
A Novel Application of Parallel Betweenness Centrality

to Power Grid Contingency Analysis

Shuangshuang Jin, Zhenyu Huang, Yousu Chen, Daniel Chavarría-Miranda, John Feo, Pak Chung Wong
Pacific Northwest National Laboratory,

Richland WA 99354, USA
e-mail: {shuangshuang.jin, zhenyu.huang, yousu.chen, daniel.chavarria, john.feo, pak.wong}@pnl.gov

Abstract—In Energy Management Systems, contingency
analysis is commonly performed for identifying and mitigating
potentially harmful power grid component failures. The
exponentially increasing combinatorial number of failure
modes imposes a significant computational burden for massive
contingency analysis. It is critical to select a limited set of high-
impact contingency cases within the constraint of computing
power and time requirements to make it possible for real-time
power system vulnerability assessment. In this paper, we
present a novel application of parallel betweenness centrality
to power grid contingency selection. We cross-validate the
proposed method using the model and data of the western US
power grid, and implement it on a Cray XMT system – a
massively multithreaded architecture – leveraging its
advantages for parallel execution of irregular algorithms, such
as graph analysis. We achieve a speedup of 55 times (on 64
processors) compared against the single-processor version of
the same code running on the Cray XMT. We also compare an
OpenMP-based version of the same code running on an HP
Superdome shared-memory machine. The performance of the
Cray XMT code shows better scalability and resource
utilization, and shorter execution time for large-scale power
grids. This proposed approach has been evaluated in PNNL’s
Electricity Infrastructure Operations Center (EIOC). It is
expected to provide a quick and efficient solution to massive
contingency selection problems to help power grid operators to
identify and mitigate potential widespread cascading power
grid failures in real time.

Keywords-powergrid; contingency selection; betweenness
centrality; Cray XMT; parallel computing

I. INTRODUCTION

Contingency analysis is a security function to assess the
ability of a power grid to sustain various combinations of
power grid component failures at energy control centers.
The N-1 criterion issued by the North American Electric
Reliability Corporation (NERC) is widely used to express
the ability of the transmission system to lose a physical
component such as a power line or a power generator
without causing an overload failure elsewhere. As electricity
demand continues to grow and renewable energy increases
its penetration in the power grid, multiple contingencies
occurring simultaneously across the power transmission
network are increasingly likely. The need for N-x (x≥2)

contingency analysis to assess whether the system can
withstand the failure of any two or more components
becomes necessary.
 For large power systems comprising thousands of lines
and generators, the contingency analysis process usually
imposes a substantial computational burden for real-time
operations. For example, in the western US power grid,
which includes 17,000 branches, the number of cases could
easily reach 1021 for N-5 contingency analysis even if only
line outages are considered. It is impractical to examine a
combinatorial number of contingency cases, such as these
ones. Most of the contingencies have a low probability of
occurring and/or have no detrimental consequences on the
system stability. Removing them from the rigorous analysis
list can dramatically decrease the computational
requirement. Contingency selection is thus performed to
identify only a limited set of critical contingency cases for
further vulnerability assessment and mitigation responses.
 Several methods for contingency selection have been
proposed since 1979 [1], each varying in methodology and
computational complexity [2]. Most of them are based on
approximate power flow solutions, and still involve some
simplified analysis of all combinatorial contingencies. This
makes it computationally impractical for N-x analysis
within the constraint of existing computer resources.
 In this paper, we propose a new contingency selection
method, which is based on applying edge betweenness
centrality [3] to power grid topology. By treating the power
grid as a weighted undirected graph, we identify high-
impact components in the power grid by finding the most
“traversed” edges: those with high betweenness centrality
indices in the graph. The failures of these selected high-
impact components are analyzed to prepare grid operators
with mitigation procedures so as to avoid cascading failures.
The low-impact components, which are identified as the
least “traversed” edges in the graph, are removed from
further contingency analysis since their failures are of little
importance to the overall power grid stability.
 This method has been implemented on the Cray XMT
machine, leveraging its advantages for parallel execution of
irregular codes, such as betweenness centrality analysis. The
performance and scalability of the parallel implementation

