

CUG 2009 Proceedings 1 of 8

Application of Cray XMT for Power Grid Contingency Selection

Yousu Chen, Shuangshuang Jin, Daniel Chavarría-Miranda, and Zhenyu Huang

Pacific Northwest National Laboratory

ABSTRACT: Contingency analysis is a key function to assess the impact of various
combinations of power system component failures. It involves combinatorial numbers of
contingencies that exceed the capability of even very large supercomputing platforms.
Therefore, it is critical to select credible contingency cases within the constraint of
computing power. This paper presents a contingency selection method employing graph
theory (edge betweenness centrality) to analyze power grid weighted graphs to remove
low-impact components. The parallel implementation of the method was successfully
demonstrated on the Cray XMT machine. The implementation takes advantage of the
superior capabilities of the Cray XMT for graph-based problems and its programming
features. This paper presents the performance and scalability of the Cray XMT and
comparison with a cache-based, scalable, shared-memory machine.

KEYWORDS: Contingency selection, betweenness centrality, parallel computing.

1. Introduction
 Contingency analysis is a key function in the Energy
Management System (EMS), which assesses the ability of
the power grid to sustain various combinations of power
grid component failures based on state estimates. Because
of the heavy computation involved, today’s contingency
analysis can be updated only every few minutes for only a
select set of “N-1” contingency cases (i.e., failures of any
one component). As electricity demand continues to grow
and renewable energy increases its penetration in the
power grid, the personnel operating and managing the
power grid are facing some fundamental challenges.
Contingency analysis evolves from previous "N-1"
analysis to "N-x" analysis (i.e., failures of multiple
components). The combinatorial number of contingency
cases increases exponentially as "x" becomes larger. For
large systems, the contingency analysis process imposes a
substantial computational burden. For example, for the
western US power grid, which includes 17,000 branches,
the case number could easily reach 1021 for “N-5”
contingency analysis. This results in many more cases to
analyze and much more data from the analysis to present

to power grid operators. Because most of the
contingency cases have a low probability to occur and/or
have low impact on the system, contingency selection
methods need to consider the probability and impact in
order to identify a credible smaller set of cases for further
vulnerability assessment.

 In the past several decades, some research has been
conducted in the area of contingency selection. The
previous research includes performance indices (PI)
related contingency ranking method based on approximate
power flow solutions[1],[2], contingency evaluation using
concentric relaxation [3], sparse vector methods [4], partial
refactorization method [5] , bounding method for AC
contingency analysis[6], hybrid method[7] and quadratized
power flow sensitivity analysis[8]. These existing methods
are of various qualities in identifying the credible set of
contingency cases. From the computational point of view,
many of these methods still involve some kind of
simplified analysis of all contingency cases. The methods
may be feasible for “N-1” contingency analysis. However,
for “N-x” analysis, the sheer number of cases leads to the
impracticality of even the simplified computation for all
cases. We must search for a more efficient contingency

CUG 2009 Proceedings 2 of 8

selection method.
This paper proposes a new contingency selection

method based on the concept of graph edge betweenness
centrality. Power grid can be treated as a weighted
undirected graph, and the edge betweenness centrality
identifies the most "traveled" edges in the graph. The most
traveled edges are considered the most important branches
in a power grid, and their failures must be analyzed, while
the least traveled edges are identified as low-impact
branches, and their failures do not need to be analyzed
because they are of little importance to power grid
stability.

This paper starts with a description of the

implementation of edge betweenness centrality using a
modified version of Brandes’ algorithm [12] on the Cray
XMT in Section 2, followed by Section 3 describing the
case study for a 760-bus power system, which shows the
result of the proposed contingency selection method
validated with the actual impact of power grid component
failures based on performance indices. The Cray XMT
performance analysis and the performance comparison
with a cache-based, scalable, shared-memory machine are
presented in Sections 4 and 5. Section 6 concludes the
paper with suggested future work.

2. Betweenness Centrality implementation

2.1 Edge Betweenness Centrality Definition

Vertex betweenness is a centrality measure of a vertex
within a graph. The definition of vertex betweenness
centrality is defined as eq. 1: [9],[10]

 ∑
∈≠≠

=
Vtvs st

st
B

v
vC

σ
σ)(

)((eq. 1)

where
)(vCB = vertex betweenness,

stσ = the number of shortest paths from any two
vertices Vs∈ to Vt ∈ in a graph, and

)(vstσ = the number of shortest paths from s to t
via vertex v .

