
Scaling Irregular Applications through Data Aggregation and Software

Multithreading

Alessandro Morari, Antonino Tumeo
Daniel Chavarrı́a-Miranda

Pacific Northwest National Laboratory

Richland, WA, USA

{alessandro.morari, antonino.tumeo,

daniel.chavarria}@pnnl.gov

Oreste Villa

NVIDIA

Santa Clara, CA, USA

ovilla@nvidia.com

Mateo Valero

Universitat Politecnica de Catalunya

Barcelona Supercomputing Center

Barcelona, Spain

mateo@bsc.es

Abstract—Emerging applications in areas such as bioin-
formatics, data analytics, semantic databases and knowledge
discovery employ datasets from tens to hundreds of terabytes.
Currently, only distributed memory clusters have enough
aggregate space to enable in-memory processing of datasets of
this size. However, in addition to large sizes, the data structures
used by these new application classes are usually charac-
terized by unpredictable and fine-grained accesses: i.e., they
present an irregular behavior. Traditional commodity clusters,
instead, exploit cache-based processor and high-bandwidth
networks optimized for locality, regular computation and bulk
communication. For these reasons, irregular applications are
inefficient on these systems, and require custom, hand-coded
optimizations to provide scaling in both performance and size.
Lightweight software multithreading, which enables tolerating
data access latencies by overlapping network communication
with computation, and aggregation, which allows reducing
overheads and increasing bandwidth utilization by coalescing
fine-grained network messages, are key techniques that can
speed up the performance of large scale irregular applications
on commodity clusters. In this paper we describe GMT (Global
Memory and Threading), a runtime system library that couples
software multithreading and message aggregation together with
a Partitioned Global Address Space (PGAS) data model to
enable higher performance and scaling of irregular applications
on multi-node systems. We present the architecture of the
runtime, explaining how it is designed around these two critical
techniques. We show that irregular applications written using
our runtime can outperform, even by orders of magnitude, the
corresponding applications written using other programming
models that do not exploit these techniques.

I. INTRODUCTION

Bioinformatics, complex network analysis, community

detection, data analytics, language understanding, pattern

recognition, semantic databases and, in general, knowledge

discovery are new classes of data-intensive high performance

computing applications [10]. These application areas are

characterized by dataset sizes already well over the petabyte,

which keep growing exponentially.

In addition to being very large, the data employed by

these application areas are usually organized in pointer-

or linked list-based structures, such as graphs, unbalanced

trees or unstructured grids, which exhibit poor spatial and

temporal locality, and present fine-grained, unpredictable

accesses. This makes these types of codes irregular [29].

The algorithms that process these datasets are also inherently

parallel, because they can potentially spawn a concurrent

activity for each element (e.g., each vertex or each edge in

a graph). Nevertheless, the datasets usually are difficult to

partition without generating imbalance among the parallel

activities, because their elements are highly interconnected

(e.g., power law graphs). Furthermore, they present high

synchronization intensity, because the various activities need

to access and/or update the same elements.

A key requirement for these applications is that as the

dataset size increases, the performance should scale too,

maintaining almost constant throughputs. Thus, even if

secondary storage technologies, such as Solid State Disks

(SSDs), are improving in throughput and access latency, only

in-memory processing can provide scalable performance.

On the other hand, even if the quantity of memory instal-

lable on single node servers and workstations is signifi-

cantly increasing, only multi-node systems can reach the

required memory sizes. However, modern commodity clus-

ters employ processors with advanced cache architectures

and rely on data locality, regular computations and bulk

communication to achieve high performance. Implementing

irregular applications on these machines requires a signifi-

cant and highly application-specific optimization effort. The

distributed memory architecture of these clusters further

complicates application development, forcing developers to

search for efficient ways to partition datasets and minimize

communication overheads.

The Partitioned Global Address Space (PGAS) program-

ming model seems to be a promising solution to develop

applications with a shared memory abstraction on distributed

memory clusters, without neglecting locality principles.

The PGAS data model enables the allocation and access

of difficult to partition datasets in the global, aggregate

memory of a cluster. However, typically, PGAS remote

data access primitives have been designed and optimized

for more regular applications and data sets. Multithread-

ing and message aggregation may enable better support

for irregular workloads. Multithreading can be effectively

used to hide the latencies of memory or network data

accesses. For instance, the Cray XMT [13] implements a

multi-threaded processor to tolerate memory and network



access latencies, a scrambled global address space across

nodes and full/empty bits associated with each memory

word for fine-grain synchronization. However, the reduced

market for custom architectures makes them expensive to

produce and maintain. Message aggregation (also called

message coalescing) allows packing small data requests in a

single message, amortizing network overheads and providing

higher aggregate network throughput.

In this work, we introduce GMT (Global Memory and

Threading library), a custom runtime library that enables

efficient execution of irregular applications on commodity

clusters. To obtain such objective, GMT integrates a PGAS

locality-aware global data model together with lightweight

software multithreading and message aggregation.

In GMT parallelism is identified through parallel loop

constructs, with support for nested parallelism. These con-

structs enable the expression of the large amount of fine

grained parallelism and data accesses typically found in ir-

regular applications. GMT supports millions of lightweight,

user-level tasks, mapped on top of a pthreads + MPI software

substrate. GMT’s runtime implements the key techniques of

software multithreading and remote request aggregation.