is successfully demonstrated and compared with a cache-
based, scalable, shared-memory HP Superdome machine.
 The paper is organized as follows: Section II presents
background materials on the details of the edge betweenness
centrality algorithm and the Cray XMT system. Section III
presents our algorithmic design and implementation on the
Cray XMT. Section IV presents the tests and validation of
our contingency selection method with actual impact of
power grid component failures. Section V and VI show our
experimental results on the Cray XMT and the comparison
with the HP Superdome, respectively. Section VII concludes
the paper with a brief illustration of the future work.

II. BACKGROUND

 We present a short description of the edge betweenness
centrality algorithm, as well as the Cray XMT system and
its architecture characteristics.

A. Edge Betweenness Centrality

 The vertex betweenness centrality of a given vertex in a
graph was first defined by Freeman [4] as the fraction of
shortest paths, counted over all pairs of vertices that pass
through that vertex.
 This definition was generalized by Newman and Girvan
[3] to edge betweenness centrality, where the betweenness

)(eCeB of an edge e is defined as the sum over all pairs of

vertices ts, V , of the fraction of shortest paths between
s and t that pass through e (eq. 1). st is the number of

shortest paths from vertex s to t , and)(est is the number

of shortest paths from vertex s to t that pass through edge
e .

 
st

st
eB

e
eC


)(

)((eq. 1)

 Vertices and edges that occur on many shortest paths
between any given vertex pair have higher betweenness
centrality than those that do not; they have relatively higher
importance within the graph. When applied to a real-world
network, the vertex and edge betweenness centrality is
considered a standard measure of the influence of a node or
a linkage over the flow of information between different
nodes or links in that network [5].
 Edge betweenness centrality has been utilized in
numerous studies and implemented in various software tools
for network analysis such as biological or social networks
[6, 7, 8]. By applying the edge betweenness centrality to the
power grid topology, we are able to identify the high-impact
transmission lines. An arbitrary number of edges within the
top betweenness centrality list can be selected for further N-
1 or N-x contingency analysis. To the best of our knowledge
this is the first application of edge betweenness centrality to
the power grid contingency selection problem.

B. Cray XMT

 The Cray XMT supercomputing system [9] is a scalable
massively multithreaded platform with global shared

memory, which is conducive to large-scale data analysis and
data mining.
 It incorporates custom Cray multithreaded processors. A
single ThreadStorm processor supports 128 hardware thread
contexts and is connected with up to 8 GB of memory that is
globally accessible by any other processor in the system.
The Cray XMT platform can scale to hundreds of thousands
of threads. The XMT is a hybrid system, which uses
ThreadStorm processors on its main compute partition and
AMD Opteron processors for its Service & I/O (SIO) nodes.
Software layers enable the use of the x86 SIO nodes for
developing hybrid applications.

This massively multithreaded architecture and large
global shared memory feature are ideally suitable for
parallel applications that require dynamic and random large-
scale data access, such as pattern matching, scenario
development, behavioral prediction, anomaly identification
and graph analysis, which typically do not run well on
conventional cluster or supercomputer systems due to lack
of locality on many of these algorithms.
 The Cray XMT is a suitable platform for our parallel
processing of large-scale power grid data. We can use
ThreadStorm nodes to perform contingency selection, and
use Opteron nodes to perform the floating point
computation of the actual contingency analysis.
 The Cray XMT programming environment includes
advanced programming tools for software development and
tuning. Its C/C++ optimizing compiler has an aggressive
automatic parallelization capability; programmers can also
guide the compiler to parallelize specified loop sections of
the code with XMT-specific pragmas.