Edge betweenness is a centrality measure of an edge

within a graph. Edges that occur on many shortest paths
between any vertex pair have higher betweenness than
those that do not. The following eq. 2 is the standard
measure of edge betweenness centrality [11]:

 ∑
∈≠

=
Vts st

st
eB

e
eC

σ
σ)(

)((eq. 2)

where

)(eCeB = edge betweenness,

stσ = the number of shortest paths from any two
vertices Vs∈ to Vt ∈ in a graph),(EVG = , and

)(estσ = the number of shortest paths from s to t
that some edge Ee∈ lies one.
2.2 Modified Brandes’ algorithm

Ulrik Brandes’ algorithm [12] is frequently used to

calculate vertex betweenness for unweighted/weighted
graphs. It requires)(mnO + space and)(nmO time for

unweighted graphs,)log(2 nnnmO + time for weighted
graphs, where n and m are the number of vertices and
edges in the graph, respectively.

In [12], the pseudo code for calculating vertex

betweenness for unweighted graphs was provided. In
order to apply edge betweenness centrality to power grid
graphs, we adapted Brandes’ algorithm to calculated edge
betweenness for weighted power grid graphs. In power
grids it is possible that there are multiple shortest paths
between two buses, therefore the Dijkstra’s algorithm [13]
is also adapted to store multiple shortest paths.

The pseudo code for the adapted Brandes’ algorithm in

weighted graphs is as follows:

;,0][VvvCvB ∈← // vertex betweenness array
;,0][EeeCeB ∈← // edge betweenness array

;,0][Vvvvisited ∈←
 for V∈s do
 S ← empty stack;
 ←][wP empty list, Vw∈ ;
 ;1][;,0][←∈← sVtt σσ
 ;0][;,0][←∈← sdVttd
 ←Q empty queue;
 enqueue Qs → ;
 while Q not empty do
 dequeue Qv ← ;
 push Sv → ;
 foreach neighbor w of v do
 // w found for the first time?
 if not][wvisited then
 equeue Qw → ;
 // shortest path to w via v ?
 if][][][wdwdvd <+ then
 append or update][wPv → ;
][][vw σσ ← ;

CUG 2009 Proceedings 3 of 8

 // found multiple shortest path to w ?
 elseif][][][wdwdvd =+ then
 append][wPv → ;
][][][vww σσσ +← ;
 end
 end
 end
 end
 ;,0][Vvv ∈←δ
 // S returns vertices in order of non-increasing

distance from s
 while S not empty do
 pop Sw ← ;
 for][wPv∈ do

])[1(
][
][][][w

w
vvv δ

σ
σδδ +⋅+← ;

 if sw ≠ then

])[1(
][
][][][w

w
veCeC eBeB δ

σ
σ

+⋅+←

 end
 end
 if sw ≠ then][][][wwCwC vBvB δ+← ;
 end

 end
2.3 Parallel Implementation on the Cray XMT

The Cray XMT system is a scalable multithreaded high

performance computing platform. The Cray XMT
supports a global shared memory accessible by all
processors on the system and can scale to a total of 8,192
processors. With a hardware multithreading mechanism to
tolerate memory access latencies frequently encountered
in irregular, graph-processing algorithms, the XMT
machine is a suitable platform for parallel processing of
large-scale power grid graphs.

In the proposed edge betweenness centrality

computation, the modified Brandes’ algorithm was called
for each vertex in the power grid graph. In each iteration,
all the shortest paths were identified between this given
vertex and any other vertices in the graph, and then the
algorithm accumulates the calculated edge betweenness
values for particular edges. After all the vertices are
scanned, edge betweenness of all edges will be available.

Each iteration is independent and can be executed in

parallel since it analyzes independently-sourced shortest
paths. We have used XMT-specific pragma (#pragma
mta parallel) to guide the compiler in parallelizing
other sections of the code. We have also used the atomic
update pragma (#pragma mta update) before the
corresponding source code statement for

←][eCeB +][eCeB])[1(
][
][w

w
v δ

σ
σ

+⋅ ;

By using #pragma mta update, the compiler knows
that this statement is an update to the shared edge
betweenness variable and that the update should be
performed atomically.

