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Abstract

We present a new approach for parallel massive graph analysis of streaming, tempo-

ral data with a dynamic and extensible representation. Handling the constant stream

of new data from health care, security, business, and social network applications re-

quires new algorithms and data structures. We examine data structure and algorithm

trade-o�s that extract the parallelism and high performance necessary for rapidly up-

dating analysis of massive graphs. Static implementations of analysis kernels often

rely on speci�c structure on the input data, maintaining the speci�c structures for

each possible kernel with high data rates imposes too great a performance price. A

case study with clustering coe�cients demonstrates incremental updates can be more

e�cient than global recomputation. Within this kernel, we compare three methods for

dynamically updating local clustering coe�cients: a brute-force local recalculation,

a sorting algorithm, and our new approximation method using a Bloom �lter. On

32 processors of a Cray XMT with a synthetic scale-free graph of 224 ≈ 16 million

vertices and 229 ≈ 537 million edges, the brute-force method processes a mean of

over 50 000 updates per second and our Bloom �lter approaches 200 000 updates per

second.

1 Introduction

The data deluge from a wide range of application domains from business and �nance to
computational biology and computer security requires development of new analysis tools
and algorithms. To keep pace with the data, these tools must analyze the resulting inter-
action networks and graphs as data arrives in high-volume streams rather than in static
snapshots. With the Facebook user base containing over 350 million people [13], Twit-
ter boasting more than four billion tweets [22], and an estimated hundreds of millions of
blogs on the Internet [24], the massive graph data sets must be analyzed faster than ever
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before. These sources' streaming data di�ers fundamentally from traditional static graph
data sets. Data sets from the literature often are constructed statically from web crawls of
a particular domain [3], email correspondence between colleagues [20], patent and literature
citations [16], and biological networks [17]. Analysis is carried out a single time on these
static sets. The streaming data from social networks and other applications is too large to
permit constructing streaming analysis from static snapshots. Here we investigate another
approach, computing incremental updates, along with the data structures necessary and
assumptions useful for achieving high-performance analysis.

Current massive graph analysis tools like Pajek [5] contain three phases. First, the
tools preprocess data into appropriate data structures. Second, a graph kernel analyzes the
data. Finally, the tools post-process and store analysis results for later presentation. These
tools calculate static graph properties; any dynamic use assumes the properties change
slowly relative to execution time. However, there is increasing interest in the temporal
properties of the dynamic data set. With millions of users and billions of messages, even the
preprocessing time is much larger than the time between potentially large graph changes.
Repeatedly processing graphs as snapshots of a process cannot keep up with the data rates.

In this paper, we tackle these problems with a new computational approach for the
analysis of complex graphs and networks with billions of vertices based on streaming input
of spatio-temporal data. Our approach accumulates as much of the recent graph data as
possible in main memory. Once the reserved memory is full, older or uninteresting edges
are aged o� and removed. After each new edge or block of edges, we update one or more
analytical kernels and attempt to detect signi�cant changes in these metrics. We refer to
this new approach as massive streaming data analytics.

To accommodate a stream of edge data, we present a new, extensible data structure for
massive graphs: STINGER (Spatio-Temporal Interaction Networks and Graphs (STING)
Extensible Representation) [1]. This data structure provides a compromise between list-
and array-based graph representations to support both e�cient updates and e�cient anal-
ysis. STINGER provides the tools necessary for our analysis approach.

As a case study, we demonstrate the e�ectiveness of the streaming approach to compu-
tation and the STINGER dynamic graph representation using an important social network
metric called clustering coe�cients. Global and local (per-vertex) clustering coe�cients
give the user an idea of the �small world-ness� of the graph [26]. The metric is derived from
the lower technique of triangle counting in the graph. We present e�cient multithreaded
algorithms to calculate and update the clustering coe�cients in an undirected, unweighted
graph of 17 million vertices and 537 million edges.

