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Abstract—In Energy Management Systems, contingency 
analysis is commonly performed for identifying and mitigating 
potentially harmful power grid component failures. The 
exponentially increasing combinatorial number of failure 
modes imposes a significant computational burden for massive 
contingency analysis. It is critical to select a limited set of high-
impact contingency cases within the constraint of computing 
power and time requirements to make it possible for real-time 
power system vulnerability assessment. In this paper, we 
present a novel application of parallel betweenness centrality 
to power grid contingency selection. We cross-validate the 
proposed method using the model and data of the western US 
power grid, and implement it on a Cray XMT system – a 
massively multithreaded architecture – leveraging its 
advantages for parallel execution of irregular algorithms, such 
as graph analysis. We achieve a speedup of 55 times (on 64 
processors) compared against the single-processor version of 
the same code running on the Cray XMT. We also compare an 
OpenMP-based version of the same code running on an HP 
Superdome shared-memory machine. The performance of the 
Cray XMT code shows better scalability and resource 
utilization, and shorter execution time for large-scale power 
grids. This proposed approach has been evaluated in PNNL’s 
Electricity Infrastructure Operations Center (EIOC). It is 
expected to provide a quick and efficient solution to massive 
contingency selection problems to help power grid operators to 
identify and mitigate potential widespread cascading power 
grid failures in real time. 
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I.  INTRODUCTION  

Contingency analysis is a security function to assess the 
ability of a power grid to sustain various combinations of 
power grid component failures at energy control centers. 
The N-1 criterion issued by the North American Electric 
Reliability Corporation (NERC) is widely used to express 
the ability of the transmission system to lose a physical 
component such as a power line or a power generator 
without causing an overload failure elsewhere. As electricity 
demand continues to grow and renewable energy increases 
its penetration in the power grid, multiple contingencies 
occurring simultaneously across the power transmission 
network are increasingly likely. The need for N-x (x≥2) 

contingency analysis to assess whether the system can 
withstand the failure of any two or more components 
becomes necessary. 
     For large power systems comprising thousands of lines 
and generators, the contingency analysis process usually 
imposes a substantial computational burden for real-time 
operations. For example, in the western US power grid, 
which includes 17,000 branches, the number of cases could 
easily reach 1021 for N-5 contingency analysis even if only 
line outages are considered. It is impractical to examine a 
combinatorial number of contingency cases, such as these 
ones. Most of the contingencies have a low probability of 
occurring and/or have no detrimental consequences on the 
system stability. Removing them from the rigorous analysis 
list can dramatically decrease the computational 
requirement. Contingency selection is thus performed to 
identify only a limited set of critical contingency cases for 
further vulnerability assessment and mitigation responses.  
     Several methods for contingency selection have been 
proposed since 1979 [1], each varying in methodology and 
computational complexity [2]. Most of them are based on 
approximate power flow solutions, and still involve some 
simplified analysis of all combinatorial contingencies. This 
makes it computationally impractical for N-x analysis 
within the constraint of existing computer resources. 
     In this paper, we propose a new contingency selection 
method, which is based on applying edge betweenness 
centrality [3] to power grid topology. By treating the power 
grid as a weighted undirected graph, we identify high-
impact components in the power grid by finding the most 
“traversed” edges: those with high betweenness centrality 
indices in the graph. The failures of these selected high-
impact components are analyzed to prepare grid operators 
with mitigation procedures so as to avoid cascading failures. 
The low-impact components, which are identified as the 
least “traversed” edges in the graph, are removed from 
further contingency analysis since their failures are of little 
importance to the overall power grid stability.  
     This method has been implemented on the Cray XMT 
machine, leveraging its advantages for parallel execution of 
irregular codes, such as betweenness centrality analysis. The 
performance and scalability of the parallel implementation 



is successfully demonstrated and compared with a cache-
based, scalable, shared-memory HP Superdome machine.  
     The paper is organized as follows: Section II presents 
background materials on the details of the edge betweenness 
centrality algorithm and the Cray XMT system. Section III 
presents our algorithmic design and implementation on the 
Cray XMT. Section IV presents the tests and validation of 
our contingency selection method with actual impact of 
power grid component failures. Section V and VI show our 
experimental results on the Cray XMT and the comparison 
with the HP Superdome, respectively. Section VII concludes 
the paper with a brief illustration of the future work. 

