
Early Experience with Out-of-Core Applications on the Cray XMT ∗

Daniel Chavarrı́a-Miranda1, Andrés Márquez1, Jarek Nieplocha2, Kristyn Maschhoff4, and Chad
Scherrer3

1High-Performance Computing
2Computational Sciences and Mathematics Division

3Computational Mathematics
Pacific Northwest National Laboratory

{daniel.chavarria, andres.marquez, jarek.nieplocha, chad.scherrer}@pnl.gov
4Cray, Inc. kristyn@cray.com

Abstract

This paper describes our early experiences with a pre-
production Cray XMT system that implements a scalable
shared memory architecture with hardware support for mul-
tithreading. Unlike its predecessor, the Cray MTA-2 that
had very limited I/O capability, the Cray XMT offers Lus-
tre, a scalable high-performance parallel filesystem. There-
fore it enables development of out-of-core applications that
can deal with very large data sets that otherwise would not
fit in the system main memory. Our application performs
statistically-based anomaly detection for categorical data
that can be used for analysis of Internet traffic data. Experi-
mental results indicate that the preproduction version of the
machine is able to achieve good performance and scalabil-
ity for the in- and out-of-core versions of the application.

1 Introduction

The increasing gap between memory and processor
speeds has caused many applications to become memory-
bound. That is, their performance is determined by the
speed of the memory subsystem (the processor will spend
most of its time waiting for data to arrive from memory
without any useful work to execute). Several hardware
and software mechanisms have been proposed to increase

∗This work was funded by the U.S. Department of Energy’s Pacific
Northwest National Laboratory under the Data Intensive Computing Initia-
tive. Pacific Northwest National Laboratory is operated by Battelle Memo-
rial Institute under Contract DE-ACO6-76RL01830.

the performance of such applications by reducing the ex-
posed stall times seen by the processor. Most mainstream
processors utilize a cache hierarchy, whereby small sec-
tions of high-speed memory hold data which has been re-
cently fetched from main memory. Cache mechanisms are
highly effective for applications that exhibit good tempo-
ral and spatial locality. However, many irregular appli-
cations do not exhibit such locality: their memory access
patterns are essentially random. This is particularly true
for data-intensive applications [5] that use large, pointer-
linked data structures such as graphs and trees. Data-
intensive applications focus on deriving scientific knowl-
edge from vast repositories of empirical data. More tradi-
tional model-driven scientific applications focus on deriving
scientific knowledge by obtaining precise numerical solu-
tions to mathematical models.
Given the expected widening of the processor-memory

speed gap, it becomes imperative to consider the use of
alternative computer architectures for executing irregular,
data-intensive applications. Multithreaded architectures,
designed to tolerate memory access latencies by switch-
ing context between threads, offer a very appealing al-
ternative for such applications. The processors on these
machines maintain multiple threads of execution and uti-
lize hardware-based context switching to overlap the mem-
ory latency incurred by any thread with the computations
from other threads. The Cray MTA processor [1] and the
newer Cray Threadstorm [8], used on Cray’s MTA-2 and
XMT systems, respectively, are instances of modern multi-
threaded processors. Each one supports up to 128 threads
with a single instruction pipeline and no data cache on the

processor. Due to their memory latency tolerance, multi-
threaded platforms have the potential of significantly im-
proving the execution speed of irregular data-intensive ap-
plications.
The Cray XMT system is a third generation multi-

threaded system from Cray. The XMT infrastructure is
based on the Cray XT3/4 platform, including its high-speed
interconnect and network topology, as well as service and
I/O nodes. The difference is that the compute nodes of
the XMT utilize a configuration based on 4 multithreaded
Threadstorm processors instead of 4 AMD Opteron proces-
sors. The XMT system enables the execution of applica-
tions built entirely for the Threadstorm processors, in a sim-
ilar manner as the MTA-2, as well as the execution of hybrid
applications, in which portions of the application execute on
the Threadstorm processors and portions execute on main-
streamAMDOpteron processors. The two types of process-
ing elements coordinate their execution and exchange data
through a high-performance communications library named
Lightweight User Communication (LUC).
Data-intensive applications have another very important