The terms streaming [2] and semi-streaming [15] appear in related literature to describe
a model of computation with very restrictive properties on data accesses. In streaming
graph algorithms, the graph edges are read one-by-one in an arbitrary, unknown order.
Streaming algorithms typically are limited to storing O(n) or O(n polylog n) data, where
n is the number of vertices, and taking at most logarithmically many passes over the
data. The metric of interest must be maintained or approximated in this fashion without
signi�cant access to data other than the edge being observed at any given point in time.
Streaming models have been applied to the approximation of local clustering coe�cients [6,
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10]. Current high-performance computer platforms like the Cray XMT and IBM Power
595 support enough main memory to store a signi�cant amount of graph data at once. On
these platforms, the streaming model's restrictions are overly conservative. Our massive
streaming data approach leverages the continued growth in available memory.

This paper presents data structures to support our approach and a case study with
clustering coe�cients. Section 2 describes STINGER, an extensible representation that
accumulates the dynamic, streaming graph and supports e�cient analysis kernels. We
outline assumptions and methods for extracting parallelism in Section 3. As an example
of our approach, Section 4 considers updating clustering coe�cients with streaming data.
Section 5 details the implementation of STINGER and streaming clustering coe�cients
on the Cray XMT, a massively multithreaded architecture for high performance graph
analysis. Using our framework, Section 6 compares our three methods for updating local
clustering coe�cients.

2 STINGER: A General-Purpose Data Structure for

Dynamic Graphs

Traditional graph data structures choose between e�cient traversal or e�cient modi�cation.
For example, a full adjacency matrix permits O(1) edge insertion or removal but requires
O(n2) storage and O(n) time to traverse all edges from any vertex, where n is the number
of vertices. Adjacency lists or arrays require only O(n+m) storage, where m is the number
of edges, and permit O(dv) traversal of edges out of vertex v, were dv is the degree of
vertex v. Modifying the graph, however, can require O(n + m) time. STINGER [1] is a
general-purpose graph data structure that aims to support e�cient, multithreaded traversal
concurrently with e�cient insertion and deletion of edges.

Data structures that focus on traversal store edges or end vertices in a packed array.
The most common high-performance structure for static graph analysis borrows from sparse
matrices and uses a compressed sparse row format (CSR). In CSR form, each edge's end
vertex is stored in a single, packed array within a contiguous section corresponding to the
edge's source vertex. Inserting or deleting edges requires changing the end vertex array's
length and shifting data throughout that array. This not only requires a large amount of
data motion but also complicates concurrent access by readers.

The primary traditional approach for representing dynamic graphs uses a linked list for
storing end vertices. Insertion and deletion while supporting concurrent readers is well-
understood [25]. However, list traversal is expensive, and many graph analysis kernels
spend most of their time traversing the edge lists.

We developed the STINGER data structure to support e�cient edge insertion and
deletion with concurrent readers. STINGER takes the e�cient element of CSR, storing
end vertices in arrays, and loosens other requirements. STINGER also borrows from the
list structure and stores edge end vertices as a list of arrays. Each vertex points to a list
of �xed-size end vertex arrays; see Figure 1. This is a common mechanism for representing
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Figure 1: An undirected graph and a representation in STINGER with edge blocks holding
two edges. The blanks are holes storing negative numbers rather than end vertex indices.

dynamically sized lists or arrays while supporting rapid traversal.
The arrays are permitted to have holes or blanks represented by negative entries. To

delete an edge, the end vertex is found and replaced atomically by a negative number.
Inserting an edge requires replacing an empty slot or possibly adding a new edge block into
the linked list. We assume that a single process manages all graph updates and ensures
writing does not su�er from race conditions.

Insertion and deletion can occur concurrently with reader access. By default, low-level
consistency is not enforced. In a massive sparse graph, graph updates will con�ict with
readers very rarely. For our applications, the graph already is assumed to be an approximate
model of some real-world phenomenon. We are investigating sequence locks [9], which do
not actually lock, and other light-weight techniques that allow certain consistency levels
without forcing them on all users.