This work aims at demonstrating that lightweight software

multithreading and message aggregation enable GMT to

outperform other programming approaches for commodity

clusters on large scale irregular applications. We quan-

tify the performance benefits of GMT with respect to

MPI with micro-benchmarks performing a large number of

fine-grained irregular remote requests. Then, we compare

GMT to other PGAS models (UPC on GASNet), to hand-

optimized MPI code, and to custom machines (Cray XMT)

on a set of typical kernels of large scale irregular appli-

cations: Breadth First Search (BFS), Random Graph Walk

(RGW) and Concurrent Hash-Map Access (CHMA). Our

results demonstrate performance orders of magnitude higher

than other solutions for commodity clusters, and competitive

performance compared to custom systems. We show that

GMT enables high scalability in performance and dataset

size, as additional nodes are added to the system.

II. RELATED WORK

Efficiently executing large-scale irregular applications has

been a significant research topic for a while.

The Tera MTA and its successors, Cray MTA-2,

XMT [13] and Urika are the most relevant examples of cus-

tom multi-node supercomputers for irregular applications.

They use simple, highly multithreaded (up to 128 hardware

threads), cacheless VLIW processors that support a global

address space in hardware, interconnected with the high-

performance Cray Seastar-2 network. The large number of

threads allows tolerating both local and remote memory ac-

cess latencies. The address space is scrambled across nodes

at a fine granularity (64 bytes on the XMT), reducing the

hot-spot occurrence and obtaining more uniform data access

times. Every memory word is associated with full/empty bits

that provide fine grain synchronization. Research has shown

that adding remote communication aggregation can provide

performance benefits to the architecture with irregular ap-

plications [24].

Several types of software approaches have been proposed

to enhance the performance of irregular applications on

distributed memory machines. Multipol [7] is a library

of distributed data structures for irregular problems. The

CHAOS/PARTI [12] runtime support library is a set of

software primitives that couple partitioners to the application

programs, remap data and partition work among processors,

and optimize interprocessor communications. These libraries

are mainly targeted at optimizing the data partitioning and at

reducing communication overheads across processors/nodes

through caching mechanisms. They do not implement a

global address space, do not exploit multithreading to toler-

ate data access latencies and do not make use of aggregation

to maximize utilization of network bandwidth.

The Partitioned Global Address Space programming

model (PGAS) realizes an abstracted shared address space

across distributed memory systems, without neglecting data

or thread locality. The PGAS programming model is imple-

mented in languages and libraries such as: Unified Parallel C

(UPC) [11], [25], [27], Co-Array Fortran (CAF) [16], [23],

the Global Arrays (GA) Toolkit [21], X10 [9], Chapel [8]

and others. These programming models rely on communi-

cation runtime libraries that manage the data exchanges be-

tween distributed address spaces, amongst them GASNet [5]

and ARMCI [22]. GASNet serves as a communication run-

time to several PGAS languages, including Unified Parallel

C (UPC) [25], Titanium [28], and Co-Array Fortran [16].

The objective of our work is not propose yet another PGAS

programming model or language. GMT is also based around

a PGAS concept, but it exposes a very lean Application

Programming Interface (API), which provides the basic

constructs to access and manage the shared space required

by irregular applications. It also supports a very simple

form of for loop parallelism. However, differently from other

libraries, it couples PGAS with software multithreading and

message aggregation, to increase performance and enable

multi-node scaling of irregular applications.

Grappa [20] is a runtime which integrates a PGAS pro-

gramming model and multithreading for latency tolerance,

targeted at increasing performance of graph crawling on

commodity x86 clusters. Compared to our approach, it

employs a substantially different architecture: it is based on

GASNet, it has limited support for data aggregation, and it

does not exploit thread specialization.

Active Pebbles [26] includes both a programming model

for fine-grained data-driven computations and an execution

model, which maps the fine-grained expressions to an effi-

cient implementation. Active Pebbles exploits the concept of

active messages, and its execution model includes a form of

message aggregation. GMT, instead, focuses on providing a

simple API targeted to irregular applications, which exploits

fine grained loop parallelism and relies on message aggrega-

tion and multithreading to increase performance. GMT also



exploits thread specialization to realize its functionalities.

Charm++ [17] is a parallel programming system based

on a programming model that exploits message-driven ob-

jects (chares). The runtime can adaptively assign chares to

processors during program execution, and supports latency

tolerance by switching from blocked processes to others.

Again, GMT does not introduce a new programming model.

With respect to the Charm++ execution model, our runtime

also supports message aggregation and a much finer task

granularity for latency tolerance, specifically targeting issues

of irregular applications.

High Performance PX (HPX) is a runtime system based

on the ParalleX execution model [14]. ParalleX exploits a

split-phase multithreaded transaction distributed computing

methodology, decoupling computation and communication.

ParalleX supports fine-grain multithreading, global address

space, overlapping of communication and computation and

is able to move work to the data. However, ParalleX is much

more complex in scope than GMT, which only addresses

issues of irregular applications. Moreover, the current HPX

runtime is incomplete, missing data aggregation and de-

veloped with an approach to provide features, rather than

scalability, first.

There are several libraries for graph processing on dis-

tributed systems. Among them, the most widely used are

Pregel [19], Giraph [1] and GraphLab [18]. However, they

only aim at solving graph traversal and graph-related algo-

rithms, with a specific data structure. GMT, instead, targets

a wider class of irregular data structures and algorithms,

and aims at providing multi-node scalability through multi-

threading and data aggregation.

III. APPLICATION PROGRAMMING INTERFACE

Considering the three dimensions of productivity, perfor-

mance and generality, GMT favors productivity and perfor-

mance over generality. We employ a programming model

that simplifies the development of irregular applications, and

rely on the runtime system to enable high performance and

scalability for this specific class of applications.

Table I summarizes the primitives currently provided by

GMT. In the following sections we describe the character-

istics of GMT’s API.