component: very large I/O requirements. An effective way
to address their massive I/O needs is through the use of
high-performance parallel filesystems such as Lustre [2]
and PVFS [19]. These parallel filesystems provide very
large I/O bandwidth capabilities, in comparison to locally
attached filesystems, through the use of multiple file servers
that distribute the storage blocks for data files between
them. In a High Performance Computing system, these file
servers are usually attached through a high speed commu-
nications interconnect to the compute nodes of the systems,
thus enabling high bandwidth, low latency, concurrent ac-
cess to very large data sets.
In this paper, we present an early experience with a pre-

production Cray XMT system using a data-intensive appli-
cation with very large out-of-core datasets and complex,
in-core irregular memory access patterns. Our applica-
tion performs statistically-based anomaly detection for cat-
egorical data that can be used for Internet traffic analysis.
The Cray XMT, unlike its predecessor the Cray MTA-2
which had very limited I/O capability, includes support for
the powerful Lustre filesystem. The Lustre implementa-
tion in the Cray XMT implementation, similar to the Cray
XT3/4, relies on the same high performance network with
the Seastar [3] adapter and uses the Portals [17] messaging
layer for data movement and synchronization. The com-
bination of high-performance I/O subsystems with multi-
threaded processing capabilities was designed to provide a
capable execution platform for irregular, data-intensive ap-
plications.
Section 2 provides background information about the

Cray XMT and its hybrid architecture and programming
model. Section 3 describes the Partial Dimensions Tree ap-

plication and our parallel XMT implementation. Section 4
presents our experimental design and results. Section 5 dis-
cusses related work and finally, Section 6 presents our con-
clusions.

2 Background

The Cray XMT is the commercial name for the new mul-
tithreaded machine developed by Cray under the code name
“Eldorado” [8]. By leveraging the existing platform of the
XT3/4, Cray was able to save non-recurring development
and engineering costs by reusing the support IT infrastruc-
ture and software, including dual-socket Opteron AMD ser-
vice nodes, Seastar-2 high speed interconnects, fast Lustre
storage cabinets and the associated Linux software stacks.
Changes were performed on the compute nodes by re-

placing the AMD Opterons with a custom designed mul-
tithreaded processor with a third generation MTA architec-
ture that fits in XT3 motherboard processor sockets. Similar
to the previous MTA incarnations, the Threadstorm proces-
sor schedules 128 fine-grained hardware streams to avoid
pipeline stalls on a cycle-by-cycle basis. At runtime, a soft-
ware thread is mapped to a stream comprised of a program
counter, a status word, a target register and 32 general pur-
pose registers. The MTA Long Instruction Word contains
operations for the Memory functional unit, the Arithmetic
unit and the control unit. The Arithmetic unit is capable
of performing a multiply-add per cycle. In conjunction
with the control unit doubling as arithmetic unit, a Thread-
storm is capable of achieving 1.5 GFlop at a clock rate of
500MHz. As a reference, the previousMTA-2 processor ran
at 220MHz. A 64KB, 4-way associative instruction cache
helps in exploiting code locality.
Analogous to the Opteron memory subsystems, each

Threadstorm is associated with a memory system that can
accommodate up to 16GB of 128-bit wide DDR mem-
ory. Each memory module is complemented with a 128KB,
4-way associative data buffer to reduce access latencies.
Memory is structured with full-empty-, pointer forwarding-
and trap- bits to support fine grain thread synchronization
with little overhead. As in the MTA-2, memory is hashed,
albeit at a larger granularity. Continuous random accesses
to memory will top memory bandwidth at around 100M re-
quests per second. Up to 500Mmemory requests per second
are delivered by the associated data buffers (Figure 1).
The Cray XMT uses the Seastar-2 network interconnect.

Seastar-2 is a full system-on-chip design that integrates six
high speed serial links, a 3-D router, with network interface
functionality. The network interconnect includes an em-
bedded PowerPC processor, in a single chip. The Seastar,
initially, was designed to support message-passing applica-
tions on the Sandia Red Storm system and then Cray XT3/4.
In the Seastar network, there are two DMA engines, one

!"#$%&'!

()*+$,-,./0$.12

3**+$,-,./0$.12

(43$567.12

3**+$,-,./0$.12

(**+$,-,./0$.12

8*+→ 9*+$,-,./0$.12$:(→);$1/.<-22./2=

(>$5?$@@A$@A%+

&B2CDEF-G$,-,./0$/DC-2$D/-$H./$
/DFG.,$2EFI7-$J./G$D<<-22-2$
.K-/$-FCE/-$DGG/-22$21D<-4

!"#$%&'!