III. ALGORITHMIC DESIGN AND IMPLEMENTATION

 Our algorithmic design is based on a sparse data
structure. Extended Dijkstra’s algorithm [10] and Brandes’s
Algorithm [11] are implemented for edge betweenness
centrality computation. Hyperlinks in the power grid
topology graph are considered in the computation to make
the system more representative and comprehensive for
contingency selection.

A. Modifed Brandes’s Algorithm

 The betweenness centrality index is essential in the
analysis of weighted networks but is costly to compute. For
large and sparse networks, Ulrik Brandes’s algorithm [11] is
considered to be the fastest algorithm on serial computers
[12]. It computes the betweenness centrality in

)log(2 nnnmO  time, where n and m are the number of
vertices and edges in the graph, respectively.

 We have adapted Brandes’s algorithm to calculate the
edge betweenness centrality of the transmission lines
(edges) in the weighted power grid graphs, and used an
extended Dijkstra’s shortest path algorithm [10] to allow it

to store multiple shortest paths between two buses
(vertices).
 The modified Brandes’s algorithm is called n times
according to the number of vertices in the graph. In each of
the iterations, all the shortest paths between the iterating
vertex and all other vertices in the graph are identified, and
the edge betweenness centrality value of an edge is
incremented whenever an identified shortest path passes
through it in this iteration. This strategy is shown in
Algorithm 1.

Algorithm 1 Basic steps of the modified Brandes’s algorithm for edge
betweenness computation

1) Initialize stack, heap and records
2) Put iterating vertex S onto heap
3) While heap not empty:

a. Remove root v from heap and push it onto stack
b. For each neighbor w of v , if there exists one or more

shortest path(s) from S to w via v :
i. Set w ’s distance and number of shortest

paths
ii. Insert or adjust record in heap

iii. Set/add v as the pre node of w
c. While stack not empty:

i. Pop node w off stack
ii. Increment w ’s vertex betweenness score

iii. For each pre node v of w increment v ’s
factor, and edge v  w ’s edge
betweenness score

d. Free the pre node list of w
4) Free records and heap

B. Data Structure

 We store the graph as two arrays of structured objects:
nodes and edges. A node stores the labels of its neighbors
and edges as arrays. The arrays are allocated after the
number of neighbors is known, thus no space is wasted. An
edge includes a duplicate field used to construct hyperlinks
as described in the next section.
 The workspace for the modified Brandes’s algorithm is
an array of records, one for each node. In addition to several
real values, a record stores the location of the node in the
stack, location of the node in the heap, and the identification
number of each predecessor node. Space for one
predecessor node is allocated on definition. Space for
additional predecessor nodes is allocated and deallocated
dynamically. Since a node rarely has more than one
predecessor node, dynamically adjusting the size of the
predecessor list adds little overhead. The heap is kept as a
binary min heap and stored as an array such that the parent
of node i is node 2/(i)1 and its children are nodes i2(

)1 and i2()2 .

C. Hyperlinks

 Our application incorporates hyperlinks in the power grid
topology graph for the edge betweenness centrality
computation.

 In power grid systems, the higher the power flowing on a
transmission branch, the more important it is for
contingency analysis. We use the reciprocal of power flow
as the weight of the edge in the power grid topology graph
to make the computation consistent with this physical
concept. Edges with shorter distances, as determined by the
smaller reciprocal power flow value, have a greater chance
to lie on multiple shortest paths, and thus have higher
betweenness centrality values for contingency selection.
 There may be multiple transmission lines between two
buses to transmit power in the transmission network. To
evaluate the importance of each individual line between two
buses, we first compute the betweenness centrality of the
hyperlink, which represents the transmission property
between the two buses, with a single weight comprising the
weights of all edges based on the parallel connection
principle as shown in eq. 2,





n

i
i

hyper
W

W

1

)
1

/(1 (eq. 2)

