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ABSTRACT: Contingency analysis is a key function to assess the impact of various 
combinations of power system component failures. It involves combinatorial numbers of 
contingencies that exceed the capability of even very large supercomputing platforms. 
Therefore, it is critical to select credible contingency cases within the constraint of 
computing power. This paper presents a contingency selection method employing graph 
theory (edge betweenness centrality) to analyze power grid weighted graphs to remove 
low-impact components. The parallel implementation of the method was successfully 
demonstrated on the Cray XMT machine. The implementation takes advantage of the 
superior capabilities of the Cray XMT for graph-based problems and its programming 
features. This paper presents the performance and scalability of the Cray XMT and 
comparison with a cache-based, scalable, shared-memory machine.  
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1. Introduction 
    Contingency analysis is a key function in the Energy 
Management System (EMS), which assesses the ability of 
the power grid to sustain various combinations of power 
grid component failures based on state estimates. Because 
of the heavy computation involved, today’s contingency 
analysis can be updated only every few minutes for only a 
select set of “N-1” contingency cases (i.e., failures of any 
one component). As electricity demand continues to grow 
and renewable energy increases its penetration in the 
power grid, the personnel operating and managing the 
power grid are facing some fundamental challenges. 
Contingency analysis evolves from previous "N-1" 
analysis to "N-x" analysis (i.e., failures of multiple 
components). The combinatorial number of contingency 
cases increases exponentially as "x" becomes larger. For 
large systems, the contingency analysis process imposes a 
substantial computational burden.  For example, for the 
western US power grid, which includes 17,000 branches, 
the case number could easily reach 1021 for “N-5” 
contingency analysis. This results in many more cases to 
analyze and much more data from the analysis to present 

to power grid operators.   Because most of the 
contingency cases have a low probability to occur and/or 
have low impact on the system, contingency selection 
methods need to consider the probability and impact in 
order to identify a credible smaller set of cases for further 
vulnerability assessment. 
 
    In the past several decades, some research has been 
conducted in the area of contingency selection. The 
previous research includes performance indices (PI) 
related contingency ranking method based on approximate 
power flow solutions[1],[2], contingency evaluation using 
concentric relaxation [3], sparse vector methods [4], partial 
refactorization method [5] , bounding method for AC 
contingency analysis[6], hybrid method[7] and quadratized 
power flow sensitivity analysis[8]. These existing methods 
are of various qualities in identifying the credible set of 
contingency cases. From the computational point of view, 
many of these methods still involve some kind of 
simplified analysis of all contingency cases. The methods 
may be feasible for “N-1” contingency analysis. However, 
for “N-x” analysis, the sheer number of cases leads to the 
impracticality of even the simplified computation for all 
cases. We must search for a more efficient contingency 
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selection method.  
This paper proposes a new contingency selection 

method based on the concept of graph edge betweenness 
centrality. Power grid can be treated as a weighted 
undirected graph, and the edge betweenness centrality 
identifies the most "traveled" edges in the graph. The most 
traveled edges are considered the most important branches 
in a power grid, and their failures must be analyzed, while 
the least traveled edges are identified as low-impact 
branches, and their failures do not need to be analyzed 
because they are of little importance to power grid 
stability. 

 
This paper starts with a description of the 

implementation of edge betweenness centrality using a 
modified version of Brandes’ algorithm [12] on the Cray 
XMT in Section 2, followed by Section 3 describing the 
case study for a 760-bus power system, which shows the 
result of the proposed contingency selection method 
validated with the actual impact of power grid component 
failures based on performance indices. The Cray XMT 
performance analysis and the performance comparison 
with a cache-based, scalable, shared-memory machine are 
presented in Sections 4 and 5. Section 6 concludes the 
paper with suggested future work.  

2.  Betweenness Centrality implementation  

2.1 Edge Betweenness Centrality Definition 
 

Vertex betweenness is a centrality measure of a vertex 
within a graph. The definition of vertex betweenness 
centrality is defined as eq. 1: [9],[10] 
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where  
)(vCB = vertex betweenness, 

stσ = the number of shortest paths from any two 
vertices Vs∈  to Vt ∈ in a graph, and 

)(vstσ  = the number of shortest paths from s  to  t  
via vertex v . 