3. Case Study

A power system model containing 760 buses (vertices),
977 branches (edges) was extracted from an area of the
western US power grid. This model was then used to test
and validate the proposed contingency selection method
with the actual impact of power grid component failures
based on performance indices [1].

GE Positive Sequence Load Flow Software (PSLF) [14]

– a widely used, commercial grade power system analysis
tool – was used to perform power grid contingency
analysis. For each contingency result, a performance
index [1] was calculated and all indices were ranked based
on eq. 3:

(eq. 3)

where
N = the number of transmission branches (edges),
Pi = the power flow in each transmission branch (edge),
and
 Pimax = the power capacity for each transmission
branch (edge).

In a power grid, we consider that, for each transmission

branch, the more power carried, the more important this
branch is. Therefore, the inverse of power flow at each
branch, 1/Pi , was used as the weight of the edges. To be
consistent with the PI definition, the obtained edge
betweenness was reweighted by the power capacity Pimax
of the edge.

The distribution of edge betweenness for the 760-bus

power system is shown in Figure 1. In Figure 1, we can
see that there is a small portion of edges that have high
edge betweenness scores, which means that this small
portion of edges is important to this power grid graph.
The same idea holds true in the real power system; there is
a small set of transmission lines that are more critical
compared with other lines. This is confirmed by the
results for the full 14090-bus western US power grid
(WECC) (see Figure 2).

∑
=

=

N

i i

i

P
PPI

1

2

max

CUG 2009 Proceedings 4 of 8

Figure 1: Edge betweenness distr ibution for the 760-
bus system

Figure 2: Edge betweenness distr ibution for the
14090-bus WECC system

The preliminary cross-validation results are shown in

Figure 3, where the x-axis is the percentage of selected
cases from contingency ranking results based on PIs, and
the y-axis is the percentage of common cases between PI-
based selection and edge-betweenness-based selection.
From Figure 3, we can see that with 70% contingency
cases selected (x-axis), the hit rate using edge
betweenness can achieve 70% (y-axis). This high hit rate
demonstrates the validity of the proposed edge-
betweenness-based method.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

% of selection

%
 o

f c
om

m
on

 ca
se

s

w4w6

Figure 3: The cross-validation results for the 760-bus
system

4. XMT Performance analysis

4.1 Study Cases

To analyze the XMT’s computational performance

for the application of edge betweenness centrality to
power grid graphs, four power system models of different
sizes were studied. The number of vertices and edges for
the four graphs are shown in Table 1. The IEEE 118-bus
system is a standard test system, available from [15]. The
760-bus system is the one used for validation in Section 3.
The 46010-bus system was extended from the western US
power grid (WECC), by adding more detailed power
networks to represent some of the largest loads in the
WECC system and matching power flow at points of
connection.

Table 1: Study cases

Case name Number of vertices Number of edges
118-bus 118 179
760-bus 760 977
WECC 14090 17346

46010-bus 46010 57323

4.2 Resource Utilization

The Cray XMT machine used for this study has four

compute blades with four multithreaded Threadstorm
processors at 500 MHz. Each Threadstorm processor can
have up to 128 hardware threads for a total of 128GB of
global shared memory [16].

On the XMT, it is possible to accurately obtain the

processor utilization by measuring the number of clock
cycles in which instructions have been issued versus the
total number of clock cycles spent in the computation. The
processor utilization is a measure of the effectiveness of

CUG 2009 Proceedings 5 of 8

memory access latency hiding. We have measured the
memory usage and processor utilization for the 46010-bus
case. These results are presented in Table 2.

Number of
processors

Memory usage
(GB)

Utilization rate
(%)

1 85.8 43
2 87 42.5
4 88.2 39.5
8 92 37.1

16 97.6 34.5
Table 2: Memory usage and utilization rate versus the
number of processors for the 46010-bus system

As can be seen from Table 2, the processor utilization

is high in spite of the irregular nature of the graph analysis
algorithm being executed. The multithreaded capabilities
of the Threadstorm processor are quite effective in
covering the latencies of the irregular memory accesses
required to traverse the graph in order to compute the
betweenness centrality scores.

