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Abstract

From one processor generation to the next, the mismatch in processing speed vs. memory and
network access speed is exacerbating. The arrival of multi-core technologies accelerates this trend. The
main mismatch drawback is that an increasing number of parallel applications suffer from latency and
bandwidth bottlenecks incurred by accessing these shared resources. There is a need in the computer
science community to identify these bottlenecks early in the development phase to better manage these
scarce resources. Existing performance analysis tools emphasize a processor centric view that limits
their capability to adequately analyze resource bottlenecks. Tools are required that can analyze resource
access streams by taking into account the organization of the shared resource architecture structures.

This paper introduces the MODA memory centric performance tool prototype. MODA is designed
to instrument, collect and analyze streams of memory requests. The tool provides a dynamic application
behavior view of memory requests as they access various memory organizational constructs. MODA
enables the detection of algorithmic and architectural resource conflicts that can greatly degrade perfor-
mance. Moreover, possible scalability deterrents can be found predictively at relatively small data set
scale.

Careful management of shared resource bandwidth will be one of the future multi-core technologies.
The Cray XMT is ideally suited to serve as a test platform to analyze shared resource contention at
massive scale. The initial prototype tool has been implemented for the Cray XMT multiprocessor and
it has been used to analyze the behavior of small benchmark examples.

1 Introduction

Nowadays, multi-core gives a wealth of computational power with reasonable power consumption. However,
the way to extract performance from these designs is still a challenge. Although system software and
applications are making great progress, software tools are lagging behind. This is not to say that there are
not excellent parallel tools out there (for a few examples, please refer to section 2). Nevertheless, these tools
still put too much of their efforts on a processor centric view of a given application / architecture combo.
This has been the way of thinking in performance analysis for a long time.

Especially due to the multi-core paradigm, the memory and network components of a machine are
becoming critical resources. Several solutions have been proposed to decrease latency such as memory
hierarchies and multi threading. Larger or multiple interconnect fabrics and different network topologies are
continuously being proposed and tested to increase bandwidth utilization. However, due to the ever increasing
number of cores on a chip, available bandwidth has to be rationed very carefully. Moreover, there are the
architectural limitations of the memory and network themselves like memory physical boundaries, router’s
buffer length, etc. Due to these factors, possible architectural bottlenecks might appear. Complicating the
issue, certain algorithmic bottlenecks might not become apparent until certain resource limits are reached.
A bottleneck, or hot-spot, occurs when a resource is oversubscribed by an application or job. In the case
of the network, an architectural bottleneck might represent a routing node in which its buffers are full. In



the case of the memory, this might be contention on the same memory node, DIMM, rank or page. This
memory behavior may not be apparent to processor centric tools and it might not even appear until a large
data set is used (e.g. when bank segments, or other memory structural barriers, are crossed).

Among the several parallel designs, the Cray XMT is a very special type of shared memory machine. It
consists of massive multi threaded processors with no data caches, fine grained synchronization in memory
and a large global shared memory, all arranged in a 3D torus network. As a highly parallel multi threaded
machine with shared memory, it provides a great opportunity to study future massive multi-core shared
memory machines. These systems will have an ever increasing number of cores and a pool of shared memory.
Moreover, the Cray XMT can be used to experiment with communication and shared memory to a scale
that is not possible in current shared memory machines. Due to these characteristics the Cray XMT can
be used as a prototype for future shared memory machines. Moreover, the XMT uses a very light UNIX
derivate OS. This OS is optimized for parallel execution environment and introduces very little noise. This
means low OS noise and jitter. These features make the XMT a very attractive machine for this tool and
these memory centric studies in general. A more complete description of the architecture can be found in
[2].