 
Edge betweenness is a centrality measure of an edge 

within a graph. Edges that occur on many shortest paths 
between any vertex pair have higher betweenness than 
those that do not. The following eq. 2 is the standard 
measure of edge betweenness centrality [11]: 
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where 

)(eCeB = edge betweenness, 

stσ = the number of shortest paths from any two 
vertices Vs∈  to Vt ∈ in a graph ),( EVG = , and  

)(estσ  = the number of shortest paths from s  to  t  
that some edge Ee∈  lies one. 
2.2 Modified Brandes’ algorithm  

 
Ulrik Brandes’ algorithm [12] is frequently used to 

calculate vertex betweenness for unweighted/weighted 
graphs. It requires )( mnO +  space and )(nmO  time for 

unweighted graphs, )log( 2 nnnmO +  time for weighted 
graphs, where n  and m  are the number of vertices and 
edges in the graph, respectively. 

 
In [12], the pseudo code for calculating vertex 

betweenness for unweighted graphs was provided. In 
order to apply edge betweenness centrality to power grid 
graphs, we adapted Brandes’ algorithm to calculated edge 
betweenness for weighted power grid graphs. In power 
grids it is possible that there are multiple shortest paths 
between two buses, therefore the Dijkstra’s algorithm [13] 
is also adapted to store multiple shortest paths. 

 
The pseudo code for the adapted Brandes’ algorithm in 

weighted graphs is as follows:  
 

;,0][ VvvCvB ∈←   // vertex betweenness array 
;,0][ EeeCeB ∈←   // edge betweenness array 

;,0][ Vvvvisited ∈←  
 for  V∈s do 
    S ← empty stack; 
   ←][wP empty list, Vw∈ ; 
    ;1][;,0][ ←∈← sVtt σσ  
    ;0][;,0][ ←∈← sdVttd  
    ←Q empty queue; 
     enqueue  Qs → ; 
     while Q  not empty do 
         dequeue Qv ← ; 
         push Sv → ; 
         foreach neighbor w  of v  do 
           // w  found for the first time? 
             if not ][wvisited then 
                equeue Qw → ; 
              // shortest path to w  via v ?  
                if ][][][ wdwdvd <+ then 
                   append or update ][wPv → ; 
                  ][][ vw σσ ← ; 
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                 // found multiple shortest path to w ? 
               elseif ][][][ wdwdvd =+ then 
                   append ][wPv → ; 
                  ][][][ vww σσσ +← ; 
               end 
           end 
        end 
     end 
    ;,0][ Vvv ∈←δ  
     // S returns vertices in order of non-increasing 

distance from s  
     while S  not empty do 
         pop Sw ← ; 
         for  ][wPv∈  do 

            ])[1(
][
][][][ w

w
vvv δ

σ
σδδ +⋅+← ; 

             if sw ≠ then  

       ])[1(
][
][][][ w

w
veCeC eBeB δ

σ
σ

+⋅+←                  

   end 
         end 
         if sw ≠ then ][][][ wwCwC vBvB δ+← ; 
     end 

     end 
2.3 Parallel Implementation on the Cray XMT  

 
The Cray XMT system is a scalable multithreaded high 

performance computing platform. The Cray XMT 
supports a global shared memory accessible by all 
processors on the system and can scale to a total of 8,192 
processors. With a hardware multithreading mechanism to 
tolerate memory access latencies frequently encountered 
in irregular, graph-processing algorithms, the XMT 
machine is a suitable platform for parallel processing of 
large-scale power grid graphs. 

 
In the proposed edge betweenness centrality 

computation, the modified Brandes’ algorithm was called 
for each vertex in the power grid graph. In each iteration, 
all the shortest paths were identified between this given 
vertex and any other vertices in the graph, and then the 
algorithm accumulates the calculated edge betweenness 
values for particular edges. After all the vertices are 
scanned, edge betweenness of all edges will be available.  