A. PGAS data model

The application data is partitioned between global data

and local data. The programmer allocates the data structures,

mostly arrays, in a virtual global address space, and accesses

them through get and put operations (see Table I). Global

data structures are identified by handlers that are passed to

the various GMT primitives. Global data is moved into the

local space to be manipulated and then written back into

the global space. This approach enables the programmer to

ignore the actual memory address and cluster node where

the data is allocated.

B. Loop parallelism program structure model

In GMT, the programmer expresses parallelism through

a parallel loop construct (gmt parFor() in Table I), a par-

allel control model typical of shared memory paradigms.

In contrast with Single Program Multiple Data models,

where processes are created at the beginning of a parallel

application, this model allows efficiently creating dynamic

tasks. In GMT, a task is a user-defined function executed

for several iterations using the gmt parFor() construct.

The parallel loop construct enables creation of new tasks

from iterations of loops over independent individual struc-

ture elements (e.g., parallel loops over all vertices or edges

of a graph). The application developer can specify how

many iterations of the original loop to assign to each task

(chunk size), but the runtime is also capable of dynami-

cally detecting if the same processing entity should execute

more iterations for load balancing purposes. In the current

implementation, the calling task is suspended until all the

iterations of the parallel loop are completed. Finally, GMT

also supports nested parallel loops, enabling programming

patterns such as recursive parallel constructs.

C. Explicit data and code locality management

The GMT allocation primitive allows controlling

the data distribution through different strategies. The

GMT ALLOC PARTITION strategy allocates data in a

block distributed manner, so that it is uniformly distributed

across all the nodes. The GMT ALLOC LOCAL strategy

allocates data only on the memory of the local node. Finally,

the GMT ALLOC REMOTE strategy allocates data on all

other nodes except the one that executes the primitive.

GMT does not expose the physical location of data to the

programmer, to avoid explicit management of data pointers

and node ranks. Analogously, GMT task creation policies

(GMT SPAWN PARTITION, GMT SPAWN LOCAL and

GMT SPAWN REMOTE) control the locality of the tasks

created by a parallel loop. The programmer only controls the

locality policy, while the runtime takes care of transparently

mapping the tasks to the available cluster resources (i.e.,

processor cores).

D. Blocking and Non-blocking semantics

GMT communication primitives feature both blocking and

non-blocking semantics. When using the blocking flavor of

the primitives, the task suspends until the operation effec-

tively completes. When the function of a blocking operation

returns, the termination of the operation is guaranteed, for

both remote and local operations. When using the non-

blocking flavor of the primitives, the task continues, and

the order of operations is not guaranteed. When the code

calls gmt waitCommands(), the task is suspended, until the

runtime completes all the pending non-blocking operations.

For performance reasons, given the fine-grain nature of

communication operations, gmt waitCommands() does not

allow waiting for a specific non-blocking operation.



Routine Functionality

gmt array gmt alloc(size, locality) Allocates a gmt array with the specified data distribution (partitioned, remote, local)
gmt free(gmt array) Deallocates a previously allocated gmt array

gmt putNB(gmt array, offset, *data, size) Puts a local buffer into the indicated gmt array starting at the specified offset (non
blocking)

gmt putValueNB(gmt array, offset, value, size) Puts a value into the gmt array at the specified offset (non blocking)
gmt getNB(gmt array, offset, *data, size) Gets a portion of a gmt array starting from offset into a local buffer (non blocking)
gmt waitCommands() Waits for completion of previously issued non-blocking operations

gmt put(gmt array, offset, *data, size) Blocking put
gmt putValue(gmt array, offset, value, size) Blocking putValue operation
gmt get(gmt array, offset, *data, size) Blocking get

gmt atomicAdd(gmt array, offset, value, size) Atomically adds a value to the value contained in a gmt array at the specified offset
gmt atomicCAS(gmt array, offset, oldValue, newValue, size) Exchanges a value with the value contained in a gmt array at the specified offset. Returns

the old value

gmt parFor(tot iters, chunk size, *tasks, *args, locality) Spawn tasks that execute the iterations, up to the total number of iterations, and takes as
input the specified argument buffer. Tasks are spawned on all the allocated nodes of the
system, locally or remotely, and execute chunk size iterations per task.

Table I: GMT API summary

E. Explicit synchronization

The programmer explicitly synchronizes access to global

data structures. GMT provides atomic operations such as

gmt atomicCAS() or gmt atomicAdd() (see Table I), en-

abling implementation of global synchronization constructs.

IV. RUNTIME ARCHITECTURE

We built GMT around three main “pillars”: global ad-

dress space, latency tolerance through fine-grained software

multithreading, and remote data access aggregation (also

known as coalescing). As previously discussed, global ad-

dress space support relieves application developers from

having to partition data sets as well as having to or-

chestrate communication. Message aggregation (coalescing)

maximizes network bandwidth utilization, despite the small

data accesses typical of irregular applications. Fine-grained

multithreading enables applications to perform useful work

while communication is in progress, hence hiding latencies

for remote data transfers as well as the added latency for

aggregation.

To explore the design choices of GMT’s building blocks,

and for the overall experimental evaluation, we employed

Pacific Northwest National Laboratory’s Olympus super-

computer, listed in the TOP500 [3]. Olympus is a cluster

of 604 nodes interconnected through a QDR Infiniband

switch with 648 ports (theoretical peak of 4GB/s). Each

Olympus’ node features two AMD Opteron 6272 processors

(codename “Interlagos”) at 2.1 Ghz and 64 GB of DDR3

memory clocked at 1600 Mhz. Each socket hosts 8 processor

modules (two integer cores, one floating point core per

module) on two different dies, for a total of 32 integer cores

per node. A module includes a L1 instruction cache of 64

KB, two L1 data caches of 64 KB, and a 2 MB L2 cache.