Other information is associated with each edge: a weight and the most recent time
stamp. We do not use this information here and do not discuss the relevant consistency
issues. STINGER models multi-graphs, graphs with multiple, distinct edges between the
same vertices, by associating a numeric type value with each edge. We do not use these edge
types in this paper; multiple edges are treated as a single connection. Extra information
is stored with the per-vertex index, including current in- and out-degrees. The degrees are
updated by atomic operations but are not necessarily consistent with respect to the edge
list. Analysis kernels need to handle extra or missing edges when walking the edge list.

Alternative graph data structures include forms of binary trees [19]. Trees pay an
extra cost in keeping some order on the edges. On our target platform, the Cray XMT, the
maintenance cost is substantial and prohibitive. STINGER's linked array structure permits
simple multithreaded traversal. Similar work in cache-oblivious algorithms often uses trees
where the leaves are ordered arrays with blank entries [7]. The blank entries limit data
movement when inserting a new edge into the ordered array. We are investigating whether
STINGER can take advantage of a similar technique for accelerating intersections of edge
lists. More radical alternatives exist, including representations using sparse certi�cates
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speci�c to di�erent analysis kernels [12]. Our target is to support massive graphs, so we
must support a wide variety of algorithms with a single in-memory structure. STINGER is
a compromise that permits dynamic updates while supporting a wide variety of analytical
algorithms on a single copy.

3 Finding Parallelism in Streams and Analytics

For now, we consider a single, uni�ed input stream of edge insertions and deletions. This
provides a synchronization point for analysis but also a bottleneck. For high performance,
we need both to expose parallelism within the analytic kernels and to extract some par-
allelism from the sequential stream for updating the STINGER structure. We make two
primary assumptions that help dig parallelism from streaming data: Changes in the stream
are scattered widely enough in the massive graph that batches of them are su�ciently in-
dependent to expose parallelism. Analysis kernels have small support and small e�ect, and
so a change to the graph only requires access to local portions and a�ects only a small
portion of the output.

To extract parallelism from the stream, we assume the changes are somewhat scat-
tered in the graph. The changes will not be too scattered in a low-diameter graph with
high degree vertices like many social networks, but there is potential for updating separate
STINGER edge lists simultaneously. Considering batches from the stream loses some tem-
poral resolution but exposes more parallelism in data structure and kernel updates. If the
graph updates do not interact, then there is little temporal information lost by executing
the updates together.

Analytical kernels with small support lend themselves to similar scattering across the
graph. For example, per-vertex scores that depend on a �xed radius like Section 4's local
clustering coe�cients naturally parallelize over batches of a�ected vertices. On massive
graphs, the number of changes to the vertex scores will be relatively small, only slightly
more than the batch size.

Large-support kernels like k-betweenness centrality [18] pose a more di�cult challenge.
They depend on paths potentially crossing the entire graph and require large-scale recal-
culation. A small change may update analysis results across the entire graph. Experience
with k-betweenness centrality performance leads us to limit ourselves currently to kernels
with small support.

We expect typical massive graph streaming analytics to �t into the following framework:

1: Take a section of the incoming stream as a batch.
2: Split the batch into per-vertex STINGER updates.
3: If necessary, save data (e.g. degrees) to permit incremental computation.
4: Process all the data structure updates.
5: Update analytics on the altered portion of the graph.
6: Transfer changed results to a monitoring process.

Sections 5 and 6 investigate steps 2�5 for a simple analytic, local clustering coe�cients.
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4 Algorithm for Updating Clustering Coe�cients

Clustering coe�cients measure the density of closed triangles in a network and are one
method for determining if a graph is a small-world graph [26]. We adopt the terminology
of [26] and limit our focus to undirected and unweighted graphs. A triplet is an ordered
set of three vertices, (i, v, j), where v is considered the focal point and there are undirected
edges 〈i, v〉 and 〈v, j〉. An open triplet is de�ned as three vertices in which only the required
two are connected, for example the triplet (m, v, n) in Figure 2. A closed triplet is de�ned
as three vertices in which there are three edges, or Figure 2's triplet (i, v, j). A triangle is
made up of three closed triplets, one for each vertex of the triangle.