II. BACKGROUND 

     We present a short description of the edge betweenness 
centrality algorithm, as well as the Cray XMT system and 
its architecture characteristics. 

A. Edge Betweenness Centrality 

     The vertex betweenness centrality of a given vertex in a 
graph was first defined by Freeman [4] as the fraction of 
shortest paths, counted over all pairs of vertices that pass 
through that vertex.  
     This definition was generalized by Newman and Girvan 
[3] to edge betweenness centrality, where the betweenness  

)(eCeB  of an edge e  is defined as the sum over all pairs of 

vertices ts, V , of the fraction of shortest paths between 
s and t that pass through e  (eq. 1). st is the number of 

shortest paths from vertex s  to t , and )(est  is the number 

of shortest paths from vertex s  to t  that pass through edge 
e .  
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     Vertices and edges that occur on many shortest paths 
between any given vertex pair have higher betweenness 
centrality than those that do not; they have relatively higher 
importance within the graph. When applied to a real-world 
network, the vertex and edge betweenness centrality is 
considered a standard measure of the influence of a node or 
a linkage over the flow of information between different 
nodes or links in that network [5].  
     Edge betweenness centrality has been utilized in 
numerous studies and implemented in various software tools 
for network analysis such as biological or social networks 
[6, 7, 8]. By applying the edge betweenness centrality to the 
power grid topology, we are able to identify the high-impact 
transmission lines. An arbitrary number of edges within the 
top betweenness centrality list can be selected for further N-
1 or N-x contingency analysis. To the best of our knowledge 
this is the first application of edge betweenness centrality to 
the power grid contingency selection problem.  

B. Cray XMT 

     The Cray XMT supercomputing system [9] is a scalable 
massively multithreaded platform with global shared 

memory, which is conducive to large-scale data analysis and 
data mining.  
     It incorporates custom Cray multithreaded processors. A 
single ThreadStorm processor supports 128 hardware thread 
contexts and is connected with up to 8 GB of memory that is 
globally accessible by any other processor in the system. 
The Cray XMT platform can scale to hundreds of thousands 
of threads. The XMT is a hybrid system, which uses 
ThreadStorm processors on its main compute partition and 
AMD Opteron processors for its Service & I/O (SIO) nodes. 
Software layers enable the use of the x86 SIO nodes for 
developing hybrid applications.  

This massively multithreaded architecture and large 
global shared memory feature are ideally suitable for 
parallel applications that require dynamic and random large-
scale data access, such as pattern matching, scenario 
development, behavioral prediction, anomaly identification 
and graph analysis, which typically do not run well on 
conventional cluster or supercomputer systems due to lack 
of locality on many of these algorithms. 
     The Cray XMT is a suitable platform for our parallel 
processing of large-scale power grid data. We can use 
ThreadStorm nodes to perform contingency selection, and 
use Opteron nodes to perform the floating point 
computation of the actual contingency analysis.  
     The Cray XMT programming environment includes 
advanced programming tools for software development and 
tuning. Its C/C++ optimizing compiler has an aggressive 
automatic parallelization capability; programmers can also 
guide the compiler to parallelize specified loop sections of 
the code with XMT-specific pragmas.  

III. ALGORITHMIC DESIGN AND IMPLEMENTATION 

     Our algorithmic design is based on a sparse data 
structure. Extended Dijkstra’s algorithm [10] and Brandes’s 
Algorithm [11] are implemented for edge betweenness 
centrality computation. Hyperlinks in the power grid 
topology graph are considered in the computation to make 
the system more representative and comprehensive for 
contingency selection.  

A. Modifed Brandes’s Algorithm 

     The betweenness centrality index is essential in the 
analysis of weighted networks but is costly to compute. For 
large and sparse networks, Ulrik Brandes’s algorithm [11] is 
considered to be the fastest algorithm on serial computers 
[12]. It computes the betweenness centrality in 

)log( 2 nnnmO   time, where n   and m  are the number of 
vertices and edges in the graph, respectively.  