Each 4-module die hosts a shared L3 cache of 8 MB. Dies

and processors communicates through HyperTransport.

A. Overview

GMT only targets multi-node distributed memory sys-

tems. Indeed, its main features (PGAS, software multi-

threading and message aggregation) are not needed or have

limited utility on a single shared-memory node. GMT targets

clusters with multicore x86 processors interconnected with

modern, fast networks (e.g., Infiniband, Cray Gemini or Cray

Figure 1: Architecture overview of GMT

Aries). The only software requirements is the support of MPI

and Posix threads.

Figure 1 illustrates the high level design of GMT. Each

node executes an instance of GMT, and the various in-

stances communicate through commands. Different types

of commands exist for GMT operations, such as global

data read/write, synchronization and thread management.

Commands may also include data movement (e.g., gmt put()

and gmt get()). An instance of GMT, executing in one

cluster node, includes three different types of specialized

threads:

Worker: executes the application code, partitioned in tasks,

and generates requests, in form of commands, directed

towards both the local node and the remote nodes;

Helper: manages global address space and synchroniza-

tion, handles incoming requests and generates the related

outgoing replies, in form of commands;

Communication Server: communication endpoint on the

network, manages incoming and outgoing communication at

the node level. Workers and helpers send commands to the

communication server, which forwards them to the remote

nodes.

A GMT node includes multiple workers and helpers, but

only a single communication server. We implemented the



32 proc. 1 proc. 1 proc. 1 proc.
message size no threads 1 thread 2 threads 4 threads

16B 9.63 4.22 2.73 0.77
32B 19.54 9.63 5.70 1.58
64B 39.05 19.54 10.99 3.12

128B 72.26 39.05 19.73 6.22

16KB 2806.94 1924.98 646.52 269.63
32KB 2806.95 2250.15 892.80 469.40
64KB 2815.01 2559.50 794.60 566.09
128KB 2835.98 2709.07 1042.01 564.87

Table II: Transfer rates with in MB/s between two nodes

with varying thread and process number.

specialized threads as POSIX threads, each pinned to a core.

B. Communication

A fundamental design point for GMT is the choice of the

underlying communication library. GMT does not use com-

munication libraries that already provides PGAS primitives,

such as GASNet [5], because their implicit communication

mechanism does not support message aggregation. Hence,

we opted for implementing our own PGAS primitives,

designing them with message aggregation from the ground-

up. The only requirement is a message passing interface,

optimized for high bandwidth. We selected MPI, because it

is the de-facto standard for message passing interfaces, and

supports the broadest variety of architectures.

We then determined the number of Communication

Servers required to maximize node-to-node bandwidth with

MPI. We analyzed several combinations of MPI processes

and threads per node to determine the highest bandwidth.

Table II presents a comparison of the transfer rates between

two Olympus’ nodes, when transferring a large number

of messages from one node to the other and waiting the

acknowledgement from the receiver for every 4 messages.

We used a slightly modified version of the OSU Micro-

Benchmarks 3.9 [2] (introducing multithreading support)

to compare MPI (OpenMPI 1.5.4) with multiple processes

(32 on the same node) and MPI (MVAPICH 1.9b) with

one, two and four threads. On Olympus, we found multi-

threading to have better performance with MVAPICH than

with OpenMPI.

MPI with multiple threads per process exhibits low

transfer-rates. The best performance is obtained using large

messages with 32 processes per node. Nonetheless, we

consider this an unfeasible solution for GMT, because of

the complexity and the high memory foot-print of managing

different address spaces. As shown in Table II, transfer

rates are particularly sensitive to the message size. Even

if we are showing results for Olympus, we observed similar

MPI behavior with other processor architectures and network

interconnects. These results drove our decision to design

GMT with a single communication server, and to rely on

message aggregation to maximize the network bandwidth.

Each worker (or helper) aggregates commands in large

messages (buffers), and forwards them to a single communi-

cation server that in turn performs the MPI call. The optimal

size of the aggregation buffers is a trade off between the

bandwidth and the memory foot-print of large buffers. In our

experiments with Olympus, we found a buffer size of 64KB

Figure 2: Bandwidth of using a single Communication

Server and a single worker with varying message size.

Figure 3: Aggregation mechanism

to be a good compromise. Figure 2 shows the bandwidth

reached between two nodes when using one worker and one

communication server, while varying the message size. This

configuration provides a bandwidth up to 2630 MB/s with

64KB messages, slightly below the measured MPI network

bandwidth of 2815.01 MB/s with the same message size.

C. Aggregation

Data aggregation allows efficient exploitation of the avail-

able network bandwidth in presence of the fine grained data

accesses typical of irregular applications. GMT accumulates

commands directed towards the same destination nodes and

sends them in bulk. These commands are then unpacked and

executed at the destination node.

To increase the opportunity of aggregating network trans-

fers, GMT uses aggregation queues to collect request or

reply commands with the same destination from all the

workers and helpers of a node. To this aim, GMT em-

ploys high-throughput, non-blocking concurrent aggregation

queues. These aggregation queues support concurrent access

from multiple workers and helpers, but the cost of concurrent

accesses to the queues is too high (high access frequency)

if performed for every generated command. For this reason,

GMT uses a pre-aggregation phase: each worker (or helper)

initially collects commands in local command blocks and

then inserts them into the aggregation queue.

Figure 3 describes the aggregation mechanism in GMT.