The global clustering coe�cient C is a single number describing the number of closed
triplets over the total number of triplets,

C =
number of closed triplets

number of triplets
=

3× number of triangles

number of triplets
. (1)

The local clustering coe�cient Cv is de�ned similarly for each vertex v,

Cv =
number of closed triplets centered around v

number of triplets centered around v
. (2)

Let ek be the set of neighbors of vertex k, and let |e| be the size of set e. Also let dv be
the degree of v, or dv = |ev|. We show how to compute Cv by expressing it as

Cv =

∑
i∈ev |ei ∩ (ev \ {v})|

dv(dv − 1)
=

Tv
dv(dv − 1)

. (3)

To update Cv as edges are inserted and deleted, we maintain the degrees and the triangle
count Tv separately.

For the remainder of the paper, we concentrate on the calculation of local clustering co-
e�cients. Computing the global clustering coe�cient requires an additional sum reduction
over the numerators and denominators.

An inserted edge increments the degree of each adjacent vertex, and a deleted edge
decrements the degrees. Updating the triangle count Tv is more complicated. Algorithm 1
provides the general framework. Acting on edge 〈u, v〉 a�ects the degrees only of u and v but

v

i

j

m

n

Figure 2: There are two triplets around v in this unweighted, undirected graph. The triplet
(m, v, n) is open, there is no edge 〈m,n〉. The triplet (i, v, j) is closed.
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may a�ect the triangle counts of all neighbors. With some and atomic increment operations
available on most high-performance platforms, all of Algorithm 1's can be parallelized fully.

The search in line 5 can be implemented many di�erent ways. A brute-force method
simply iterates over every element in ev for each x, explicitly searching for all new closed
triplets given a new edge 〈u, v〉. The running time of the algorithm is O(dudv), which may
be problematical when two high-degree vertices are a�ected.

Algorithm 1 An algorithmic framework for updating local clustering coe�cients. All
loops can use atomic increment and decrement instructions to decouple iterations.

Input: Edge 〈u, v〉 to be inserted (+) or deleted (−), local clustering coe�cient numerators
T , and degrees d

Output: Updated local triangle counts T and degrees d
1: du ← du ± 1
2: dv ← dv ± 1
3: count ← 0
4: for all x ∈ ev do
5: if x ∈ eu then

6: Tx ← Tx ± 1
7: count ← count ± 1

8: Tu ← Tu ± count
9: Tv ← Tv ± count

If the edge list is kept sorted as in a static computation, the intersection could be
computed more e�ciently in O(du + dv) time. However, that buries the update cost in the
data structure and incurs too great a penalty in our dynamic structure. We can, however,
accelerate the method to O((du + dv) log du) by sorting the current edge list of dv and
searching for neighbors with bisection. The sorting routine can employ a parallel sort, and
iterations of the searching loop can be run in parallel given atomic addition / subtraction
operations. By sorting both edge lists forgoes exploiting �ne-grained parallelism in running
multiple bisection searches.

Approximating Clustering Coe�cients using a Bloom Filter

We present a novel set intersection approximation algorithm with constant-time search and
query properties and an extremely high degree of accuracy. We summarize neighbor lists
with Bloom �lters [8], a probabilistic data structure that gives false positives (but never
false negatives) with some known probability. We then query against this Bloom �lter to
determine if the intersection exists.

Edge arrays could be represented as bit arrays. In one extreme, each neighbor list could
be an array using one bit per vertex as well as an edge list. Then |eu∩ ev| can be computed
in O(min{du, dv}) time by iterating over the shorter edge list and checking the bit array.
However, the O(n2) storage is infeasible for massive graphs.
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Instead, we approximate an edge list by inserting its vertices into a Bloom �lter. A
Bloom �lter is also a bit array but uses an arbitrary, smaller number of bits. Each edge
list ev is summarized with a Bloom �lter for v. A hash function maps a vertex w ∈ ev to a
speci�c bit in this much smaller array. With fewer bits, there may be hash collisions where
multiple vertices are mapped to the same bit. These will result in an overestimate of the
number of intersections.