In this paper, we propose a Memory Centric tool, which reveals existing and potential algorithmic and
architectural hotspots. Such a predictive tool is useful because it allows a programmer to reason about
contention at the development phase at small scale, reducing the likelihood of encountering contention
surprises at larger scale where debugging and performance analysis is more onerous. It is classified as
memory centric because it concentrates on the behavior of memory locations (e.g. variables on the high level
source code) with respect with the underlying memory subsystem. Such analysis reveals certain hot-spots
that may not be apparent to other tools until very large data sets and a large number of threads are used.
As far as the authors know, no other performance analysis tools have tackled the contention problem from
a resource centric approach

The paper is organized as follows. Section 2 presents background and related work. Section 3 presents the
framework of the MODA tool. Section 4 provides an overview of the experimental testbed from a software
and hardware angles. Finally, Section 5 shows the conclusions and future work for the given tool.

2 Background

Most existing performance analysis tools are processor centric. Program execution evolution is captured and
presented by these tools from the perspective of processes/processors/cores or threads. These tools excel
under the assumption that the use of shared resources is most often temporally disjoint due to architectural
or algorithmic enforcement. Under this scenario, shared resource use, such as memory or network access,
tends to be concentrated in well-defined program-phases. Hence, analyzing shared resource use can be
accomplished by analyzing particular phases in thread execution.

The advent of massive multi-core processing interacting with shared resources such as the memory hier-
archy or the network subsystem introduces new analysis challenges. Shared resource usage between multiple
threads appears now to be “seemingly” random and more difficult to attribute to specific phases. Determin-
ing or predicting shared resource bottlenecks from a thread perspective is more cumbersome. In light of our
efforts to develop resource centric tools, memory centric in this paper, we briefly assess the capabilities of
some prominent performance tools.

In its current form, the Cray XMT ships by default with the Apprentice-2 (v. 4.x) tool-suite[7] that
comprises a compiler analysis tool, a block-profiler and a trace analyzer. A salient feature of the Apprentice-2
suite stems from the Cray XMT’s unique execution model: Memory references are trapped if they are re-
dispatched multiple times because they violate the program’s intended causal order or because they encounter
hotspots. These trap events are reported in Apprentice-2 to help the programmer identify algorithmic or
architectural performance bottlenecks. Trap events provide some memory centric analysis functionality. The
drawback is that trapping is expensive and thresholds are predetermined before the run, limiting scalability
assessments for varying data-sets and architecture configurations.

Scalasca’s CUBE (v. 3.x)[1] presents large-scale profile and trace data over a 3-dimensional data space
that spans metrics, code segments and process/physical topology. Scalasca’s supported programming models
include OpenMP, MPI and hybrid OpenMP/MPI codes. OpenMP constructs can be automatically instru-



mented with the OPARI source-to-source tool. Analysis is driven by the metrics, the program phases or the
process/topology.

Like Scalasca, Vampir (v 5.x)[6] can monitor MPI, OpenMP and hardware counter events. Hierarchical
trace views on a lightweight client that can be served from the production environment are supported, hereby
avoiding large data transfers. Trace views are process driven.

The Paradyn’s MRNet (V. 2.x) toolsuite[9] also addresses data transfer requirements. Hierarchical anal-
ysis is supported by creating focus groups. Hierarchical performance analysis is aided by a performance
consultant. The consultant refines its search for performance bottlenecks by recursively testing hypothesis.

TAU’s PerfExplorer (v. 2.x)[4] introduces hierarchical analysis through clustering and event filtering.
Statistical tools such as correlation analysis help the search for performance bottlenecks.

As with the previous tools, Totalview[3] supports the MPI/OpenMP programming models. The Totalview
framework has some memory and data centric functionality that is mostly geared towards logical debugging.
Also of interest are the tool’s grouping capabilities to enable an hierarchical analysis approach. Groups are
built out of process elements.

Jumpshot (v. 4.x)[10] and DEEP/MPI[8] show some similarity to the tools above by addressing visual-
ization scalability aspects.

Worth mentioning are novel environmental data capturing capabilities being developed for PerfTrack[5].
Here, the shared resources are power and thermal machine envelopes.