()*+$,-,./0$.12

3**+$,-,./0$.12

(43$567.12

3**+$,-,./0$.12

(**+$,-,./0$.12

8*+→ 9*+$,-,./0$.12$:(→);$1/.<-22./2=

(>$5?$@@A$@A%+

&B2CDEF-G$,-,./0$/DC-2$D/-$H./$
/DFG.,$2EFI7-$J./G$D<<-22-2$
.K-/$-FCE/-$DGG/-22$21D<-4

Figure 1. XMT Speeds

for sending and the other for receiving, that interact with a
router that supports a 3-D torus interconnect and the Hyper-
Transport (HT) cave that provides an interface to the Cray
Threadstorm processor and the host memory. The embed-
ded processor is provided to program the DMA engines and
assist with other network-level processing needs, in particu-
lar supporting the Portals message-passing layer of the Cray
XT3/4. In the Cray XMT, the Seastar network adapter was
modified to be able to support load/store operations through
the MTX protocol. Bisection bandwidth between compute
nodes ranges between 90M-30M memory requests per sec-
ond for 3D topologies encompassing 1000-4000 processors.
This contrasts sharply with the MTA-2 network that imple-
ments a modified Cayley graph with a bisection bandwidth
that scales 3.5x with the number of processors. (Figure 2).
In the XMT, the Seastar network supports three com-

munication interfaces: Portals for communication between
service and storage nodes that are all based on the AMD
Opteron processors, load/store operations between Thread-
storm nodes, and the new Lightweight Communication Li-
brary (LUC) for communication between the Opteron and
the Threadstorm nodes. On the Opteron side, LUC is im-
plemented using Portals whereas on the Threadstorm side it
uses Fast I/O API that is layered over the Seastar MTX pro-
tocol. LUC communication is based on the concept of end-
points. Endpoints facilitate connections between pairs of
the service and compute nodes. From the software perspec-
tive, the LUC endpoints are implemented as objects that can
be instantiated as server-only, client-only or both client and
server objects which have their corresponding set of meth-
ods.
Another important element of the Cray XMT is the stor-

age system. It is based on Lustre 1.6 version that has been
also deployed in the Cray XT4. Lustre has been designed
for scalability, supporting IO services to tens of thousands

!"#$ %&'()

!"#$%&' (')*+,'-.-/0

(')*+,'-12)&+&+"3

* !"#$%&'(

* ()*+",-".*/&!"#$%�/*1

%+,&'$-./

01$234534$-./

6378+49$234534$-./

:2$!37;<;7;$234534$-./

=;7;>;/3$234534$-./

!"#$%&'-12)&+&+"3

!"#$?@2=A

BC0=$D+'74+EE34/

6378+49

1!/45

67-8+9:

;+<')-!=233'>

1!/45

!"#$ %&'()

!"#$%&' (')*+,'-.-/0

(')*+,'-12)&+&+"3

* !"#$%&'(

* ()*+",-".*/&!"#$%�/*1

%+,&'$-./

01$234534$-./

6378+49$234534$-./

:2$!37;<;7;$234534$-./

=;7;>;/3$234534$-./

!"#$%&'-12)&+&+"3

!"#$?@2=A

BC0=$D+'74+EE34/

6378+49

1!/45

67-8+9:

;+<')-!=233'>

1!/45

BC0=$D+'74+EE34/

6378+49

1!/45

67-8+9:

;+<')-!=233'>

1!/45

Figure 2. XMT System Architecture

of concurrent clients. Lustre is a distributed parallel file
system and presents a POSIX interface to its clients with
parallel access capabilities to the shared objects. Lustre
is composed of four main components: Metadata Server
(MDS) providing metadata services; Object Storage Servers
(OSSs) managing and providing access to underlying Ob-
ject Storage Targets (OSTs); OSTs controlling and provid-
ing access to the actual physical block devices and data, and
clients that access the data. The OSS/OST compartmen-
talization in Lustre provides increased scalability for large-
scale computing platforms.