     We have adapted Brandes’s algorithm to calculate the 
edge betweenness centrality of the transmission lines 
(edges) in the weighted power grid graphs, and used an 
extended Dijkstra’s shortest path algorithm [10] to allow it 



to store multiple shortest paths between two buses 
(vertices).  
     The modified Brandes’s algorithm is called n  times 
according to the number of vertices in the graph. In each of 
the iterations, all the shortest paths between the iterating 
vertex and all other vertices in the graph are identified, and 
the edge betweenness centrality value of an edge is 
incremented whenever an identified shortest path passes 
through it in this iteration. This strategy is shown in 
Algorithm 1. 

 
Algorithm 1 Basic steps of the modified Brandes’s algorithm for edge 
betweenness computation 
 
1) Initialize stack, heap and records 
2) Put iterating vertex S  onto heap 
3) While heap not empty: 

a. Remove root v  from heap and push it onto stack 
b. For each neighbor w  of v , if there exists one or more 

shortest path(s) from S  to w via v : 
i. Set w ’s distance and number of shortest 

paths 
ii. Insert or adjust record in heap 

iii. Set/add v as the pre node of w  
c. While stack not empty: 

i. Pop node w off stack 
ii. Increment w ’s vertex betweenness score 

iii. For each pre node v  of w  increment v ’s 
factor, and edge v  w ’s edge 
betweenness score 

d. Free the pre node list of w  
4) Free records and heap 

 

B. Data Structure 

     We store the graph as two arrays of structured objects: 
nodes and edges. A node stores the labels of its neighbors 
and edges as arrays. The arrays are allocated after the 
number of neighbors is known, thus no space is wasted. An 
edge includes a duplicate field used to construct hyperlinks 
as described in the next section. 
     The workspace for the modified Brandes’s algorithm is 
an array of records, one for each node. In addition to several 
real values, a record stores the location of the node in the 
stack, location of the node in the heap, and the identification 
number of each predecessor node. Space for one 
predecessor node is allocated on definition. Space for 
additional predecessor nodes is allocated and deallocated 
dynamically. Since a node rarely has more than one 
predecessor node, dynamically adjusting the size of the 
predecessor list adds little overhead. The heap is kept as a 
binary min heap and stored as an array such that the parent 
of node i  is node 2/(i )1  and its children are nodes i2(  

)1 and i2( )2 . 

C. Hyperlinks 

     Our application incorporates hyperlinks in the power grid 
topology graph for the edge betweenness centrality 
computation.  

     In power grid systems, the higher the power flowing on a 
transmission branch, the more important it is for 
contingency analysis. We use the reciprocal of power flow 
as the weight of the edge in the power grid topology graph 
to make the computation consistent with this physical 
concept. Edges with shorter distances, as determined by the 
smaller reciprocal power flow value, have a greater chance 
to lie on multiple shortest paths, and thus have higher 
betweenness centrality values for contingency selection. 
     There may be multiple transmission lines between two 
buses to transmit power in the transmission network. To 
evaluate the importance of each individual line between two 
buses, we first compute the betweenness centrality of the 
hyperlink, which represents the transmission property 
between the two buses, with a single weight comprising the 
weights of all edges based on the parallel connection 
principle as shown in eq. 2,  
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where n is the number of multiple edges,  iW  is the 

reciprocal of power flow on edge i , and hyperW  is the 

weight for the hyperlink. After computing the edge 
betweenness score of each hyperlink, we divide the score 
among component edges according to their weight 
contribution to the hyperlink. 
     We construct hyperlinks and compute their weights in 
three steps. First, we sort the edges using a two key radix 
sort {head, tail}, and set the duplicate field of each edge to -
1.  Second, for each edge 1ie  that has the same head and 

tail node as ie , we set the duplicate field of 1ie  to i  

creating a linked list of edges for each hyperlink. Third, the 
first edge of each hyperlink (those edges whose duplicate 
field is -1) computes the weight of the hyperlink storing the 
value in its weight field. Note, the original weight of the 
first edge is overwritten, but it is easily recomputed from the 
total weight and weight of the other component edges. 

After constructing the hyperlinks, we construct the 
neighbor list of each node storing the index of the first edge 
of a hyperlink as the label of the edge between two 
neighbors. It is worth mentioning that if power transmission 
corridors instead of parallel lines should be considered in 
contingency analysis, the hyperlinks can be collapsed to a 
single link using equivalence of parallel lines. 