where n is the number of multiple edges, iW is the

reciprocal of power flow on edge i , and hyperW is the

weight for the hyperlink. After computing the edge
betweenness score of each hyperlink, we divide the score
among component edges according to their weight
contribution to the hyperlink.
 We construct hyperlinks and compute their weights in
three steps. First, we sort the edges using a two key radix
sort {head, tail}, and set the duplicate field of each edge to -
1. Second, for each edge 1ie that has the same head and

tail node as ie , we set the duplicate field of 1ie to i

creating a linked list of edges for each hyperlink. Third, the
first edge of each hyperlink (those edges whose duplicate
field is -1) computes the weight of the hyperlink storing the
value in its weight field. Note, the original weight of the
first edge is overwritten, but it is easily recomputed from the
total weight and weight of the other component edges.

After constructing the hyperlinks, we construct the
neighbor list of each node storing the index of the first edge
of a hyperlink as the label of the edge between two
neighbors. It is worth mentioning that if power transmission
corridors instead of parallel lines should be considered in
contingency analysis, the hyperlinks can be collapsed to a
single link using equivalence of parallel lines.

D. Parallel Implementation on Cray XMT

 The Cray XMT system has many advantages for parallel
graph-processing applications. Our codes are written in a
way that facilitates the automatic parallelization by the
XMT compiler. We also use XMT-specific pragmas to
guide the compiler when automatic parallelization is not
possible [13].
 When iterating through all the vertices to compute the
edge betweenness centralities as shown in Algorithm 1, each
of the iterations is independent from each other since they

analyze independently-sourced shortest paths in the graph.
We add the semantic assertion “#pragma mta assert
parallel” before this outer loop construct to assert that the
separate iterations of this loop may execute concurrently
without synchronization. We also add the compilation
directive “#pragma mta use 100 streams” to ensure that a
sufficient number of resources are used to maximize
utilization.
 The steps to compute hyperlinks comprise a series of
parallel loops. The compiler automatically parallelizes
several of the loops. For those that it does not parallelize, we
insert the directive “#pragma mta assert no dependence” to
force parallization. In several places in the code, we use the
atomic increment function int_fetch_add(&v,i) to atomically
add i to the value at address v , and return the original
value.

To atomically update floating point values, we insert the
directive “#pragma mta update” before the corresponding
source code statements; for example

 ;].[].[datanoderecordsvbnodeNodes 
and
 ;].[factorvbedgeEdges 

IV. VALIDATION

 We have validated our edge betweenness based
contingency selection method considering a practical power
grid perspective.
 We use General Electric’s Positive Sequence Load Flow
Software (PSLF) – a widely used commercial grade power
system analysis tool – to perform power grid contingency
analysis. For each contingency case, a performance index
(PI) [1] is calculated and all indices are ranked based on eq.
3,

 


















1

1

2

max

n

j
j

j
i P

P
PI (eq. 3)

where n is the number of transmission branches (edges), jP

is the power flow in each transmission branch (edge), and
maxjP is the power capacity for each transmission branch

(edge).
 A power system model containing 760 buses (vertices)
and 977 branches (edges) extracted from an area of the
western US power grid (WECC) is used to test and validate
the proposed contingency selection method with actual
impact. To be consistent with the PI definition, the obtained
edge betweenness is reweighted by the power capacity

maxjP of the edge.

 The distribution of edge betweenness scores for the 760-
bus power system is shown in Figure 1. We can see that
there is a small portion of edges that have high edge
betweenness scores, which means that this small portion of
edges is important to this power grid graph. The same idea
holds true in the real power system: there is a small set of

transmission lines that are more critical compared with other
lines.

 A representative cross-validation result is shown in
Figure 2, where the x-axis is the percentage of cases
selected from contingency ranking results based on PIs, and
the y-axis is the percentage of common cases between PI-
based selection and edge-betweenness-based selection.
From Figure 2, we can see that with 70% contingency cases
selected (x-axis), the hit rate using edge betweenness can
achieve 70% (y-axis). This high hit rate demonstrates the
validity of the proposed edge-betweenness-based method. It
can provide a practical list of critical lines in the power grid
system for contingency analysis. Validation cases with
power systems of various sizes exhibit similar performance.