3 PDTree

The PDTree application originates in the cyber secu-
rity domain, and involves large sets of network traffic data.
Analysis is performed to detect anomalies in network traffic
packet headers in order to locate and characterize network
attacks, and to help predict and mitigate future attacks. This
application is a special case of a more widely-applicable
analysis method which uses ideas from conditional proba-
bility in conjunction with a novel data structure and algo-
rithm to find relationships and patterns in the data [16].
When dealing with multivariate categorical data we can

ask, for any combination of variables and instantiation of
values for those variables, how many times this pattern has
occurred. Because multiple variables are being considered
simultaneously, the resulting count table, or contingency ta-
ble, specifies a joint distribution. Contingency tables are
a key component of a wide variety of analysis methods for
discrete data. Efficient algorithms using such tables are crit-
ical for implementation of Bayesian networks, log-linear
models, Markov random fields, various graph representa-

B C

A C D

N

B C

(b0,N) (b1,N) (c0,N) (c1,N)

AA C C D D

(c1,N)
(a0,N) (c0,N)

(a1,N) (c1,N)
(a0,N) (c0,N)

(a1,N) (d1,N)
(d0,N)

(d1,N)
(d0,N)

Figure 3. Guide tree and corresponding
PDTree

tions, and novel algebraic-based approaches [15]. This is
especially important when there are a large number of vari-
ables, a large number of observations, or when some vari-
ables take on many distinct values. All of these hold with
regard to the massive data prevalent in cyber security anal-
ysis.
Moore and Lee’s ADtree data structure, described

in [12], makes count queries significantly more efficient.
In this data structure, the root of the tree contains the to-
tal count. At each step down into the tree, another variable
is instantiated with a particular value, with counts tracked at
each level. ADtrees take advantage of the sparsity that typ-
ically results when many variables are simultaneously in-
stantiated, and they allow fast queries: any count query can
be answered in a number of steps proportional to the num-
ber of variables instantiated in the query. However, they can
be quite expensive to populate; memory usage and compu-
tation time are both at best exponential, since each is at best
linear in the total number of combinations of variables.
Fortunately, in many cases, we need not store counts for

every such combination. This may be due to the availability
of a statistical model for the data, or to requirements involv-
ing computation time or memory. In such cases, limiting
the data structure to reflect this can result in a correspond-
ing increase in performance. Because this differs from an
ADtree primarily in that we no longer store all dimensions,
but only partial dimensions, we refer to this as a PDTree.
By specifying a priori which combinations of variables are
to be stored, we reduce the number of steps required to tra-
verse the PDTree each time a new record is inserted. The
nested structure of the variables is specified in an auxiliary
data structure called a guide tree.
As an example, suppose we have variables {A, B,C, D}

and that we wish to fit the Markov chain A → B →
C → D. This does not require storage of counts
for every combination of variables, but only for the set
{AB, B, BC, C,CD}. Figure 3 shows a guide tree
that represents these combinations, and the corresponding
PDTree. For simplicity, we have left off some subscripts:

each “N” in this figure represents a count corresponding to
the appropriate instantiation of variables.
The most time- and memory-intensive step of using a

PDTree for a given data set is populating it. For this reason,
we have based our study of PDTree performance entirely
on the population step. To populate a PDTree for a given
model and data, we follow these steps:

1. Determine which combinations of variables must be
stored for the model.

2. Construct a guide tree representing the required com-
binations.

3. Begin with an empty PDTree (only the root node, with
a zero count).

4. For each record, traverse the guide tree, which at each
step specifies how the PDTree is to be traversed. In-
crement counts or insert new nodes as needed.

Note that once a PDTree is built, the guide tree is not
needed for queries; all required information about the vari-
ables is contained within the PDTree itself. Thus the guide
tree can be represented in any form that allows efficient
traversal, such as a list-of-lists or similar structure, but we
need not be concerned with random lookup efficiency of the
guide tree.

3.1 Multithreaded Implementation

The keys to a highly scalable, efficient PDTree algorithm
on the XMT are:

1. a scalable data structure that supports increasing num-
bers of insertions, and

2. an insertion operation that is safe, concurrent, and min-
imizes synchronization costs.

The XMT’s shared memory and tolerance for highly ir-
regular memory access patterns gives the programmer great
latitude in choice of data structure. One can choose the data
structure that best fits the problem rather than try to force
the problem into a data structure that best fits the architec-
ture.
On the XMT, the PDTree is a multiple type, recursive

tree structure. A root node (one root node per column) is a
collection of ValueNodes. Interior and leaf nodes are linked
lists of ValueNodes. Since a root is just a histogram of col-
umn values, its size and contents are easy to set. Our orig-
inal implementation used a linked list at the top level; but,
as we explain below, it suffered from high synchronization
costs and did not scale past eight processors. Inserting a
record at the top level requires only that we increment the

column = a

numCols = 3

values =

RootNode

count = 5

columns =

column = b

values =

column = c

values = ...

value = 10

count = 1

numCols = 3

columns = ...

nextVN =

value = 19

count = 4

numCols = 3

columns = ...

nextVN = ...

count = 3

columns =

column = b

values =

column = c

values = ...