In general terms, above mentioned tools exhibit process/thread centric performance analysis/visualiza-
tion. Resource centric analysis is scant or non-existent. We believe that a new breed of resource centric tools
will provide new performance analysis insights.

3 Framework

The whole MODA framework is shown in figure 1. It is designed to instrument, collect, analyze and visualize
information with minimal or no user help or interference. The main objective is to find bottlenecks in
an application and to correlate them with variables in the source code, threads in the application and
memory structures in the system. In its current state, it can correlate variables, threads and memory
modules. However, extending this to multiple memory structures is under study. The framework consists
of four components or phases that take care of each of the tool objectives (instrument, collect, analyze and
visualize). Under the Cray XMT architecture, the tool takes advantage of the user-defined traps to collect
runtime information. However, other approaches, such as binary rewriting, are being explored. Each phase
will be discussed more in depth in the next subsections.
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Figure 1: The MODA Framework



3.1 Instrument

The main component in this phase is a script that wraps around the Cray C Compiler. The wrapper will
replace the application’s main function with a framework defined function, compile the source and add the
monitoring libraries before the final linking. Afterwards, it will call a homemade ELF tool (named RELF)
which will read the symbol table. This produces a list of application names, sizes, virtual addresses and tags.
In this context, a tag is a unique 64-bit value assigned to an address (or a range of addresses) which uniquely
identify them on the framework. Moreover, for every tag there exists a corresponding variable (named
or unnamed) in the source code. However, this list is unclean since it contains many of the runtime and
monitoring variables. A small script will delete the extra variables and produce the application dictionary.
In the framework, this dictionary is called the Static Application Dictionary since it is produced by the
compiler.

3.2 Collect

This phase takes place while the application is running. It collects runtime and state information for the
given variable list while the application is running in parallel. It depends on two structures: The data cube
and the Dynamic Application Dictionary. The data cube is a 3-D table which will be filled with data from
each running thread. The dynamic application dictionary is used to keep accesses of variables that were
created during the execution of the application (i.e. heap allocated arrays).

When the application starts, it enters the framework-modified main function. This function will allocate
nearby memory (for its data collection functions), set the trapping mechanisms for each variable contained in
the static application dictionary and initialize the dynamic application dictionary. An entry in the dynamic
dictionary is composed of a tag (which contains the processor id of whoever allocated it plus a unique
identifier), the virtual address, the size of the block and an optional name. These entries will be registered
to the monitoring framework at the time of their creation. When deallocated, these entries are not erased
from the dictionary but marked as inactive. If the same memory range is reused then a new tag is assigned
to the created address range. Currently, the framework will monitor all the heap allocated blocks created
by the provided w_malloc function!.

The data cube is used to save monitoring information about the running application. An entry in the
cube can be seen as a 7-tuple consisting of the tag, operation data, hardware thread id, type of operation,
time stamp and the address of the operation. All these entries are arranged by processor and hardware
thread id in the cube?.

When the application ends, it returns to the modified main. This function will clean up all the structures
used by the monitoring framework and save the data cube and the dynamic dictionary to the disk.

3.3 Analysis, Post-processing and Visualization

In this phase, both dictionaries are joined together and some post-processing (i.e. endianness conversion)
is applied to the data cube files. Visualization is joined with the analysis phase in the current version, but
they will be two distinct phases in future iterations. During this phase, the information in the data cube is
collected and organized into a master record which will be read by the visualization tool to obtain related
information (threads versus accesses, memory module utilization of variables, etc). In its current iteration,
it has two “portals”. The first portal shows the variables that were used and their percentage of access in
the whole execution. From this portal, the number of accesses per processor per variable can be obtained,
as well as, the number of hardware streams from that processor that worked on that variable. The second
portal is the processor / hardware thread one and shows the percentage of participation of each processor
in the overall computation. Both portals have a text based user interface.

Other information (like module information and variable memory distribution) can be obtained from this
phase. This information will be used to describe the examples presented in this paper.