Figure 1. Edge betweenness distribution for the 760-bus system.

Figure 2. The cross-validation results for the 760-bus system.

V. PERFORMANCE ANALYSIS

 We have implemented the edge betweenness centrality
parallel algorithm as described in Section III on the Cray
XMT multithreaded system. The configuration of the
system is:

 64 500MHz 64-bit Cray ThreadStorm Processors
 128 Threads per processor
 512 GB of global shared memory

We also leverage power grid resources available in our
Electricity Infrastructure Operations Center (EIOC) and
perform the analysis using real-world models and data.

A. Study Cases

 To assess the computational performance of the edge
betweenness centrality application for power grid
contingency selection, we select four power system models
of different sizes as task graphs as shown in Table I.

TABLE I. Study Cases

Name # of Vertices # of Edges

14,000-bus 14,090 17,346
46,000-bus 46,010 57,323

90,000-bus 92,370 116,980
170,000-bus 172,930 220,648

 The 14,000-bus represents the western US power grid
(WECC). The 46,000-bus system, 90,000-bus system, and
170,000-bus system are extensions of WECC by adding
more detailed power networks at sub-transmission and
distribution levels, which represent potential capabilities to
analyze power systems in more detail. With more and more
renewable generation and other distributed generation
penetrating distribution systems, the need to expand the
modeling coverage is a compelling need.

B. Resource Utilization

 The processor utilization of Cray XMT is a measure of
the effectiveness of memory access latency hiding. It is
obtained by measuring the number of clock cycles in which
instructions have been issued versus the total number of
clock cycles spent in the computation.
 We have measured the memory usage and processor
utilization for all study cases. In all of these cases, we
observe a relatively stable high processor utilization rate
(~30%), which indicates the effectiveness of the
multithreaded capabilities of the ThreadStorm processor in
covering the latencies of the irregular memory accesses
required to traverse the graph for betweenness centrality
computation. Another observation is the proportionally
increased memory usage with the increased graph size and
number of processors used. In Table II, we present the
memory usage and utilization rate for 14,000-bus study case
when running with different number of processors on the
Cray XMT. It is important to note that the memory usage is
proportional to the number of active threads in the system,
since each thread keeps a private stack, heap and state
variables as described in Algorithm 1. Thus using more
processors increases more memory needed for these
variables.

TABLE II. Memory Usage and Utilization Rate versus the Number of
Processors of the 14,000-bus System

of Processors Memory Usage (GB) Utilization Rate (%)

1 0.455 30

2 0.723 30.4

4 1.3 30.5

8 2.2 30.3

16 4.9 29.4

32 8.5 26.7

64 15.9 26.1

C. Scalability

 To measure the scalability of the edge betweenness
implementation on the Cray XMT machine, we record the
computer execution times for the four study cases against
different number of processors. Figure 3 shows the
execution time on different numbers of processors. Figure 4
shows the corresponding speed-up curve for each case. Both
figures use a logarithmic y-axis to improve the readability of
the graph.
 Figure 4 indicates that the scalability of the code is close
to linear for all problem sizes, with a trend of better
scalability for larger problems. These results indicate that
the Cray XMT is very suitable for the proposed betweenness
centrality analysis method operating on large power grid
graphs.

Figure 3. Execution time versus the number of processors for power

graphs of various sizes on the Cray XMT.

Figure 4. The speed-up curve for power graphs of various sizes on the

Cray XMT.

VI. COMPARISON BETWEEN CRAY XMT AND

SUPERDOME

We have also built an OpenMP-based version of our
application that utilizes the same algorithm as the Cray
XMT version, as a way of comparing a scalable shared-
memory machine (HP Superdome) against the XMT.