Linked list of ValueNodes

Hash table of ValueNodes

Array of ColumnNodes

!

H(v)

Array of RootNodes

Figure 4. Dynamic PDTree implementation

counter of the right ValueNode. Inserting the record at other
levels of the tree requires us to traverse a linked list to find
the right ValueNode. If we find the node, we increment its
counter. If we do not find the node, we add the node to the
end of the list and set its counter to 1. We use the XMT’s
atomic int fetch add operation to increment counters.
This operation is performed in memory and costs only one
instruction cycle.

Inserting the record at other levels of the tree when no
node is found is trickier. To insure safety, a thread must
lock the list’s end pointer before inserting a new node. Im-
plementing a critical section is easy on the XMT using
the synchronized read and write operations, readfe and
writeef, respectively.

In our implementation, a critical section exists only at
the end of a list. An insertion operation waits only if it
tries to insert a node at the same time at the end of the
same list as another insertion operation. Since the PDTree
grows quickly into a massive, sparse structure, the probabil-
ity of two threads colliding quickly approaches zero. More-
over, even if an insertion waits, the Threadstorm processor
on which it executes does not wait; the processor merely
switches to another thread and continues executing instruc-
tions. Note that the reason that we do not want to use a
linked list at the top level is that all records are inserted in
the same top level structure; thus, the probability of two in-
sertions colliding is significant.

More details on the statistical method and theory behind
the PDTree application and its parallel implementation can
be found in [16] and [13].

3.2 Static & Dynamic Implementations

In some instances, it might be possible to have infor-
mation ahead of time on the possible range of values for
a column: i.e. IP addresses corresponding to certain sub-
networks. In this case, it is efficient to use a dense array of
ValueNodes at the RootNode level to store the value data
corresponding to a column. The access time to any entry in
the array has minimal constant cost, at the expense of possi-
ble wasted memory space if the values in the actual dataset
are sparse with respect to their range.
In other cases, the range of values for a column can be

very large or unknown at execution time, this is particularly
true when performing analysis of streaming data coming
from network sensors and other dynamic sources. In this
case, it is necessary to use a more flexible data structure for
the ValueNode collection at the RootNode level. We use a
C++ template-based hash table implementation with a num-
ber of entries that we have found to be balanced between
memory usage and collision likelihood for each column at
the RootNode level.
Figure 4 illustrates the details of the concrete data struc-

ture implementation we use for the PDTree. The top level
corresponds to an array of RootNode structures, one for
each column described in the guide tree. Each individual
RootNode contains a hash table of ValueNodes, on which
individual value instances for that column will be stored.
We use Wang’s 64-bit mix hash function [18] (H(v) in Fig-
ure 4), which is based on Knuth’s multiplicative method [9].
For the dense array case, each RootNode will have a dense
array of as many entries as different values are expected for
each column, in place of the hash table.
We have implemented the PDTree application using both

data structure styles. Section 4 describes in detail the ex-
perimental results obtained with both data structure ap-
proaches.

4 Experimental Setup and Results

As described in Section 2, the XMT supports many
standard HPC capabilities present in mainstream super-
computers like the Cray XT3/4, including access to high-
performance parallel filesystems such as Lustre. However,
many of this mainstream HPC capabilities are not directly
accessible from the Threadstorm compute nodes due to their
unique custom hardware and available operating system.
Cray has provided an indirect mechanism to provide ac-

cess to standard HPC capabilities from the Threadstorm
compute nodes via the Lightweight User Communication
Library (LUC) [7]. LUC offers an RPC-like mechanism
that enables the Threadstorm processors to remotely exe-
cute procedures on service Opteron processors and vicev-
ersa. The RPC mechanism enables data transfers between

