have a smaller index value. 
 

Figure 14.  Speedup rates of implicit parallelism versions of the subquadratic triad census al-
gorithm processing a 35 million-node, 350 million-edge network with different stream limits 
mapped against total number of a.) processors and b.) available hardware threads.  Execution is 
conducted on a 128-processor Cray XMT. 

 

Figure 15.  CPU utilization profiles for the implicit parallelism and loop future versions of the 
subquadratic triad census algorithm processing a 12 million-node, 120 million-edge network.  
Execution is carried out on 36 processors of a 128-processor Cray XMT. 

 
As shown in Figure 16, the interleaved schedule version of the subquadratic algorithm better maintains 
the higher CPU utilization rate and avoids the trailing tail found in the utilization profile of the original 
implicit parallelism code.  Furthermore, the execution time improved to be comparable to the loop fu-
ture version of the code in processing the 12 million-node network over 36 processors.  In testing the 
scheduled interleave version over a range of processors, we found that both the interleaved schedule 
and loop future versions have comparable execution times up to 96 processors as shown in Figure 17.  
At 128 processors, the performance of the loop future version is still better than the scheduled inter-
leave version due to the stream saturation effects we previously described. 
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Figure 16.  CPU utilization profiles for the implicit parallelism, interleaved schedule, and loop 
future versions of the subquadratic triad census algorithm processing a 12 million-node, 120 
million-edge network.  Execution is carried out on 36 processors of a 128-processor Cray 
XMT. 

 

Figure 17.  Execution times for the implicit parallelism, interleaved schedule, and loop future 
versions of the subquadratic triad census algorithm processing a 12 million-node, 120 million-
edge network.  Execution is conducted on a 128-processor Cray XMT. 

 
We further tested the interleaved schedule version with the 35 million-node network and did not find 
the same improvements as we did with the 12 million-node network.  As shown in Figure 18, the CPU 
utilization profiles for the implicit parallelism and interleaved schedule versions both had extended 
tails.  Furthermore, both versions closely tracked one another and continued to trail the loop future ver-
sion in execution time across different numbers of processors as shown in Figure 19. 
 
One possible explanation for the CPU utilization differences might be that the triangular loop pattern is 
less pronounced for the 35 million-node network than the 12 million-node network.  Both networks 
had ten times as many edges as nodes, and thus, each node should average 20 neighbors (each edge 
contributes two neighbors).  Recall that the inner loop in the triad census computation traverses over 
the neighbors (with smaller index values) of the node identified by the variable of the outer loop.  
Thus, the size of the bounds of the inner loop should be the same for both networks, but the bounds of 
the outer loop is much larger for the 35 million-node network than the 12 million-node network.  Giv-
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en that the triangular pattern was less pronounced for the 35 million-node network, the load-balancing 
effects of an interleaved schedule may have been limited. 
 

Figure 18.  CPU utilization profiles for the implicit parallelism, interleaved schedule, and loop 
future versions of the subquadratic triad census algorithm processing a 35 million-node, 350 
million-edge network.  Execution is carried out on 36 processors of a 128-processor Cray 
XMT. 

 

Figure 19.  Execution times for the implicit parallelism, interleaved schedule, and loop future 
versions of the subquadratic triad census algorithm processing a 35 million-node, 350 million-
edge network.  Execution is conducted on a 128-processor Cray XMT. 

 
Another explanation might simply relate to the variability of random networks.  Although the average 
number of neighbors of a node in the two networks we tested was the same, any particular node could 
have 0 or much more than 20 neighbors.  So, for any random network, the shape of the nested loops in 
the subquadratic algorithm could appear roughly triangular or totally random.  This reminds us that as 
we parallelize and optimize particular algorithms, we must also parallelize and optimize for the specif-
ic problems and data that we are addressing. 
 
5 CONCLUSIONS AND FUTURE PLANS 
 
In this paper, we present three difference triad census algorithms, each possessing different structural 
and execution characteristic.  The brute force algorithm is simple and clean, possesses a triangular 
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loop, and has the highest computational complexity (O(n2), n = number of nodes).  The subquadratic 
algorithm provides lower computational complexity (O(k(n)*n), n = number of nodes) for sparse net-
works and also possesses a triangular loop.  The parallel tasks algorithm also provides lower computa-
tional complexity (O(k(n)*n), n = number of nodes) for sparse networks and attempts to load-balance 
triad census computations in code.  
 
We implemented, optimized, and evaluated the three triad census algorithms on the Cray XMT.  We 
explored the use of various compiler directives to tune the performances of the algorithms.  From our 
evaluations, we found that the subquadratic and parallel tasks algorithms performed comparably and 
magnitudes better than the brute force algorithm.  Furthermore, we found that loop futures generally 
offered the best performance in terms of load balancing.  For certain networks, we were are to able to 
achieve comparable performance using interleaved schedules.  The loop future versions of the algo-
rithms, however, exhibited less performance degradation at 128 processors than the implicit paral-
lelism and schedule interleave versions.   
 
Our performance evaluation of triad census algorithms would not be complete until we are able to 
compare our XMT results with those of other parallel systems and architectures.  We are porting and 
will be evaluating our triad census codes on other shared memory architectures such as Sun Niagara 2, 
Silicon Graphics Altix, Hewlett-Packard Superdome, and SMP (x86, multicore). 
 
Currently, we are also evolving the triad census algorithms to support the analysis of dynamic 
networks.  In dynamic triadic analysis, we are not only interested in the proportion of triads in the triad 
census, but how those proportions change over time. The transition of triads across time intervals or 
frames would reveal the dynamic structure and evolution of a social network.  As certain types of 
triads dissipate and give way to other triad types, we see transitions in behavior of people or entities 
over time.  In this way, one might see groups or hierarchies forming or disbanding, transactions 
moving across the network, or activities decreasing or intensifying – all based on how the triad census 
changes over time.  Consequently, the added time dimension further increases the complexity of the 
triad algorithms. 
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