A Bloom �lter attempts to reduce the occurrence of collisions by using k independent
hash functions for each entry. When an entry is inserted into the �lter, the output of
the k hash functions determines k bits to be set in the �lter. When querying the �lter
to determine if an edge exists, the same k hash functions are used and each bit place is
checked. If any bit is set to 0, the edge cannot exist. If all bits are set to 1, the edge exists
with a high probability.

Bloom �lters have several parameters useful to �x a given probability of failure. In-
depth description of Bloom �lters' theory is beyond this paper's scope, but a few useful
features include the following: Bloom �lters never yield false negatives where an edge is
ignored, only false positives where a non-existent edge is counted. The probability of falsely
returning membership is approximately (1− e−kdu/m)k where m is the length of the �lter.
This can be optimized by setting k to an integer near ln 2×m/d [14], choosing d according
to the expected degrees in the graph. Our initial implementation uses two hash functions,
k = 2, and a 1 MiB �lter. The probability of a false-positive will vary depending on the
degree of the vertex. In a scale-free graph with an average degree of 30 and a maximum
degree of 200,000, the average false-positive rate will be 5× 10−11 and the worst-case rate
will be 6× 2−3.

Modi�cations to Algorithm 1 for supporting a Bloom �lter are straight-forward. After
line 3, initialize the Bloom �lter using vertices in eu:

1: for all y ∈ eu do

2: for i = 1→ k do

3: Set bit Hi(y) in Bx to 1

Then implement the search in line 5 as follows:

1: for i = 1→ k do

2: if bit Hi(x) = 0 then

3: Skip to next x

5 Multithreaded Platforms and Implementations

Our implementation is based on multithreaded, shared-memory parallelism. The single
code base uses di�erent compiler directives, or pragmas, to expose the threaded parallelism.
We use Cray compiler (version 6.3.1) and its pragmas for the massively multithreaded Cray
XMT, and we use OpenMP [21] via the GNU C compiler (version 4.4.1) for a comparison
on an Intel Nehalem E5530-based commodity platform.

The Cray XMT provides an ideal platform for massively multithreaded massive graph
analysis. Each Threadstorm processor contains 128 hardware streams that maintain a
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thread context. Context switches between threads occur every cycle, with a new thread
selected from the pool of streams not waiting on memory.

In this architecture, multithreading is used to hide some or all of the long latency of
memory accesses. There is no cache in the processors; all latency is handled by threading.
The XMT features a large, globally shared memory that is hashed to break up locality
and alleviate hot-spotting. Synchronization takes place at the level of 64-bit words, and
lightweight primitives like atomic fetch-and-add are provided to the programmer. The cost
of synchronization is amortized over the cost of memory access. Combined, these features
enable the algorithm designer to implement highly scalable parallel algorithms for analyzing
massive graphs.

The Cray XMT used for these experiments contains 64 Threadstorm processors running
at 500 MHz. The globally addressable shared memory totals 512 GiB and can hold graph
data structures containing more than 2 billion vertices and 17 billion edges. Because of the
Cray XMT is a shared resource, only 32 processors and around 300 GiB of memory were
available for our tests.

The Intel Nehalem E5530 is a 2.4GHz quad-core processor with �hyperthreading� [4].
Each physical core holds two thread contexts and switches when one thread stalls while
waiting for memory. The context switches are not as frequent as on the Cray XMT, and
there are only two contexts available for hiding memory latencies. However, each core has
256 KiB of level two cache, and each processor module shares 8 MiB of level three cache.
The platform tested has two E5530s, a total of eight cores and 16 threads, with 12 GiB of
main memory.