Threadstorm

CPU

Threadstorm

CPU

Threadstorm

CPU

Threadstorm

CPU

DRAM

Opteron

CPU

DRAM

Service/login node Compute node

SeaStar

Interconnect

Lustre filesystemDirect

Access

Indirect

Access LUC

RPC

Figure 5. Indirect access to Lustre filesystem
from Threadstorm processors (via LUC RPC)

the Opteron and Threadstorm nodes via function call pa-
rameters. These parameters can be modified (when passed
via C-style pointers) and their modification will be reflected
in the originating side of the RPC call. In this manner, it
is possible to design a LUC-based protocol to enable in-
direct reading and/or writing (by the Threadstorm nodes)
of files resident on a Lustre filesystem accessible only to
the Opteron nodes. Figure 5 illustrates this indirect access
concept. The operating system (MTK) on the Threadstorm
compute nodes does provide an NFS filesystem client,
which can directly access files on an NFS server. However,
the performance of direct file access by the Threadstorm
processors is not comparable to that of indirect access via
LUC.
The PDTree application reads its input data from a file as

a proxy for a streaming data source (i.e. network sensor or
router/switch). The PDTree input data consists of variable-
length ASCII records, separated by carriage returns. Each
line consists of column data separated by space characters.
We have extended our original PDTree implementation

to handle very large datasets on the Cray XMT by using its
hybrid execution capabilities via a LUC-based RPC mech-
anism. We have developed a LUC server to execute on the
Opteron service nodes, which have direct access to a large
Lustre filesystem. The server opens a very large file, with
PDTree data, resident on the Lustre filesystem. The server
then proceeds to stream chunks of the file, in response to
requests from a Threadstorm LUC client. The server reads
the file in binary mode in fixed size chunks and sends the
data to the Threadstorm client after discarding incomplete
records that might appear at the end of the read chunk. Each
one of the read chunks is then processed as a record set and
inserted into its corresponding place in the PDTree. This

process closely follows the expected use of a PDTree-like
application for anomaly detection in a realistic network-
ing environment with streaming data coming from network
routers and sensors.
In order to handle this dynamic input data, we use the

hash table-based PDTree implementation described in Sec-
tion 3.2, which does not have assumptions with respect to
the range of values expected in the input records. We also
executed the static dense array-based PDTree implementa-
tion for a smaller dataset in order to have a baseline for the
possible overhead of the dynamic hash table-based imple-
mentation.

4.1 Results

Our experiment uses a 4GB PDTree data input file with
64 million records, we use a template with 9 columns (guide
tree) resident on the described Lustre filesystem. We stream
five chunks of data using three different chunk sizes: 100
MB, 200 MB and 250 MB. The chunk sizes correspond to
increasing numbers of ASCII records.
The ASCII data is then converted to binary records in

a parallel preprocessing step. The binary records are then
inserted into the PDTree using the general, hash-based dy-
namic scheme described in Section 3.2. We present results
obtained for different numbers of processors on the XMT
system. We include the time for the aggregated data trans-
fer through LUC, the preprocessing time (conversion from
ASCII to binary), the time to insert the data into the PDTree
and the estimated speedup (for the insertion portion only)
obtained with respect to execution on a single Threadstorm
processor. For the dynamic streaming execution, due to
time limitations, we were not able to execute the exper-
iments on processor configurations below 8, for this rea-
son we assume that execution on 8 processors has perfect
speedup (8.0) and compute the other speedups relative to
the 8 processor execution time (the static results on smaller
number of processors lead us to believe that this is the case).
We use a hash table size of 128 K elements for each

top-level column in the PDTree and our preliminary ex-
periments have indicated that there are no hash collisions
for our chosen dataset. In fact, a few hash collisions for a
given dataset could be interpreted as not affecting the over-
all, aggregate properties of the PDTree. However, if hash
collisions are very frequent then a particular column of the
PDTree will have the aggregate data for the colliding values,
leading to misleading results.
Table 1 presents the results of our static setup (dense ar-

rays at the RootNode level) for a 1 million record input file,
for comparison purposes. All times are in seconds. The
PDTree data insertion time is scaling linearly with the num-
ber of Threadstorm processors up to 96, indicating that the
original dense array-based approach for the top level of the

of XMT XMT MTA MTA
Procs. Insertion Speedup Insertion Speedup
1 239.26 1.00 200.17 1.0
2 116.36 2.06 98.25 2.04
4 56.48 4.24 48.07 4.16
8 27.53 8.69 23.29 8.59
16 13.97 17.13 11.61 17.24
32 7.13 33.56 5.81 34.45
64 3.68 65.02 N/A N/A
96 2.60 92.02 N/A N/A