When a worker or a helper thread starts generating com-

mands, it requests one of the pre-allocated command blocks

from the command block pool (1). Command blocks are re-

usable arrays containing several commands. They are pre-



allocated and recycled for performance reasons. While a

worker executes the application code, it generates commands

of various types that are collected into the local command

block (2). Helpers also generate commands when creating

replies for incoming operations. In the example, a worker

generates commands A,C,D and a helper generates com-

mands K,L,N and O. Waiting until the command block is full

may increase too much the latency. For this reason, workers

or helpers push command blocks into the an aggregation

queue (3) when one of the following conditions is verified:

i) the command block is full; ii) the command block has been

waiting longer than a predetermined time interval (clock

cycles). A command block is considered full when all the

available entries are occupied with commands, or when the

size in bytes of the commands, with the attached data,

reaches the maximum size of the aggregation buffer.

Aggregation queues are shared among all the workers

and helpers in the node, and there is one of them for

each destination node. The aggregation consists in copying

commands into an aggregation buffer that is sent over the

network to the destination node. When a worker (or a

helper) finds that the aggregation queue for a destination

node has enough command blocks to fill an aggregation

buffer (in terms of number of commands or in equivalent

byte size), the actual aggregation starts. Aggregation can

also start because the aggregation queue has been waiting

longer than a predetermined time interval. When aggregation

starts, the worker (or helper) pops command blocks from the

aggregation queue to fill the aggregation buffer (4). GMT

uses a fixed pool of aggregation buffers that are recycled

to save memory space and eliminate allocation overhead.

Multiple commands are copied from their command block

into the aggregation buffer at once (5). For commands that

require data movement (such as gmt put() or the reply to a

gmt get), the data is also copied from the memory into the

aggregation buffer (6). In the example in Figure 3, the data

for the commands A, C, D is represented as dA, dC and dD

respectively. After the copy, commands blocks are returned

to the command block pool (7). The aggregation algorithm

continues to push command blocks until an aggregation

buffer is full. When this happens, the worker (or helper)

pushes the aggregation buffer into a channel queue (8).

Channel queues are high-throughput single-producer single-

consumer queues that enable the communication between a

worker (or helper) and the communication server.

The communication server continuously polls the chan-

nel queues, checking if new filled aggregation buffers are

available. If so, the communication server pops a filled

aggregation buffer and performs a non-blocking MPI send. It

then returns the aggregation buffer into the pool of available

aggregation buffers (not represented in the figure).

D. Multithreading

Concurrency, through fine-grained software multithread-

ing, allows tolerating the added latency for aggregating

communication operations. We use the term task to identify

ctxt switches 1 task 8 tasks 64 tasks 1024 tasks

1 1816.00 1500.25 1536.81 1799.10
100 497.31 496.71 554.25 590.91

1000 517.14 494.56 545.00 579.13

Table III: Latency (clock cycles) of a context switch when

increasing the number of tasks and the number of context

switches per task.

a function pointer and an execution context inside GMT,

while we use the term specialized thread (or, simply, thread)

to identify either a worker, a helper or the communication

server. Each worker executes a set of GMT tasks. The worker

switches among tasks’ contexts every time it generates a

blocking command that requires a remote memory operation.

The task that generated the command executes again only

when the command itself completes (i.e., it gets a reply

back from the remote node). In case of non-blocking com-

mands, the task continues executing until it encounters a

gmt wait commands() primitive.

GMT implements custom context switching primitives

that avoids some of the lengthy operations (e.g., saving and

restoring signal mask) performed by the standard libc con-

text switching routines. To evaluate the maximum network

latency that is potentially tolerable, we measured the cost of

context switching among two or more tasks. We performed

an experiment that executes an increasing number of context

switches among an increasing number of tasks.

Table III shows the latency, in clock cycles, to execute

a context switch with this experiment. When increasing the

number of context switches from 1 to 1000, we observe the

effect of the caches that avoids retrieving the task context

from memory. We also observe that the latency only slightly

increases when increasing the number of tasks.

Given the typical network latency being in the order of

106 cycles and a single context switch being less than 103

cycles, GMT can perform more than 103 context switches

during the time a task is waiting for a remote reply. The

optimal number of concurrent tasks per worker actually

depends on the architecture (cache size) and on the workload

(amount of work per task).

Figure 4: Fine grain multithreading in GMT.

In GMT, the programmer typically generates tasks (except

the task zero) by calling the gmt parFor() construct. Figure

4 schematically shows how GMT executes a task. A node



Parameter Configuration

NUM WORKERS 15
NUM HELPERS 15
NUM BUF PER CHANNEL 4
MAX NUM TASKS PER WORKER 1024
SIZE BUFFERS 65536

Table IV: GMT configuration parameters for Olympus

receives a message containing a spawn command (1) that

a worker in a remote node generated when encountering a

gmt parFor() construct. The communication server passes

the buffer containing the command to an helper, which

parses it and executes the command (2). The helper then

creates an iteration block (itb). The itb is a data structure

that contains the function to execute, the arguments of the

function itself, and the number of tasks that execute the same

function. Each task represents a single iteration of the orig-

inal parFor. This way of representing a set of tasks avoids

the cost of creating a large number of function arguments

and sending them over the network. In the following step,

the helper pushes the iteration block into the itb queue (3).

Then, an idle worker pops the iteration block from the itb

queue (5), decreases the counter of the iterations of t and

pushes it back into the itb queue (6). The worker creates t
tasks (6) and pushes them into its private task queue (7).

An idle worker pops a task from its task queue (8). If the

worker can execute the task (i.e., all remote requests are

completed), it restores the task’s context and executes it (9).