D. Parallel Implementation on Cray XMT 

     The Cray XMT system has many advantages for parallel 
graph-processing applications. Our codes are written in a 
way that facilitates the automatic parallelization by the 
XMT compiler. We also use XMT-specific pragmas to 
guide the compiler when automatic parallelization is not 
possible [13]. 
     When iterating through all the vertices to compute the 
edge betweenness centralities as shown in Algorithm 1, each 
of the iterations is independent from each other since they 



analyze independently-sourced shortest paths in the graph. 
We add the semantic assertion “#pragma mta assert 
parallel” before this outer loop construct to assert that the 
separate iterations of this loop may execute concurrently 
without synchronization. We also add the compilation 
directive “#pragma mta use 100 streams” to ensure that a 
sufficient number of resources are used to maximize 
utilization.  
     The steps to compute hyperlinks comprise a series of 
parallel loops. The compiler automatically parallelizes 
several of the loops. For those that it does not parallelize, we 
insert the directive “#pragma mta assert no dependence” to 
force parallization. In several places in the code, we use the 
atomic increment function int_fetch_add(&v,i) to atomically 
add i  to the value at address v , and return the original 
value.  

To atomically update floating point values, we insert the 
directive “#pragma mta update” before the corresponding 
source code statements; for example 

  ;].[].[ datanoderecordsvbnodeNodes   
and  
  ;].[ factorvbedgeEdges   

IV. VALIDATION 

     We have validated our edge betweenness based 
contingency selection method considering a practical power 
grid perspective. 
     We use General Electric’s Positive Sequence Load Flow 
Software (PSLF) – a widely used commercial grade power 
system analysis tool – to perform power grid contingency 
analysis. For each contingency case, a performance index 
(PI) [1] is calculated and all indices are ranked based on eq. 
3, 
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where n  is the number of transmission branches (edges), jP  

is the power flow in each transmission branch (edge), and 
maxjP  is the power capacity for each transmission branch 

(edge). 
     A power system model containing 760 buses (vertices) 
and 977 branches (edges) extracted from an area of the 
western US power grid (WECC) is used to test and validate 
the proposed contingency selection method with actual 
impact. To be consistent with the PI definition, the obtained 
edge betweenness is reweighted by the power capacity 

maxjP  of the edge. 

     The distribution of edge betweenness scores for the 760-
bus power system is shown in Figure 1. We can see that 
there is a small portion of edges that have high edge 
betweenness scores, which means that this small portion of 
edges is important to this power grid graph. The same idea 
holds true in the real power system: there is a small set of 

transmission lines that are more critical compared with other 
lines. 

     A representative cross-validation result is shown in 
Figure 2, where the x-axis is the percentage of cases 
selected from contingency ranking results based on PIs, and 
the y-axis is the percentage of common cases between PI-
based selection and edge-betweenness-based selection. 
From Figure 2, we can see that with 70% contingency cases 
selected (x-axis), the hit rate using edge betweenness can 
achieve 70% (y-axis). This high hit rate demonstrates the 
validity of the proposed edge-betweenness-based method. It 
can provide a practical list of critical lines in the power grid 
system for contingency analysis. Validation cases with 
power systems of various sizes exhibit similar performance. 

 
Figure 1.  Edge betweenness distribution for the 760-bus system.  

 

Figure 2.  The cross-validation results for the 760-bus system.  

V. PERFORMANCE ANALYSIS 

     We have implemented the edge betweenness centrality 
parallel algorithm as described in Section III on the Cray 
XMT multithreaded system. The configuration of the 
system is: 

 64 500MHz 64-bit Cray ThreadStorm Processors 
 128 Threads per processor 
 512 GB of global shared memory  

We also leverage power grid resources available in our 
Electricity Infrastructure Operations Center (EIOC) and 
perform the analysis using real-world models and data. 

A. Study Cases 

     To assess the computational performance of the edge 
betweenness centrality application for power grid 
contingency selection, we select four power system models 
of different sizes as task graphs as shown in Table I. 