 
Each iteration is independent and can be executed in 

parallel since it analyzes independently-sourced shortest 
paths. We have used XMT-specific pragma (#pragma 
mta parallel) to guide the compiler in parallelizing 
other sections of the code. We have also used the atomic 
update pragma (#pragma mta update) before the 
corresponding source code statement for 

 

←][eCeB +][eCeB ])[1(
][
][ w

w
v δ

σ
σ

+⋅ ;  

 
By using #pragma mta update, the compiler knows 
that this statement is an update to the shared edge 
betweenness variable and that the update should be 
performed atomically.  

3. Case Study 

A power system model containing 760 buses (vertices), 
977 branches (edges) was extracted from an area of the 
western US power grid. This model was then used to test 
and validate the proposed contingency selection method 
with the actual impact of power grid component failures 
based on performance indices [1].  

 
GE Positive Sequence Load Flow Software (PSLF) [14] 

– a widely used, commercial grade power system analysis 
tool – was used to perform power grid contingency 
analysis.  For each contingency result, a performance 
index [1] was calculated and all indices were ranked based 
on eq. 3:  

 
(eq. 3) 

 
where  
N = the number of transmission branches (edges), 
Pi = the power flow in each transmission branch (edge), 
and 
 Pimax = the power capacity for each transmission 
branch (edge). 
 
In a power grid, we consider that, for each transmission 

branch, the more power carried, the more important this 
branch is. Therefore, the inverse of power flow at each 
branch, 1/Pi , was used as the weight of the edges. To be 
consistent with the PI definition, the obtained edge 
betweenness was reweighted by the power capacity Pimax 
of the edge. 

 
The distribution of edge betweenness for the 760-bus 

power system is shown in Figure 1. In Figure 1, we can 
see that there is a small portion of edges that have high 
edge betweenness scores, which means that this small 
portion of edges is important to this power grid graph. 
The same idea holds true in the real power system; there is 
a small set of transmission lines that are more critical 
compared with other lines. This is confirmed by the 
results for the full 14090-bus western US power grid 
(WECC) (see Figure 2).  
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Figure 1:  Edge betweenness distr ibution for  the 760-
bus system 
 

 

 
Figure 2:  Edge betweenness distr ibution for  the 
14090-bus WECC system  

 
The preliminary cross-validation results are shown in 

Figure 3, where the x-axis is the percentage of selected 
cases from contingency ranking results based on PIs, and 
the y-axis is the percentage of common cases between PI-
based selection and edge-betweenness-based selection. 
From Figure 3, we can see that with 70% contingency 
cases selected (x-axis), the hit rate using edge 
betweenness can achieve 70% (y-axis). This high hit rate 
demonstrates the validity of the proposed edge-
betweenness-based method.  

 

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

% of selection

%
 o

f c
om

m
on

 ca
se

s

w4w6

 
Figure 3: The cross-validation results for  the 760-bus 
system 

4. XMT Performance analysis 

4.1 Study Cases 
 
To analyze the XMT’s computational performance 

for the application of edge betweenness centrality to 
power grid graphs, four power system models of different 
sizes were studied. The number of vertices and edges for 
the four graphs are shown in Table 1. The IEEE 118-bus 
system is a standard test system, available from [15]. The 
760-bus system is the one used for validation in Section 3. 
The 46010-bus system was extended from the western US 
power grid (WECC), by adding more detailed power 
networks to represent some of the largest loads in the 
WECC system and matching power flow at points of 
connection. 

 
Table 1: Study cases 

Case name Number of vertices Number of edges 
118-bus 118 179 
760-bus 760 977 
WECC 14090 17346 

46010-bus 46010 57323 

 

4.2 Resource Utilization  
 
The Cray XMT machine used for this study has four 

compute blades with four multithreaded Threadstorm 
processors at 500 MHz. Each Threadstorm processor can 
have up to 128 hardware threads for a total of 128GB of 
global shared memory [16]. 