Otherwise, it pushes the task back into the task queue. The

task contains user-level application code, which eventually

calls one of the GMT primitives. In case the GMT primitive

is a blocking remote request (e.g., gmt get()), or an explicit

wait (gmt waitCommands()), and they are not completed,

the task enters into a waiting state (10) and is reinserted

into the task queue for future execution (11).

V. EXPERIMENTAL EVALUATION

As introduced in section IV, we evaluated GMT on

PNNL’s Olympus supercomputer. GMT can adapt to other

systems by tuning configuration parameters defined at in-

stallation time. For this work, we empirically optimized the

parameters for the Olympus system. Table IV presents the

configuration used in our benchmarks.

Parameters NUM WORKERS and NUM HELPERS de-

fine the number of worker and helper threads per node. Pa-

rameters NUM BUF PER CHANNEL and SIZE BUFFERS

determine how many buffers are allocated to each com-

munication channel and their size in bytes. Finally,

MAX NUM TASKS PER WORKER defines the maximum

number of tasks concurrently executed by each worker. A

detailed explanation of the effects and correlations of each

parameter is outside the scope of this work.

A. Micro-benchmarks

In this section we characterize the peak communication

performance of GMT. The aim of this characterization is

to quantify the effects of the aggregation when performing

a large number of basic GMT remote operations. When

GMT executes a series of fine-grain put operations, we

expect to observe a considerable performance improvement

in bandwidth utilization with respect to sending MPI mes-

sages of the same size, because of aggregation. Furthermore,

increasing the number of concurrent tasks increases the

likelihood of generating communication operations. Thus,

we expect that aggregate bandwidth increases with the

number of concurrent tasks in the node.

Figure 5: Transfer rates of put operations between 2 nodes

while increasing concurrency

Figure 5 shows how transfer rates between two nodes

behave when increasing the number of tasks per node in

GMT. Every task executes 4096 blocking put operations. All

the experiments use 15 workers, but we increase the number

of tasks for the node. The graph plots message sizes from 8B

to 128 bytes. We verify that increasing the concurrency in the

node increases the transfer rates, because there is a higher

number of messages that GMT can aggregate. With 1024

tasks, puts of 8 bytes reach a bandwidth of 8.55 MB/s. With

15360 tasks, the bandwidth increases to 72.48 MB/s, a factor

of 8.4. Larger messages provide higher bandwidth, because

they reduce network overhead. With messages of 128 bytes

and 15360 tasks, GMT reaches almost 1 GB/s, while the

best MPI implementation reaches 72.26 MB/s (using 32

processes). At these message sizes, with blocking operations,

the task switching time also becomes a factor. In fact, a

node should be able to generate as many network references

as possible to saturate the effective network bandwidth for

small messages. When concurrent tasks emit communication

operations in parallel, they increase the injection rate. How-

ever, if the task switching time is too high, there is an added

latency between an injected network operation and another,

which may not allow maximizing network utilization, even

considering the overheads for packet headers.

With more destination nodes, the probability of aggre-

gating enough data to fill a buffer for a specific remote

node decreases. To verify the behavior of aggregation with

higher numbers of nodes, we executed the same experiment

on 128 nodes. Figure 6 shows the results. If we compare

it to the previous figure, we observe a slight degradation

in performance. However, aggregation is still very effective

with respect to MPI send operations of the same size. For

instance, GMT with messages of 16 bytes over 128 nodes

reaches a bandwidth of 139.78 MB/s, versus the 9.63 MB/s

of the MPI send operation (using 32 processes).



Figure 6: Transfer rates of put operations among 128 nodes

(one to all) while increasing concurrency

Figure 7: Million traversed edges per second for the GMT

implementation of the BFS (weak scaling)

B. BFS

BFS is one of the most common graph search kernels,

and a building block for many graph analysis applications.

As a matter of fact, the BFS is part of the Graph500 [15]

benchmark suite and a de-facto benchmark for irregular

applications. All the implementations exploit parallelism on

the vertex queue while progressing through the various levels

of exploration. The codes for GMT and Cray XMT [4]

are essentially identical, except that the proprietary Cray

XMT primitives are substituted with GMT primitives. The

code for UPC, instead, uses several optimizations, such as

caching the exploration map, aggregating communication at

the application code level and using asynchronous gets for

the aggregated transfers. The complexity of the UPC version

accounts for ≈ 700 lines of code, compared to ≈ 80 of the

other implementations.

Figure 7 shows the weak scaling of the GMT implemen-

tation, measured in million of traversed edges per second.

The implementation performs single-word memory accesses

on the global graph structure. For this experiment we used

randomly generated graphs, increasing the size of the graph

of 1 million vertices for each node added. Each vertex has at

most 4000 edges connecting to random vertices in the graph.

Therefore, the largest graph on the 128 nodes configuration

has 128 million vertices and 258 billion edges, for a total

memory footprint of ≈ 2 TB.

Figure 8 shows the strong scaling of the GMT im-

plementation, comparing it to the equivalent queue-based

implementations for UPC and the Cray XMT. For these

experiments, we used a random graph of 10 million ver-

Figure 8: Million traversed edges per second for the BFS

implementation on GMT, UPC and Cray XMT (strong

scaling)

Figure 9: Millions of steps per second for the random walk

implementation on GMT and MPI (weak scaling)

tices and 2.5 billion edges, due to the maximum memory

capacities of the platforms (1 TB on the Cray XMT). The

UPC implementation does not scale in performance, and

experiments with more than 16 nodes did not complete

in reasonable times. An interesting consideration is the

amount of parallelism necessary to fully utilize the var-

ious platforms. While the Cray XMT needs 128 threads

per processor, GMT requires 1024 user tasks per worker.