Code's threading implementation is straight-forward. Each undirected edge 〈u, v〉 is
added to or removed from the data structure using two threads, one to work from each
end vertex. There is no explicit locking involved. The STINGER structure requires only
ordered, atomic read/write of 64-bit integers (e.g. end vertices, timestamps) and atomic
increment/decrement of counters (e.g. degrees, o�sets). Both the Cray intrinsics and the
OpenMP pragmas can express the speci�c operations we need. However, to simplify the
code, we use the GCC/Intel intrinsic functions similar to the Cray intrinsics.

The algorithm to update the triangle counts T above use appropriate pragmas to paral-
lelize the outer loops. Inner loops are not parallelized under OpenMP; the target platform
has insu�cient threading resources to bene�t from that level of parallelism. However, the
inner loops are parallelized on the XMT by a loop collapse [23]. An atomic increment
updates the count of a shared neighbor Tw.

Local clustering coe�cients' properties help us batch the input data. Recomputing
changed coe�cients only at the end of the batch's edge actions frees us to reorder the
insertions and deletions. Reordering repeated insertions and removals of the same edge
may alter the edge's auxiliary data, however, so we must take some care to resolve those
in sequence order. After resolving actions on the same edge, we process all removals before
all insertions to open edge slots and delay memory allocation.

The batch algorithm is as follows:

1: Transform undirected edges 〈i, j〉 into pairs of directed edges i→ j and j → i because
STINGER stores directed edges.
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2: Group edges within the batch by their source vertex.
3: Resolve operations on the same edge in sequence order.
4: Apply all removals, then all insertions to the STINGER structure.
5: Recompute the triangle counts and record which vertices are a�ected.
6: Recompute the local clustering coe�cients of the a�ected vertices.

In step 5, we use slight variations of the previous algorithms. The source vertex's
neighboring vertices are gathered only once, and the array is re-used across the inner loop.
The sorted update and Bloom �lter update compute their summary data using the source
vertex rather than choosing the larger list.

6 Performance

Our test data is generated by the RMAT recursive matrix generator [11] with probabilities
A = 0.55, B = 0.1, C = 0.1, and D = 0.25. Each generated matrix has a few vertices
of high degree and many vertices of low degree. Given the RMAT scale k, the number of
vertices n = 2k, and an edge factor f , we generate f · n unique edges for our initial graph.
We then select a fraction ρe of those edges and add them to a deletion queue. For these
experiments, ρ = 0.0625.

After generating the initial graph, we generate 1024 actions (edge insertions or dele-
tions) for edge-by-edge runs and 1 million actions for batched runs. With probability ρ, a
new action is a deletion popped from the deletion queue. Otherwise an action is an insertion
generated with the same RMAT generator and parameters. The edge to be inserted may
already exist in the graph. Inserted edges are appended to the deletion queue with proba-
bility ρ. There are no self-loops in our generated edges, but the algorithm implementations
do handle self-loop cases by ignoring edges 〈v, v〉.

Because of shared usage, our runs on the Cray XMT are limited to 32 processors and
around 300 GiB of memory. Clearly the Cray XMT applies to far larger problems than
the Intel-based platform. The latter is limited to scale k = 21 and edge factor f = 16 with
our current test harness. On the Cray XMT, our largest experiments were sixteen times
larger, with k = 24 and f = 32, and are limited more by our testing code's structure than
the XMT's architecture.

6.1 Scalability of the Initial Computation

We begin by computing the correct clustering coe�cients for our initial graph. While not
the focus of this paper, performance on the initial computation shows interesting behavior
on the two test platforms.

The initial clustering coe�cients algorithm is a straight-forward computation by count-
ing all triangles. For each edge 〈u, v〉, we count the size of the intersection |eu∩ev|. This is a
static computation, so we use a packed representation with sorted edge arrays for e�ciency.
The algorithm as a whole runs in O(

∑
v d

2
v) time where v ranges across the vertices and

the structure is pre-sorted. The multithreaded implementation also is straight-forward; we
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Figure 3: Performance of the initial clustering coe�cient computations, normalized
for problem size by presenting the number of edges in the graph divided by the total
computation time. The Cray XMT scales well as additional processors are added, while
the Nehalem platform's memory system leads to decreasing performance.
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parallelize over the vertices. With 221 ≈ 2 million vertices in the smallest case, this is a
su�cient amount of parallelism for both platforms.