The configuration of the Hewlett-Packard Superdome
system is:
 64 1.6 GHZ dual-core 64-bit Itanium 2 processors
 24MB of L3 cache per processor
 256 GB of global shared RAM
The same four cases are used to test the performance of

the Superdome machine. Figure 5 and Figure 6 show the
execution times and the speedup numbers, respectively.

Figure 5. Execution time versus the number of processors for power

graphs of various sizes on the Superdome.

Figure 6. The speed-up curve for power graphs of various sizes on the

Superdome.

 Table III lists the execution times for the four study cases
on the Cray XMT and the Superdome when different
numbers of processors are used. Figure 7 compares their
relative execution time in plots. The data presented in
Figure 7 has been normalized to the execution time on one
processor on the Superdome.
 Table IV lists the speedup numbers for each case. The
speedup numbers for both Cray XMT and HP Superdome
are calculated by normalizing the execution time using their
respective single processor time. Figure 8 compares their
speedups in plots. Again, logarithmic y-axis is used in both
of the figures to improve the readability of the graphs.

TABLE III. EXECUTION TIME (SEC) VERSUS THE NUMBER OF

PROCESSORS FOR FOUR STUDIES ON THE CRAY XMT (C) AND THE

SUPERDOME (S)

Study
cases

C/S
1p

(sec)
2p

(sec)
4p

(sec)
8p

(sec)
16p
(sec)

32p
(sec)

64p
(sec)

C 515.23 254.88 127.53 65.35 34.2 19.38 12.45 14,000
-bus

S 95.16 112.64 79.83 53.27 33.91 19.96 12.02

C 5884.2 2903.9 1442.6 732.46 378.05 202.13 112.85 46,000
-bus

S 1179.7 1054.3 831.22 463.61 303.83 195.79 116.85

C 26934 13179 6510 3298.9 1703.8 896.08 486.42 90,000
-bus

S 8976.5 7747.1 4893.6 2688.5 1776.2 970.06 542.78

C 96680 47822 23811 12020 6205.1 3267.5 1745.1 170,00
0-bus

S 44088 32149 24505 9464.5 6738.1 3836.3 2166.9

Figure 7. Comparison of Cray XMT and Superdome relative execution

time for four different problem sizes.

TABLE IV. SPEEDUP NUMBERS VERSUS THE NUMBER OF PROCESSORS
FOR FOUR STUDIES ON THE CRAY XMT (C) AND THE SUPERDOME (S)

Study
cases

C/S 1p 2p 4p 8p 16p 32p 64p

C 1 2.021 4.04 7.884 15.065 26.654 41.384 14,000
-bus

S 1 0.845 1.192 1.786 2.806 4.768 7.917

C 1 2.026 4.079 8.034 15.565 29.111 52.142 46,000
-bus

S 1 1.119 1.419 2.545 3.883 6.025 10.096

C 1 2.044 4.137 8.165 15.808 30.058 55.372 90,000
-bus

S 1 1.159 1.834 3.339 5.054 9.254 16.538

C 1 2.022 4.06 8.045 15.581 29.588 55.401 170,00
0-bus

S 1 1.371 1.799 4.658 6.543 11.492 20.346

Figure 8. Comparison of Cray XMT and Superdome Speedup for 4

different problem sizes.

 Comparison of Figure 7 and Figure 8 indicates that the
Cray XMT machine achieves superior scalability for graph
edge betweenness computation over the Superdome
machine.
 The hardware and software features of the Cray XMT are
a better fit than the Superdome platform for graph

computation. Its global shared memory, very fine-grained
threading, and efficient light-weight word-level
synchronization makes it well-suited for parallel graph
processing. We can achieve up to 55x speedup against the
one-processor version of the code using 64 processors on
the Cray XMT for the 170,000-bus system.
 For smaller graphs, the Superdome can take advantage of
its large caches to store the data and thus dramatically
reduce the average memory access time. But when the graph
is larger and data fetching between different computational
nodes is frequent, the advantage of the caches diminishes,
and the overall computational performance degrades due to
inter-node communication. As shown in the graphs, when
64 processors are used on the Superdome, only 20x speedup
is achieved for the 170,000-bus system.