With 128 nodes and 15 workers per node, GMT needs 2

million tasks to fully utilize the system. Indeed, GMT’s

performance starts to decrease above 64 nodes, because the

available parallelism in the application is not enough.As the

graph in Figure 8 shows, the BFS implementation for GMT

outperforms the other implementations. The programming

effort for GMT is very similar to the one for the Cray XMT,

while the UPC version was significantly more challenging

to implement and optimize.

C. Graph Random Walk

Graph Random Walk (GRW) randomly traverses a graph

with the purpose of collecting vertex/edge information or

of understanding graph properties. Many application areas,

such as artificial intelligence, brain research and game the-

ory, exploit the GRW kernel in their algorithms. In a GRW,

each task starts from a source node, chooses randomly a

neighbor to visit, and continues the walk until it has visited

L connected nodes. Our code, given a connected graph of V
vertices and E edges, assigns V/2 vertices as source nodes

to V/2 parallel tasks. Each task performs a walk of length

L. Implementing the GRW in GMT is fairly simple: (i)



Figure 10: Number of strings hashed and inserted per second

(Millions of accesses/s) for the GMT implementation of the

Concurrent Hash Map Access benchmark. In the legend, W

refers to the number of tasks and L to the number of accesses

performed by each task.

gmt parfor() spawns V/2 tasks; (ii) each task performs a

random walk of length L, accessing the graph with GMT

primitives. We compare the GMT implementation to a state-

of-the-art MPI implementation employed in fast matching

algorithms [6]. This approach, rather than making a process

retrieve non-local data, delegates the completion of a walk

to the process that locally owns the data. The algorithm em-

ploys P processes, divided as one master process and P −1
slave processes. Given a graph with V vertices and E edges,

the algorithm performs the following steps: (1) the master

process initializes and distributes V/P vertices to all P
processes (including itself); (2) each process starts V/(P ∗2)
walks (V/2 walks in total for the whole system) of length

L from each one of its assigned vertices; (3) if a vertex v
is not owned by the current process, it delegates the process

owning v to continue the walk; (4) when a process completes

all its local walks, it communicates to the master the number

of completed walks (i.e., walks that traversed L nodes) and

waits for walks to continue from other processes (in case

there are new walks, it restarts from step 3); (5) when all

the V/2 walks are completed, the master sends the quit

command to the slave processes. The MPI algorithm exploits

message aggregation to reduce fine-grain communication.

Whenever a process requires the delegation of walks to other

processes, it buffers all the requests for each process and

sends them out at once only after completing the local walks

(i.e., end of step 4). To empirically quantify the complexity

of the two implementations, we measured the source lines

of code for the GMT and MPI implementations. We found

that the source code of the MPI version is a factor of 15

longer than the GMT version. Figure 9 shows (in logarithmic

scale) the performance of the GRW, measured in million of

traversed edges per second (MTEPS). The experiments use

a randomly generated graph of one million vertices per-node

(weak scaling) with an average of 4000 edges per vertex. The

figure shows that GMT is one or more orders of magnitude

faster than the MPI implementation.

D. Concurrent Hash Map Access

Concurrent Hash Map Access (CHMA) is a synthetic

benchmark where multiple concurrent activities access a

Figure 11: Number of strings hashed and inserted per second

(Millions of accesses/s) for the MPI implementation of the

Concurrent Hash Map Access benchmark. In the legend, W

refers to the number of processes and L to the number of

accesses performed by each process.

hash map to check the presence of a hashed element (e.g., a

string or a signature). If the element is found, it is modified

according to a predetermined rule and stored back into

the hash map. The behavior of this kernel is typical of

streaming applications such as virus scanning, spam filters,

natural language processing, and of information retrieval

applications that need to store, filter and manipulate large

amounts of streaming data. In our experiments, we used

a pool of 100 million strings with at most 20 characters

each to populate a hash map of 10 million entries. After

the initialization, W concurrent tasks perform the following

operations for ‘L’ steps: (1) start from a given input string;

(2) find if it is present in the hash map; (3) if it is present,

perform a string reverse operation; (4) hash the new string

and store it back in the hash map; (3) if it is not present,

get a new input string. We compare both an MPI and a

GMT implementation. In the MPI implementation, each

MPI rank is responsible for a portion of the hash map.

Only the process that owns the related portion of the hash

map checks and inserts the strings. However, if the current

process does not own the hashed string, it sends the string to

its owner. Small MPI messages are very frequent, because a

process cannot proceed with a new string until it has finished

manipulating the previous one. It is possible to implement

partial caching with remote bulk updates, but it requires

employing expensive checks and invalidation mechanisms.

On the other hand, the GMT implementation is straight

forward: the gmt parfor() construct spawns W tasks, each

task independently performs get/put and atomic compare

and swap operations on the hash map for L steps. As for

the other two kernels, the MPI solution for CHMA was

significantly more complex and difficult to implement than

the GMT code.

Figures 10 and 11 respectively show the throughput, in

million of strings hashed and inserted per second (Millions

of accesses/s) of the GMT and the MPI implementations,

while increasing the number of cluster nodes, varying the

number of tasks (or processes) that concurrently access the

hash map (W) and the number of steps (L) performed by

each tasks (or process). The performance between the GMT

and the MPI implementations differs by two or more orders



of magnitude, because of the fine grained communication

involved in the kernel.

VI. CONCLUSIONS

We presented GMT, a Global Memory and Threading

library that enables efficient execution of irregular applica-

tions on commodity clusters. GMT integrates a PGAS data

substrate with simple loop parallelism. It provides a simple

interface for designing applications with large, irregular data

structures, without requiring data partitioning. GMT is built

around the concepts of lightweight user level multithreading

and data aggregation to reduce the impact of fine grained,

unpredictable data accesses typical of irregular applications.