Table 1. Performance results for an in-core,
static 1,000,000 record execution

of LUC Preprocessing Insertion Speedup
Procs. Transfer
8 3.25 17.85 229.79 8.00
16 3.26 9.22 114.92 16.00
32 3.28 4.95 58.29 31.52
64 3.28 3.13 30.79 59.68
96 3.23 2.78 24.14 76.16

Table 2. Performance results for 100 MB (≈
1, 750, 000 records, 500 MB transferred) dy-
namic streaming execution

PDTree is scalable and that there is a diminishing prob-
ability of collisions when creating the interior nodes and
leaves of the tree. These experiments were executed us-
ing a preproduction configuration with the 4-way set asso-
ciative memory buffer enabled and only half of the DIMM
slots populated on each compute node, which limits mem-
ory bandwidth. We also have included absolute times and
speedups for the same setup executing on the original MTA-
2 system on up to 32 processors.
Tables 2, 3 and 4 present the results of our dynamic

experiment for chunk sizes of 100 MB, 200 MB and 250
MB. All times are in seconds. The dynamic experiments
were executed using a preproduction setup with the mem-
ory buffer using a 1-way set associative configuration, as
well as only half the DIMM slots populated.
The LUC transfer times correspond to a single LUC

server thread (single endpoint) reading the chunk from the
Lustre file system accessible from an Opteron service node,
then transferring the read data over the Portals interface
to the Threadstorm compute nodes. This simple mecha-
nism can be optimized significantly to provide much bet-
ter throughput by using multiple concurrent LUC requests
through as many LUC endpoints. However, the perfor-
mance of this simple single-endpoint access scheme is su-
perior to direct access from the Threadstorm processor to
input files resident on NFS: for the static version of the ap-

of LUC Preprocessing Insertion Speedup
Procs. Transfer
8 6.35 35.46 449.88 8.00
16 6.35 18.16 226.56 15.89
32 6.41 9.56 115.01 31.29
64 6.35 5.57 60.72 59.27
96 6.38 4.53 46.53 77.35

Table 3. Performance results for 200 MB (≈
3, 250, 000 records, 1 GB transferred) dynamic
streaming execution

of LUC Preprocessing Insertion Speedup
Procs. Transfer
8 7.93 44.70 572.05 8.00
16 7.86 22.47 283.86 16.16
32 7.95 11.77 143.62 31.84
64 7.98 6.66 76.02 60.16
96 7.93 5.33 54.77 83.52

Table 4. Performance results for 250 MB (≈
4, 100, 000 records, 1.25 GB transferred) dy-
namic streaming execution

plication the time to read the 1 million record input file di-
rectly by the Threadstorm processors is approximately 350
seconds. The indirect access times through LUC are much
smaller and represent only a small fraction of the total pro-
cessing (insertion) time.

5 Related Work

There is a large body of work on the use of out-of-core
methods for numerical problems [14, 10]. which focus on
maintaining high numerical throughput in spite of datasets
which do not fit into the main memory of the processors.
Many papers also address the requirements for processing
massive datasets for computer graphics and visualization [6,
4].
McMains, Hellerstein and Séquin [11] propose a tech-

nique to build high-level topological information from an
unordered, out-of-core set of polygonal data for geometrical
modeling. Their work is similar to our approach in that their
technique is building a higher-level, abstract representation
of the low-level data present in the out-of-core dataset.

6 Conclusions

We have presented some early results obtained with an
out-of-core, data-intensive application on a preproduction
Cray XMT system. Our experience indicates the value of

the XMT’s hybrid architecture and its improved I/O capa-
bilities over the predecessor system, the Cray MTA-2. The
hybrid architecture provides user with ability to select what
portions of the application should execute on the multi-
threaded processors versus the mainstream processors. We
have used the new Cray LUC communication interface to
transfer the out-of-core data resident on a high-performance
Lustre filesystem to the multithreaded part of the machine,
which does not directly support access to Lustre. Our im-
plementation of the I/O operations based on LUC has not
been yet optimized to take the full advantage of the high-
performance and scalability Lustre offers. However, it en-
abled us to achieve good scaling for the out-of-core version
of the PDTree application.
The experimental results indicate that the overall scala-

bility of the system is very good, in the presence of com-
plex, irregular, data-dependent access in-core access pat-
terns and large out-of-core block transfers. We plan to
optimize our out-of-core strategy by implementing multi-
ple LUC endpoints to take advantage of the parallel trans-
fer capabilities of the LUC protocol and the parallel Lustre
filesystem.