 
On the XMT, it is possible to accurately obtain the 

processor utilization by measuring the number of clock 
cycles in which instructions have been issued versus the 
total number of clock cycles spent in the computation. The 
processor utilization is a measure of the effectiveness of 
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memory access latency hiding. We have measured the 
memory usage and processor utilization for the 46010-bus 
case.  These results are presented in Table 2. 

 
Number of 
processors 

Memory usage 
(GB) 

Utilization rate 
(%) 

1 85.8 43 
2 87 42.5 
4 88.2 39.5 
8 92 37.1 

16 97.6 34.5 
Table 2: Memory usage and utilization rate versus the 
number  of processors for  the 46010-bus system 

 
As can be seen from Table 2, the processor utilization 

is high in spite of the irregular nature of the graph analysis 
algorithm being executed.  The multithreaded capabilities 
of the Threadstorm processor are quite effective in 
covering the latencies of the irregular memory accesses 
required to traverse the graph in order to compute the 
betweenness centrality scores. 

4.3 Scalability 
 

    The four study cases listed in Table 1 were used to test 
the scalability of the edge betweenness implementation on 
the Cray XMT machine. The computer execution time is 
plotted against the number of processors in Figure 4, and 
the corresponding speed-up curve is shown in Figure 5.  
 

 
Figure 4: Execution time versus the number  of 
processors for  power  graphs of var ious sizes on the 
Cray XMT 

 
Figure 5: The speed-up curve for  power  graphs of 
var ious sizes on the Cray XMT 
 

In Figure 4 and 5, it is clear that the scalability 
improves for larger problem sizes. For large graphs, the 
speed-up is close to linear scalability. This indicates that 
the Cray XMT is very suitable for the proposed 
betweenness centrality analysis method operating on large 
power grid graphs. 
 

5. Compar ison between the Cray XMT and a 
shared-memory machine 

To compare the performance between the Cray XMT 
machine and an equivalent scalable shared-memory 
machine, we used a Hewlett-Packard SuperDome 
machine, located at PNNL. The SuperDome runs a 
version of the betweenness centrality application written 
using the OpenMP share-memory programming model.  

 
The configuration of the SuperDome machine is as 

follows:         
• 64 dual-core 1.6GHZ Itanium processors (128 

cores) 
• 24 MB of cache per processor 
• 256 GB RAM 
• 12.6 TB of disk space. 

 
    The same four cases in Table 1 were used to 

compare the performance of the Cray XMT and the 
SuperDome machine. In order to conduct a reasonably fair 
comparison, the same amount of memory (128 GB) was 
reserved for each run. Figure 6 and Figure 7 show the 
plots of computer execution time and the speed-up 
numbers, respectively.  
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Figure 6 : Execution time versus the number  of 
processors for  power  graphs of var ious sizes on the 
SuperDome 
 

 
Figure 7: The speed-up curve for  power  graphs of 
var ious sizes on the SuperDome 

 
Comparison of Figure 5 and Figure 7 indicates that 

the Cray XMT machine achieves superior scalability for 
graph edge betweenness computation over the SuperDome 
machine. Figure 5 also shows a very consistent 
performance of the XMT machine as the graph size 
increases, while the SuperDome machine exhibits 
somewhat unpredictable performance, as shown in Figure 
7. This inconsistency in the SuperDome performance can 
be mainly attributed to the variability in the use of its local 
caches. Figure 6 shows that for the 46010-bus system, the 
execution time with eight processors is even longer than 
that with four processors. We believe that the reason for 
this is potential false sharing between the processors’ 
caches, which increases as the number of processors 
grows. The cache in the SuperDome machine is local to 
individual computer nodes. For the case with eight 
processors, two compute nodes are used. Processors in 
one node need to access data in the cache attached to 
other node. Therefore, more overhead is introduced by 
inter-node communication, which degrades the overall 
computational performance. As a result, it takes longer to 
execute the code on eight processors than on four 
processors. When 16 processors (four compute nodes) are 

used, the execution time improves again, but it is not 
much better than on four processors, in spite of the work 
per processor having been reduced by a factor of four. 
Further analysis is required in order to better understand 
and characterize the behavior of this application on a 
cache-coherent platform (like SuperDome). 