VII. CONCLUSIONS

 Contingency selection is a key step for real-time power
system contingency analysis. In this paper, we present a
novel application of edge betweenness centrality to conduct
the contingency selection for power grid topology graphs.
The parallel implementation of this method on the Cray
XMT machine exhibits good performance in absolute
execution time, as well as good scalability with increased
problem sizes. It demonstrates that the Cray XMT is well-
suited machine for our graph processing in contingency
selection.
 In the future, we will take advantage of the Cray XMT’s
hybrid capabilities with ThreadStorm and Opteron nodes.
Further work will focus on the communication between
ThreadStorm nodes, which performs the graph-based
contingency selection, and Opteron nodes, which will be
used for floating-point computation of actual contingency
analysis. We will further evaluate this method and port the
developed software in the Electricity Infrastructure Center at
the Pacific Northwest National Laboratory. It is expected to
provide a more efficient solution to the N-1 to N-x
contingency problems to help the operators to identify and
mitigate potential widespread cascading power grid failures
in real-time power system operations.

 ACKNOWLEDGEMENTS

 This work is supported by the Center for Adaptive
Supercomputing Software – Multi-Threaded Architectures
(CASS-MT) funded by the Department of Defense and by
the Electricity Infrastructure Operations Initiative of the
Pacific Northwest National Laboratory. The Pacific
Northwest National Laboratory is operated by Battelle for
the U.S. Department of Energy under Contract DE-AC06-
76RL01830. Acknowledgement is extended to David
Haglin, and Douglas Baxter, both with the Pacific
Northwest National Laboratory, for productive discussions
and suggestions.

REFERENCES
[1] G. C. Ejebe, and B. F. Wollenberg, “Automatic contingency

selection,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-
98, No. 1, pp. 92-104, Jan./Feb. 1979.

[2] A. O. Ekwue, “A review of automatic contingency selection
algorithms for on-line security analysis,” IEEE Conf. Publ, v336, pp.
152-155, 1991.

[3] M. Girvan, and M. E. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. Sci. USA, 99, 7821-7826,
2002.

[4] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, 40, 35-41, 1977.

[5] W. P. John, and R. W. David, “Betweenness-based decomposition
methods for social and biological networks,” Interdisciplinary
Staticsa and Bioinformatics Leeds University Press, pp. 87-90, 2007.

[6] S. Y. Chan, I. X. Y. Leung, and P. LiÒ, “Fast centrality
approxmiation in modular networks,” Conference on Information and
Knowledge Management, Proceeding of the 1st ACM international
workshop on Complex networks meet information & knowledge
management, pp. 31-38, 2009.

[7] D. A. Bader, and K. Madduri, “Parallel Algorithms for Evaluating
Centrality Indices in Real-world Networks,” Proc. 35th International
Conference on Parallel Processing (ICPP), Columbus, OH, August
2006.

[8] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. G. Chavarría-
Miranda, “A Faster Parallel Algorithm and Efficient Multithreaded
Implementations for Evaluating Betweenness Centrality on Massive
Datasets, ” Third Workshop on Multithreaded Architectures and
Applications (MTAAP), Rome, Italy, May 29, 2009.

[9] Cray XMT Supercomputer Brochure,
http://www.cray.com/products/XMT.aspx.

[10] E. W. Dijkstra, “A note on two problems inconnexion with graphs,”
Numerische Mathematik, 1, S. 269-271, 1959.

[11] U. Brandes, “A faster algorithm for betweenness centrality,” Journal
of Mathematical Sociology, Vol. 25, pp. 163-199, 2001.

[12] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
betweenness centrality,” The 5th Workshop on Algorithms and
Models for the Web-Graph (WAW2007), San Diego, CA, December
11-12, 2007.

[13] Cray XMTTM Programming Environment User's Guide.