References

[1] W. Anderson, P. Briggs, C. S. Hellberg, D. W. Hess,
A. Khokhlov, M. Lanzagorta, and R. Rosenberg. Early Ex-
perience with Scientific Programs on the Cray MTA-2. In SC
’03: Proceedings of the 2003 ACM/IEEE conference on Su-
percomputing, page 46, Washington, DC, USA, 2003. IEEE
Computer Society.

[2] P. J. Braam. Lustre: A Scalable, High Performance
File System. http://www.lustre.org/docs/
whitepaper.pdf, 2002.

[3] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. Hud-
son. Seastar interconnect: Balanced bandwidth for scalable
performance. IEEE Micro, 26(3):41–57, 2006.

[4] K. Cai, Y. Liu, W. Wang, H. Sun, and E. Wu. Progressive
out-of-core compression based on multi-level adaptive oc-
tree. In VRCIA ’06: Proceedings of the 2006 ACM interna-
tional conference on Virtual reality continuum and its appli-
cations, pages 83–89, New York, NY, USA, 2006. ACM.

[5] M. Cannataro, D. Talia, and P. K. Srimani. Parallel data in-
tensive computing in scientific and commercial applications.
Parallel Comput., 28(5):673–704, 2002.

[6] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei. A unified in-
frastructure for parallel out-of-core isosurface extraction and
volume rendering of unstructured grids. In PVG ’01: Pro-
ceedings of the IEEE 2001 symposium on parallel and large-
data visualization and graphics, pages 59–66, Piscataway,
NJ, USA, 2001. IEEE Press.

[7] Cray Inc. Cray XMT Lightweight User Communication Li-
brary (LUC) User’s Guide. Draft version, August 2007.

[8] J. Feo, D. Harper, S. Kahan, and P. Konecny. ELDORADO.
In CF ’05: Proceedings of the 2nd conference on Computing
frontiers, pages 28–34, New York, NY, USA, 2005. ACM.

[9] D. E. Knuth. The Art of Computer Programming, volume 2:
Seminumerical Algorithms. Addison-Wesley, Reading, MA,
Second edition, 1981.

[10] J. W. H. Liu. On the storage requirement in the out-of-core
multifrontal method for sparse factorization. ACM Trans.
Math. Softw., 12(3):249–264, 1986.

[11] S. McMains, J. M. Hellerstein, and C. H. Séquin. Out-of-
core build of a topological data structure from polygon soup.
In SMA ’01: Proceedings of the sixth ACM symposium on
Solid modeling and applications, pages 171–182, New York,
NY, USA, 2001. ACM.

[12] A. Moore and M. S. Lee. Cached Sufficient Statistics for
Efficient Machine Learning with Large Datasets. Journal of
Artificial Intelligence Research, 8, 1998.

[13] J. Nieplocha, A. Márquez, J. Feo, D. Chavarrı́a-Miranda,
G. Chin, C. Scherrer, and N. Beagley. Evaluating the Poten-
tial of Multithreaded Platforms for Irregular Scientific Com-
putations. In CF ’07: Proceedings of the 4th International
Conference on Computing frontiers, pages 47–58, NewYork,
NY, USA, 2007. ACM Press.

[14] V. Rotkin and S. Toledo. The design and implementation of a
new out-of-core sparse cholesky factorization method. ACM
Trans. Math. Softw., 30(1):19–46, 2004.

[15] C. Scherrer and N. Beagley. Conditional IndependenceMod-
eling for Categorical Anomaly Detection. In Proc. Joint An-
nual Meeting of the Interface and Classification Society of
North America, 2005.

[16] C. Scherrer, N. Beagley, J. Nieplocha, A. Márquez, J. Feo,
and D. Chavarrı́a-Miranda. Probability convergence in a
multithreaded counting application. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–5, 26-30 March 2007.

[17] R. B. Trammell. Portals 3.3 on the Sandia/Cray Red Storm
System. In Cray User Group, 2005.

[18] T. Wang. 64-bit Mix Function. http://www.
concentric.net/˜Twang/tech/inthash.htm,
1997.

[19] W. Yu, S. Liang, and D. K. Panda. High performance sup-
port of parallel virtual file system (PVFS2) over Quadrics. In
ICS ’05: Proceedings of the 19th annual international con-
ference on Supercomputing, pages 323–331, New York, NY,
USA, 2005. ACM.