The initial computation has not been seriously tuned for performance on either platform.
The algorithm itself is somewhat coarse-grained with su�ciently sized chunks of work to
amortize run-time overhead. In Figure 3, the Cray XMT's performance improves with
increasing processors. The Intel Nehalem's performance decreases, possibly because of
memory transaction bottlenecks. We are investigating this performance decrease.

6.2 Number of Individual Updates per Second

Unlike calculating the triangle counts T for the entire graph, updating T for an individual
edge insertion or deletion exposes a variable amount of �ne-grained parallelism. We present
results showing how aggregate performance of a single edge insertion or deletion stays
relatively constant.

Table 1 summarizes the sequential complexity of our update algorithms. Figure 4
presents boxplots summarizing the updates per second achieved on our test platforms.
Figure 5 shows the speed up of locally recomputing the metric relative to recomputing the
entire graph's clustering coe�cients. The boxes in Figures 4 and 5 span the 25% � 75%
quartiles of the update times for each processor count. The bar through the box shows
the median. The lines stretch to the farthest non-outlier, those within 1.5× the distance
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Figure 4: Updates per second by algorithm.
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Figure 5: Speed up of incremental, local updates relative to recomputing over the entire
graph.
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Algorithm Update complexity

Brute force O(dudv)
Sorted list O((du + dv) log du), du < dv
Bloom �lter O(du + dv)

Table 1: Summary of update algorithms

Algorithm Edge by edge Batched (batch of 1000) Batched (batch of 4000)

Brute force 90 25,100 50,100
Bloom �lter 60 83,700 193,300

Table 2: Comparison of single edge versus batched edge operations on 32 XMT processors,
RMAT 24 input, in updates per second

between the median and the closest box side. The points are outliers.
In Figure 4, we see the Cray XMT keeps a steady update rate on this relatively small

problem regardless of the number of processors. The outliers with 16 processors are a
result of sharing resources with other users. The Bloom �lter shows the least variability in
performance. Figure 4 shows that recomputing only the changed local clustering coe�cients
speeds up the update rate typically by at least a thousand times.

The Nehalem results degrade with additional processors. The noise at 12 and 16 pro-
cessors results from over-allocation and scheduling from hyperthreading. The Nehalem
outperforms the Cray XMT by several orders of magnitude, but can only hold a graph of
approximately 2 million vertices. This Cray XMT is capable of holding a graph in memory
up to 135 million vertices.

Table 2 shows performance obtained from batching operations and extracting paral-
lelism. The sorting algorithm was not considered for batching. Notice that increasing the
batch size greatly improves performance. For the Bloom �lter, this comes at the cost of a
proportional increase in memory footprint. A batch size of 4000 required choosing a �lter
size of 1 MiB to �t within the system's available memory. Even so, we encountered no
false positives over 1 million edge actions. Increasingly the batch size intuitively improves
scalability since data parallelism is increased in the update phase.

7 Conclusions and Future Work

We handle individual updates rapidly enough for simple analysis (Figure 4). Update the
clustering coe�cients after each edge insertion or deletion duplicates setup time, so the
sorted update and Bloom �lter algorithms perform relatively poorly.

The serial stream contains enough parallelism when batched to exploit the Cray XMT's
massively multithreaded architecture. We achieve a speed-up of 550× over edge-by-edge
updates. The update rates of nearly 200 000 updates per second almost match gigabit
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Ethernet packet rates.
False-positives from Bloom �lters may introduce an approximation. A modestly sized

�lter produces an exact result with no false-positives from our sampled scale-free networks.
The Bloom �lter approach achieved a 4× speed-up over the brute-force method on the
Cray XMT.
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