TABLE I.  Study Cases 

Name # of Vertices # of Edges 

14,000-bus  14,090 17,346 
46,000-bus 46,010 57,323 

90,000-bus 92,370 116,980 
170,000-bus 172,930 220,648 

 
     The 14,000-bus represents the western US power grid 
(WECC). The 46,000-bus system, 90,000-bus system, and 
170,000-bus system are extensions of WECC by adding 
more detailed power networks at sub-transmission and 
distribution levels, which represent potential capabilities to 
analyze power systems in more detail. With more and more 
renewable generation and other distributed generation 
penetrating distribution systems, the need to expand the 
modeling coverage is a compelling need.  

B. Resource Utilization 

     The processor utilization of Cray XMT is a measure of 
the effectiveness of memory access latency hiding. It is 
obtained by measuring the number of clock cycles in which 
instructions have been issued versus the total number of 
clock cycles spent in the computation.  
     We have measured the memory usage and processor 
utilization for all study cases. In all of these cases, we 
observe a relatively stable high processor utilization rate 
(~30%), which indicates the effectiveness of the 
multithreaded capabilities of the ThreadStorm processor in 
covering the latencies of the irregular memory accesses 
required to traverse the graph for betweenness centrality 
computation. Another observation is the proportionally 
increased memory usage with the increased graph size and 
number of processors used. In Table II, we present the 
memory usage and utilization rate for 14,000-bus study case 
when running with different number of processors on the 
Cray XMT. It is important to note that the memory usage is 
proportional to the number of active threads in the system, 
since each thread keeps a private stack, heap and state 
variables as described in Algorithm 1. Thus using more 
processors increases more memory needed for these 
variables. 

TABLE II.  Memory Usage and Utilization Rate versus the Number of 
Processors of the 14,000-bus System 

# of Processors Memory Usage (GB) Utilization Rate (%) 

1 0.455 30 

2 0.723 30.4 

4 1.3 30.5 

8 2.2 30.3 

16 4.9 29.4 

32 8.5 26.7 

64 15.9 26.1 

C. Scalability 

     To measure the scalability of the edge betweenness 
implementation on the Cray XMT machine, we record the 
computer execution times for the four study cases against 
different number of processors. Figure 3 shows the 
execution time on different numbers of processors. Figure 4 
shows the corresponding speed-up curve for each case. Both 
figures use a logarithmic y-axis to improve the readability of 
the graph.  
     Figure 4 indicates that the scalability of the code is close 
to linear for all problem sizes, with a trend of better 
scalability for larger problems. These results indicate that 
the Cray XMT is very suitable for the proposed betweenness 
centrality analysis method operating on large power grid 
graphs.  
 

 
Figure 3.  Execution time versus the number of processors for power 

graphs of various sizes on the Cray XMT.  

 
Figure 4.  The speed-up curve for power graphs of various sizes on the 

Cray XMT.  

VI. COMPARISON BETWEEN CRAY XMT AND 

SUPERDOME 

We have also built an OpenMP-based version of our 
application that utilizes the same algorithm as the Cray 
XMT version, as a way of comparing a scalable shared-
memory machine (HP Superdome) against the XMT.  

The configuration of the Hewlett-Packard Superdome 
system is: 
 64 1.6 GHZ dual-core 64-bit Itanium 2 processors 
 24MB of L3 cache per processor 
 256 GB of global shared RAM 
The same four cases are used to test the performance of 

the Superdome machine. Figure 5 and Figure 6 show the 
execution times and the speedup numbers, respectively. 



 

              
Figure 5.  Execution time versus the number of processors for power 

graphs of various sizes on the Superdome. 

               
Figure 6.  The speed-up curve for power graphs of various sizes on the 

Superdome. 

     Table III lists the execution times for the four study cases 
on the Cray XMT and the Superdome when different 
numbers of processors are used. Figure 7 compares their 
relative execution time in plots. The data presented in 
Figure 7 has been normalized to the execution time on one 
processor on the Superdome.  
     Table IV lists the speedup numbers for each case. The 
speedup numbers for both Cray XMT and HP Superdome 
are calculated by normalizing the execution time using their 
respective single processor time. Figure 8 compares their 
speedups in plots. Again, logarithmic y-axis is used in both 
of the figures to improve the readability of the graphs. 