 
Table 3 shows the execution time and the ratio of 

execution time (TXMT/TSuperDome) with 16 processors for 
the four power grid graphs on the Cray XMT. For these 
four cases, we can see that the execution time on the 
SuperDome is less than that on the Cray XMT. One factor 
contributing this result is the difference in the processor 
clock speed. There is a factor of 3.2, comparing 
SuperDome’s 1.6 GHz and XMT’s Threadstorm 500 
MHz. The relative ratio of execution time considering the 
factor of 3.2 is also shown in Table 3. The relative ratio is 
equivalent to a comparison of the computational 
efficiency if both SuperDome and XMT have the same 
clock speed. According to the relative ratios, Table 3 
shows that the XMT machine would have already 
outperformed the SuperDome machine for the 14090-bus 
WECC power system as the ratio 0.58 is well below 1.0.  

  
But even without considering the clock speed 

difference, the ratio of execution time (TXMT/TSuperDome) is 
approaching 1.0 when the size of power grid graphs 
increases. Another factor for SuperDome’s faster 
execution is the cache effect. Especially for smaller 
graphs, the SuperDome can take advantage of its large 
caches, in which most or even all data of smaller graphs 
can fit, and thus the average memory access time is 
reduced dramatically. When the graph is so large that the 
data can not fit into the caches and swapping between 
caches and the main memory is necessary, the memory 
access time increases since most of the data won’t be 
available in the caches. The advantage of caches 
diminishes, and thus the overall computational time 
increases prominently. With the multithreaded mechanism 
and excellent scalability, we expect that the current Cray 
XMT configuration, though with slower processors, 
would outperform the SuperDome in terms of execution 
time when the graph size is larger than a threshold. 

 
Table 3: Execution time for  four  study cases on the 

SuperDome and the Cray XMT 
Case name TSuperDome 

(sec) 
TXMT 
(sec) 

Ratio 
(=TXMT/TSuperDome) 

Relative ratio 
(=Ratio/3.2) 

118-bus 0.013 0.531 40.91 12.78 
760-bus 0.336 1.681 5.00 1.56 
WECC 196.79 364.64 1.85 0.58 

46010-bus 2791.40 3969.30 1.42 0.44 
 
To estimate the graph size threshold, a preliminary 

extrapolation is performed on the data shown in Table 3. 
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Figure 8 shows the result as well as the identified trending 
function. Based on the trending function, we can estimate 
that when the graph size is larger than that of 53,000 
vertices, the Cray XMT would take less time to compute 
edge betweenness on 16 processors than the SuperDome. 
The testing is ongoing with a 60,000-bus power system 
case to validate the estimated threshold and to further 
demonstrate the computational performance of the XMT 
machine.  
    

 
Figure 8: The ratio of execution time on the Cray 
XMT and the SuperDome versus the size of power  
gr id graph 

Conclusion and Future Work 
A contingency selection method is developed by 

applying edge betweenness centrality in graph theory 
to power grid topology. This selection method can 
identify low-impact components whose failure is of little 
importance to power grid stability. Removing them from 
analysis reduces the combinatorial number of contingency 
cases. Cross-validation of the proposed method has been 
conducted. This method has been implemented on the 
Cray XMT machine, taking the advantage of the graph 
processing capability of Cray XMT’s Threadstorm 
nodes and its programming features. The test results show 
the excellent scalability of Cray XMT and better 
performance than a shared-memory machine for large 
graphs.  

 
In the future, we will take advantage of the Cray 

XMT’s hybrid architecture of Threadstorm and Opteron 
nodes. Not only are Threadstorm nodes used to perform 
contingency selection, but Opteron nodes are used to 
perform the floating point computation of actual 
contingency analysis.  Further work will focus on the 
communication between Threadstorm nodes and Opteron 
nodes.  
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