1The framework also provides the w_free function that must be used to deallocate the blocks. Otherwise, the framework will
be left in an inconsistent state

2The hardware thread id, which in XMT terminology is called a stream, is saved twice since there is a possibility that the
thread is switched to another hardware stream while waiting for a long latency operation.



4 Experiments

The current MODA toolset has been tested with a small set of examples. In this section, two small examples
will be introduced and their behaviors will be analyzed using the tool visualization and analysis phases.
However, both the hardware testbed and software examples should be explained and expanded.

4.1 Hardware Testbed

All experiments were run on a 64 processor Cray XMT system. In this system, the processors are arranged
into a 3-D torus. Each processor consists of 128 hardware threads (or streams). Each stream can issue a
LIW operation. However, they share the same LIW 21-stage pipelines, which clocks at 500 MHz. Under
the used configuration, each processor has 8 GiB of DDR DRAM memory running at 200 MHz. The LIW
pipelines can only accept one LIW instruction from each stream. Thus, each stream has to wait at least
21 cycles before issuing its next LIW instruction3. Given the 128 streams and enough parallelism, the
pipelines can be kept fully utilized. Each stream is composed of a set of 31 general purpose registers,
8 target registers (Registers used exclusively for jumping), a set of 8 trap registers and a status register
(called the stream status word which contains the stream program counter). As stated before, the XMT is
a shared memory machine. It possesses a large amount of memory (in the order of a tera byte for a 128
processor configuration) which is accessible to everyone in the system. Every address in the machine goes
to an scrambling and distribution phase that ensures that all accesses are uniformly distributed across all
available memory nodes in the system. Hereby contention is significantly reduced but not fully eliminated.
Moreover, the actual memory word contains special bits which are used for fine grained synchronization,
pointer forwarding, synchronization traps and user defined data related traps. The XMT has a high speed
memory buffer on each memory controller to accelerate common accessed variables. The network used in
the XMT is the proprietary Cray SeaStar2 which has a 3-D torus topology and static routing[2].

Thanks to its memory features and massive threading processors, the XMT is a prime candidate to run
irregular applications in parallel. A block diagram of the architecture can be found in Figure 2.
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Figure 2: A logical view of the Cray XMT

4.2 Software Examples

Two small applications were selected to test the tool. These two applications (actually two implementations
of the same application) are very well known. The first one is a very simple vanilla matrix multiply without

3Tt might need to wait more if a memory operation takes a long time to return



Listing 1: Vanilla Matrix Multiplication

void MM(int start_-i, int start-j, int size){
int i, j, k;
for (i = start_i; i < start_i 4+ size; ++i)
for(j = start-j; j < start_-j 4+ size; ++j)
for(k = start_i; k < start_i + size; ++k)
N clil[j] += alillk] = blk][j];

Listing 2: Strassen Matrix Multiplication

void STRASSEN(int start_i, int start_j , int size){
if (size < threshold){ MM(start_i , start_j, size); }
future STRASSEN(start_i , start_j , size/2);
future STRASSEN(start_-i + size /2, start_-j , size/2);
future STRASSEN(start_-i , start_-j + size /2, size/2);

future STRASSEN(start_-i + size /2, start_.j 4 size /2, size /2);

Pl = (A1l + A22) x (B1l + B22); /« Matriz operations x/
P2 = (A21 + A22) x (B1ll + Z11); /+ on the sub blocks x/
P3 = (All + Z11) x (Bl2 — B22);

P4 = (A22 4+ Z11) % (B2l — Bl11);

P5 = (All 4+ A12) % (B22 + Z11);

P6 = (A21 — All) * (Bll + B12);

P7 = (Al2 — A22) x (B21 + B22);

Cll = P1 + P4  P5 4+ P7; /x Final Matriz Calculation x/
Cl12 = P3 + P5;

C21 = P2 + P4;

Cc22 = P1 P2 4+ P3 4 P6;

any user enhancements. The Cray XMT compiler performs extremely well on this type of problems (regular
loops) and can perform many optimizations on them. The second implementation is using the Strassen
method to compute matrix multiplication. In the XMT, this application has been parallelized using futures.
The pseudo code for both applications are given in code listings 1 and 2.