4.3 Scalability

 The four study cases listed in Table 1 were used to test
the scalability of the edge betweenness implementation on
the Cray XMT machine. The computer execution time is
plotted against the number of processors in Figure 4, and
the corresponding speed-up curve is shown in Figure 5.

Figure 4: Execution time versus the number of
processors for power graphs of var ious sizes on the
Cray XMT

Figure 5: The speed-up curve for power graphs of
var ious sizes on the Cray XMT

In Figure 4 and 5, it is clear that the scalability
improves for larger problem sizes. For large graphs, the
speed-up is close to linear scalability. This indicates that
the Cray XMT is very suitable for the proposed
betweenness centrality analysis method operating on large
power grid graphs.

5. Compar ison between the Cray XMT and a
shared-memory machine

To compare the performance between the Cray XMT
machine and an equivalent scalable shared-memory
machine, we used a Hewlett-Packard SuperDome
machine, located at PNNL. The SuperDome runs a
version of the betweenness centrality application written
using the OpenMP share-memory programming model.

The configuration of the SuperDome machine is as

follows:
• 64 dual-core 1.6GHZ Itanium processors (128

cores)
• 24 MB of cache per processor
• 256 GB RAM
• 12.6 TB of disk space.

 The same four cases in Table 1 were used to

compare the performance of the Cray XMT and the
SuperDome machine. In order to conduct a reasonably fair
comparison, the same amount of memory (128 GB) was
reserved for each run. Figure 6 and Figure 7 show the
plots of computer execution time and the speed-up
numbers, respectively.

CUG 2009 Proceedings 6 of 8

Figure 6 : Execution time versus the number of
processors for power graphs of var ious sizes on the
SuperDome

Figure 7: The speed-up curve for power graphs of
var ious sizes on the SuperDome

Comparison of Figure 5 and Figure 7 indicates that

the Cray XMT machine achieves superior scalability for
graph edge betweenness computation over the SuperDome
machine. Figure 5 also shows a very consistent
performance of the XMT machine as the graph size
increases, while the SuperDome machine exhibits
somewhat unpredictable performance, as shown in Figure
7. This inconsistency in the SuperDome performance can
be mainly attributed to the variability in the use of its local
caches. Figure 6 shows that for the 46010-bus system, the
execution time with eight processors is even longer than
that with four processors. We believe that the reason for
this is potential false sharing between the processors’
caches, which increases as the number of processors
grows. The cache in the SuperDome machine is local to
individual computer nodes. For the case with eight
processors, two compute nodes are used. Processors in
one node need to access data in the cache attached to
other node. Therefore, more overhead is introduced by
inter-node communication, which degrades the overall
computational performance. As a result, it takes longer to
execute the code on eight processors than on four
processors. When 16 processors (four compute nodes) are

used, the execution time improves again, but it is not
much better than on four processors, in spite of the work
per processor having been reduced by a factor of four.
Further analysis is required in order to better understand
and characterize the behavior of this application on a
cache-coherent platform (like SuperDome).

Table 3 shows the execution time and the ratio of

execution time (TXMT/TSuperDome) with 16 processors for
the four power grid graphs on the Cray XMT. For these
four cases, we can see that the execution time on the
SuperDome is less than that on the Cray XMT. One factor
contributing this result is the difference in the processor
clock speed. There is a factor of 3.2, comparing
SuperDome’s 1.6 GHz and XMT’s Threadstorm 500
MHz. The relative ratio of execution time considering the
factor of 3.2 is also shown in Table 3. The relative ratio is
equivalent to a comparison of the computational
efficiency if both SuperDome and XMT have the same
clock speed. According to the relative ratios, Table 3
shows that the XMT machine would have already
outperformed the SuperDome machine for the 14090-bus
WECC power system as the ratio 0.58 is well below 1.0.