TABLE III.  EXECUTION TIME (SEC) VERSUS THE NUMBER OF 

PROCESSORS FOR FOUR STUDIES ON THE CRAY XMT (C) AND THE 

SUPERDOME  (S) 

Study 
cases 

C/S 
1p 

(sec) 
2p 

(sec) 
4p 

(sec) 
8p 

(sec) 
16p 
(sec) 

32p 
(sec) 

64p 
(sec) 

C 515.23 254.88 127.53 65.35 34.2 19.38 12.45 14,000
-bus 

S 95.16 112.64 79.83 53.27 33.91 19.96 12.02 

C 5884.2 2903.9 1442.6 732.46 378.05 202.13 112.85 46,000
-bus 

S 1179.7 1054.3 831.22 463.61 303.83 195.79 116.85 

C 26934 13179 6510 3298.9 1703.8 896.08 486.42 90,000
-bus 

S 8976.5 7747.1 4893.6 2688.5 1776.2 970.06 542.78 

C 96680 47822 23811 12020 6205.1 3267.5 1745.1 170,00
0-bus 

S 44088 32149 24505 9464.5 6738.1 3836.3 2166.9 

 
 

  

  
Figure 7.  Comparison of Cray XMT and Superdome relative execution 

time for four different problem sizes. 

TABLE IV.  SPEEDUP NUMBERS VERSUS THE NUMBER OF PROCESSORS 
FOR FOUR STUDIES ON THE CRAY XMT (C) AND THE SUPERDOME (S) 

Study 
cases 

C/S 1p 2p 4p 8p 16p 32p 64p 

C 1  2.021 4.04 7.884 15.065 26.654 41.384 14,000
-bus 

S 1 0.845 1.192 1.786 2.806 4.768 7.917 

C 1 2.026 4.079 8.034 15.565 29.111 52.142 46,000
-bus 

S 1 1.119 1.419 2.545 3.883 6.025 10.096 

C 1 2.044 4.137 8.165 15.808 30.058 55.372 90,000
-bus 

S 1 1.159 1.834 3.339 5.054 9.254 16.538 

C 1 2.022 4.06 8.045 15.581 29.588 55.401 170,00
0-bus 

S 1 1.371 1.799 4.658 6.543 11.492 20.346 

 

  

  
Figure 8.  Comparison of Cray XMT and Superdome Speedup for 4 

different problem sizes. 

     Comparison of Figure 7 and Figure 8 indicates that the 
Cray XMT machine achieves superior scalability for graph 
edge betweenness computation over the Superdome 
machine.  
     The hardware and software features of the Cray XMT are 
a better fit than the Superdome platform for graph 



computation. Its global shared memory, very fine-grained 
threading, and efficient light-weight word-level 
synchronization makes it well-suited for parallel graph 
processing. We can achieve up to 55x speedup against the 
one-processor version of the code using 64 processors on 
the Cray XMT for the 170,000-bus system. 
     For smaller graphs, the Superdome can take advantage of 
its large caches to store the data and thus dramatically 
reduce the average memory access time. But when the graph 
is larger and data fetching between different computational 
nodes is frequent, the advantage of the caches diminishes, 
and the overall computational performance degrades due to 
inter-node communication. As shown in the graphs, when 
64 processors are used on the Superdome, only 20x speedup 
is achieved for the 170,000-bus system.  

VII. CONCLUSIONS 

     Contingency selection is a key step for real-time power 
system contingency analysis. In this paper, we present a 
novel application of edge betweenness centrality to conduct 
the contingency selection for power grid topology graphs. 
The parallel implementation of this method on the Cray 
XMT machine exhibits good performance in absolute 
execution time, as well as good scalability with increased 
problem sizes. It demonstrates that the Cray XMT is well-
suited machine for our graph processing in contingency 
selection. 
     In the future, we will take advantage of the Cray XMT’s 
hybrid capabilities with ThreadStorm and Opteron nodes. 
Further work will focus on the communication between 
ThreadStorm nodes, which performs the graph-based 
contingency selection, and Opteron nodes, which will be 
used for floating-point computation of actual contingency 
analysis. We will further evaluate this method and port the 
developed software in the Electricity Infrastructure Center at 
the Pacific Northwest National Laboratory. It is expected to 
provide a more efficient solution to the N-1 to N-x 
contingency problems to help the operators to identify and 
mitigate potential widespread cascading power grid failures 
in real-time power system operations.  
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