As you can see in listings 2, this implementation of Strassen has a hotspot on reading the Z11 block.
Take in consideration that this factor will be shown later when the memory utilization and threads behavior
are analyzed.

4.3 Testbed Parameters and Results

These two implementations were run with a small matrix (64 by 64 double precision elements) on 64 pro-
cessors on the Cray XMT. Each of the following graphs shows total variable and memory node utilization
during the whole calculation.
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Figure 3: Results for the Vanilla Matrix Multiply

Figure 4 shows the results for the Strassen run. Sub figure 4a the total number of accesses on each memory
node and Sub figure 4b shows the total number of accesses for each of the used variables of the application.
The X axis in these graphs represents the memory nodes in the system and the Y axis represents the number
of accesses. Similarly, figure 3 and its sub figures represent the runs for the vanilla matrix multiply. Figure
5 shows the usage map for each variable in percentages for each memory node.

Figure 3a shows that the distribution of the accesses across memory modules is uniformly distributed,
thus reducing contention at this level. The sub figure 3a shows that from the variables that were used, the



7000
6000 35

5000 30
25
20
15 = Series1
10
1000 5

4000

3000

2000

13 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 b a cl zero

(a) Total Memory Node Utilization (b) Total Variable Accesses

Figure 4: Results for the Strassen Matrix Multiply

100%

0%

80%

T0%

60% 2

50% | Zero

L
40% mh

30%

20%

10%

0%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Figure 5: Variable Map Usage for the Strassen Case

b was used the most. This is due to the compiler optimizations applied to the given code. In this case, they
are reusing the a and ¢ matrices and loading b as it is needed.

Also of interest is what happens on the second set of figures. Figure 4a shows the bank distribution of
the Strassen implementation. In this case, some of the banks are over-subscribed. This behavior (and its
culprit) is (are) shown in figure 4b. The variable distribution map presented in this figure shows that the
variable represented by zero* is the culprit of the strange behavior on the given memories modules. The
figure shows that the access is highly irregular which suggests that certain elements of the block zero are the
source of contention. This is an expected outcome of the computation due to the algorithm characteristics
(using the zero block in many of the recursive calls continuously).

5 Conclusions and Future Work

Careful management of shared resource bandwidth will be one of the future key multi-core technologies.
The Cray XMT is ideally suited to serve as a test platform to analyze shared resource contention at massive
scale.

This paper presents a new memory centric performance analysis called MODA. It consists of four com-
ponents and requires minimal user interaction. MODA was implemented on the Cray XMT architecture.

Preliminary application experiments have shown that MODA can be used to detect memory access pattern
that can cause contention at the memory organizational level. A predictive tool with these capabilities is
useful because it allows a programmer to reason about contention at the development phase at small scale.
The likelihood of encountering contention surprises at larger scale is hereby greatly reduced. This is an
advantage since debugging and performance analysis at large scale tends to be onerous.

Overall, the objective of this tool is to describe the application behavior from a shared resource perspec-
tive. Due to the increased importance of memory / network subsystems, tools like MODA can help identify
several hotspots that might arise due to contention on shared resource subsystems. We believe that this

4In this context, this variable is a block of addresses



tool will help establish a set of new resource centric tool suites and to provide new insights into the field of
massive parallel performance analysis.

Future work on this tool includes its optimization and several alternative methods to obtain monitoring
information. Moreover, the current monitoring framework can be optimized by writing its critical sections in
assembly and by-passing the whole XMT trap framework by static binary rewriting. A new GUI and more
powerful analysis (e.g. aliasing analysis) are in the works for the analysis phase.
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