GMT tolerates network communication latencies by switch-

ing thousands of tasks on each available worker thread. GMT

implements multi-level aggregation to maximize network

bandwidth utilization with small messages. GMT aims at

providing a solution to scale irregular applications in per-

formance and size by adding more nodes to a cluster. We

characterized the communication performance of GMT, and

compared it to hand-optimized UPC and MPI code, as well

as to custom machines designed for irregular applications, on

a set of typical large-scale, irregular application kernels. We

demonstrated speed ups of orders of magnitude compared to

other programming approaches for commodity clusters, and

performance comparable to custom machines.

REFERENCES

[1] Apache Giraph. http://incubator.apache.org/giraph/.
[2] OSU Micro-Benchmarks. http://mvapich.cse.ohio-

state.edu/benchmarks/.
[3] TOP500 - PNNL’s Olympus entry.

http://www.top500.org/system/177790.
[4] D. A. Bader and K. Madduri. Designing Multithreaded

Algorithms for Breadth-First Search and st-connectivity on
the Cray MTA-2. In ICPP ’06: the 2006 International
Conference on Parallel Processing, pages 523–530, 2006.

[5] D. Bonachea. Gasnet specification, v1.1 - t.r. csd-02-1207.
Technical report, UC Berkeley, October 2002.

[6] U. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halap-
panavar, and A. Pothen. Distributed-memory parallel algo-
rithms for matching and coloring. In IPDPSW ’11: the 2011
IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, pages 1971 – 1980,
2011.

[7] S. Chakrabarti and K. Yelick. Implementing an irregular
application on a distributed memory multiprocessor. In
PPOPP ’93: the 4th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, pages 169–178, 1993.

[8] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-
grammability and the chapel language. Int. J. High Perform.
Comput. Appl., 21(3):291–312, 2007.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
OOPSLA ’05: the 20th annual ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 519–538, 2005.

[10] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. John-
son, R. Mount, V. Sarkar, V. White, and D. Williams.
Synergistic challenges in data-intensive science and exascale
computing. Doe ascac data subcommittee report, March 2013.

[11] G. Cong, G. Almasi, and V. Saraswat. Fast PGAS connected
components algorithms. In PGAS ’09: the 3rd Conference on
Partitioned Global Address Space Programing Models, pages
13:1–13:6, 2009.

[12] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communication
optimizations for irregular scientific computations on dis-
tributed memory architectures. J. Parallel Distrib. Comput.,
22(3):462–478, Sept. 1994.

[13] J. Feo, D. Harper, S. Kahan, and P. Konecny. ELDORADO.
In CF ’05: Proceedings of the 2nd conference on Computing
frontiers, pages 28–34, 2005.

[14] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu.
Parallex: A study of a new parallel computation model. In
Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1–6, 2007.

[15] The graph 500 list. http://www.graph500.org, April 2013.
[16] G. Jin, J. Mellor-Crummey, L. Adhianto, W. Scherer, and

C. Yang. Implementation and Performance Evaluation of
the HPC Challenge Benchmarks in Coarray Fortran 2.0.
In IPDPS ’11: IEEE International Parallel and Distributed
Processing Symposium, pages 1089 –1100, 2011.

[17] L. V. Kale and S. Krishnan. CHARM++: a portable concur-
rent object oriented system based on C++, volume 28. ACM,
1993.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed GraphLab: a framework
for machine learning and data mining in the cloud. Proc.
VLDB Endow., 5(8):716–727, Apr. 2012.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-
scale graph processing. In SIGMOD ’10: ACM International
Conference on Management of data, pages 135–146, 2010.

[20] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze,
C. Ebeling, D. Grossman, S. Kahan, and M. Oskin. Crunching
large graphs with commodity processors. In HotPar ’11:
the 3rd USENIX conference on Hot topic in parallelism,
HotPar’11, pages 10–10, 2011.

[21] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease,
and E. Aprà. Advances, Applications and Performance of the
Global Arrays Shared Memory Programming Toolkit. Int. J.
High Perform. Comput. Appl., 20(2):203–231, 2006.

[22] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda.
High Performance Remote Memory Access Communication:
The ARMCI Approach. Int. J. High Perform. Comput. Appl.,
20(2):233–253, 2006.

[23] R. W. Numrich and J. Reid. Co-arrays in the next Fortran
Standard. SIGPLAN Fortran Forum, 24(2):4–17, Aug. 2005.

[24] A. Tumeo, S. Secchi, and O. Villa. Designing next-generation
massively multithreaded architectures for irregular applica-
tions. Computer, 45(8):53–61, 2012.

[25] UPC Consortium. UPC Language Specifications v. 1.2.
www.gwu.edu/ upc/docs/upc specs 1.2.pdf, May 2005.

[26] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lums-
daine. Active pebbles: parallel programming for data-driven
applications. In ICS ’11: the International Conference on
Supercomputing, pages 235–244, 2011.

[27] S. Xu and L. Chen. Shared work list: hacking amorphous data
parallelism in UPC. In PMAM ’12: the 2012 International
Workshop on Programming Models and Applications for
Multicores and Manycores, pages 124–133, 2012.

[28] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su,
A. Kamil, K. Datta, P. Colella, and T. Wen. Parallel
Languages and Compilers: Perspective from the Titanium
Experience. Int. J. High Perform. Comput. Appl., 21(3):266–
290, Aug. 2007.

[29] K. A. Yelick. Programming models for irregular applications.
SIGPLAN Not., 28:28–31, January 1993.