But even without considering the clock speed

difference, the ratio of execution time (TXMT/TSuperDome) is
approaching 1.0 when the size of power grid graphs
increases. Another factor for SuperDome’s faster
execution is the cache effect. Especially for smaller
graphs, the SuperDome can take advantage of its large
caches, in which most or even all data of smaller graphs
can fit, and thus the average memory access time is
reduced dramatically. When the graph is so large that the
data can not fit into the caches and swapping between
caches and the main memory is necessary, the memory
access time increases since most of the data won’t be
available in the caches. The advantage of caches
diminishes, and thus the overall computational time
increases prominently. With the multithreaded mechanism
and excellent scalability, we expect that the current Cray
XMT configuration, though with slower processors,
would outperform the SuperDome in terms of execution
time when the graph size is larger than a threshold.

Table 3: Execution time for four study cases on the

SuperDome and the Cray XMT
Case name TSuperDome

(sec)
TXMT
(sec)

Ratio
(=TXMT/TSuperDome)

Relative ratio
(=Ratio/3.2)

118-bus 0.013 0.531 40.91 12.78
760-bus 0.336 1.681 5.00 1.56
WECC 196.79 364.64 1.85 0.58

46010-bus 2791.40 3969.30 1.42 0.44

To estimate the graph size threshold, a preliminary

extrapolation is performed on the data shown in Table 3.

CUG 2009 Proceedings 7 of 8

Figure 8 shows the result as well as the identified trending
function. Based on the trending function, we can estimate
that when the graph size is larger than that of 53,000
vertices, the Cray XMT would take less time to compute
edge betweenness on 16 processors than the SuperDome.
The testing is ongoing with a 60,000-bus power system
case to validate the estimated threshold and to further
demonstrate the computational performance of the XMT
machine.

Figure 8: The ratio of execution time on the Cray
XMT and the SuperDome versus the size of power
gr id graph

Conclusion and Future Work
A contingency selection method is developed by

applying edge betweenness centrality in graph theory
to power grid topology. This selection method can
identify low-impact components whose failure is of little
importance to power grid stability. Removing them from
analysis reduces the combinatorial number of contingency
cases. Cross-validation of the proposed method has been
conducted. This method has been implemented on the
Cray XMT machine, taking the advantage of the graph
processing capability of Cray XMT’s Threadstorm
nodes and its programming features. The test results show
the excellent scalability of Cray XMT and better
performance than a shared-memory machine for large
graphs.

In the future, we will take advantage of the Cray

XMT’s hybrid architecture of Threadstorm and Opteron
nodes. Not only are Threadstorm nodes used to perform
contingency selection, but Opteron nodes are used to
perform the floating point computation of actual
contingency analysis. Further work will focus on the
communication between Threadstorm nodes and Opteron
nodes.

Acknowledgments
This work is supported by the Center for Adaptive

Supercomputing Software – Multi-Threaded Architectures
(CASS-MT) funded by the Department of Defense and by
the Electricity Infrastructure Operations Initiative of the
Pacific Northwest National Laboratory. The Pacific
Northwest National Laboratory is operated by Battelle for
the U.S. Department of Energy under Contract DE-AC06-
76RL01830. Acknowledgment is extended to Jarek
Nieplocha, Pak C. Wong, and Ross Guttromson, all with
the Pacific Northwest National Laboratory, for productive
discussions and suggestions.

References

[1] G.C. Ejebe and B. F. Wollenberg, "Automatic
Contingency Selection," IEEE Trans. on Power
Apparatus and Systems, vol. PAS-98, No. 1, pp. 92-104,
Jan./Feb. 1979.
[2] T.A. Mikolinnas and B. F. Wollenberg, "An Advanced
Contingency Selection Algorithm," IEEE Trans. on
Power Apparatus and Systems, vol. PAS-100, No. 2, pp.
608-617, Feb. 1981.
[3] J. Zaborszky, F.W. Whang and Prasad, "Fast
Contingency Evaluation Using Concentric Relaxation,"
IEEE Trans. on Power Appa-atus and Systems, vol. PAS-
99, No. 1, pp. 28-36, Jan./Feb. 1980.
 [4] W. F. Tinney, V. Brandwajn and S. M. Chan, "Sparse
Vector Method," IEEE Trans. on Power Apparatus and
Svstems, vol. PAS-104, No. 2,pp. 295-301, Feb. 1985.
[5] S. M. Chan and V. Brandwajn, "Partial Matrix
Refactorization," IEEE Trans. on Power Systems, vol.
PWRS-l, No. 1, pp. 193-200, Feb. 1986.
[6] V. Brandwajn and M. G. Lauby, "Complete Bounding
for AC Contingency Analysis," IEEE Trans. On Power
Systems, vol. PWRS-4, No. 2, pp. 724-729, May 1990.
[7] A. P. Sakis Meliopoulos and C. Cheng, "A Hybrid
Contingency Selection method," in Proceedings of the
10th Power System Computation Conference, Graz,
Austria, Aug. 1990, pp. 605-612.
[8] Sun Wook Kang, A. P. Meliopoulos, "Contingency
Selection via Quadratized Power Flow Sensitivity
Analysis," in Proceedings of the IEEE 2002 Power
Engineering Society Summer Meeting, vol.3, pp.1494-
1499.
[9] Freeman, L. C., “A set of measures of centrality based
on betweenness”, Sociometry, 1977, 40:35-41.
[10] Anthonisse, J. M. “The rush in a directed graph”,
Technical Report BN 9/71, Stichting Mathematisch
Centrum, Amsterdam, 1971.
[11] “Clustering Using Betweenness Centrality”,
http://iv.slis.indiana.edu/sw/bc.html
[12] Ulrik Brandes, “A Faster Algorithm for
Betweenness Centrality”, Journal of Mathematical
Sociology, Vol. 25, 2001, pp. 163-177.
[13] E. W. Dijkstra, “A note on Two Problems

http://iv.slis.indiana.edu/sw/bc.html�
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra�

CUG 2009 Proceedings 8 of 8

Inconnexion with Graphs”, Numerische Mathematik, 1
(1959), S. 269–271.
[14] http://www.ge-energy.com/prod_serv/products/
 utility_software/en/ ge_pslf/index.htm
[15] http://www.ee.washington.edu/research/pstca/pf118/
 pg_tca118bus.htm
[16] John Feo, D. Harper, S. Kahan, and P. Konecny,

“ELAORADO”, CF’05, May 4-6, 2005, Ischia, Italy,
2005 ACM

About the Authors
Yousu Chen is a Research Engineer at the Pacific
Northwest National Laboratory in Richland Washington.
He is an IEEE member and the Chair of the Richland
Chapter of the Power & Energy Society. He can be
reached at 902 Battelle Blvd. MSIN K1-85, Richland
WA, 99352, E-Mail: yousu.chen@pnl.gov.

Shuangshuang Jin is a Research Engineer at the Pacific
Northwest National Laboratory in Richland Washington
Her main areas of interest are high performance
computation and visualization. Dr. Jin can be reached at
902 Battelle Blvd. MSIN K1-85, Richland WA, 99352, E-
Mail: shuangshuan.jin@pnl.gov.

Daniel Chavarría-Miranda is a Senior Research Scientist
at the Pacific Northwest National Laboratory in Richland
Washington. He can be reached at 902 Battelle Blvd.
MSIN K7-90, Richland WA, 99352, E-Mail:
daniel.chavarria@pnl.gov.

Zhenyu (Henry) Huang is currently a Senior Research
Engineer at the Pacific Northwest National Laboratory,
Richland, WA. His research interests include power
system stability and control, high-performance computing
applications, and power system signal processing. Dr.
Huang can be reached at zhenyu.huang@pnl.gov .

http://www.ge-energy.com/prod_serv/products/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20utility_software/en/%20ge_pslf/index.htm�
http://www.ge-energy.com/prod_serv/products/%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20utility_software/en/%20ge_pslf/index.htm�
http://www.ee.washington.edu/research/pstca/pf118/�
mailto:yousu.chen@pnl.gov�
mailto:shuangshuan.jin@pnl.gov�
mailto:daniel.chavarria@pnl.gov�
mailto:zhenyu.huang@pnl.gov�

	Application of Cray XMT for Power Grid Contingency Selection
	1. Introduction
	2. Betweenness Centrality implementation
	2.1 Edge Betweenness Centrality Definition
	2.2 Modified Brandes’ algorithm
	2.3 Parallel Implementation on the Cray XMT

	3. Case Study
	4. XMT Performance analysis
	4.1 Study Cases
	4.2 Resource Utilization
	4.3 Scalability

	5. Comparison between the Cray XMT and a shared-memory machine
	Conclusion and Future Work
	Acknowledgments
	About the Authors

