
Hashing Strategies for the Cray XMT
Eric L. Goodman∗, David J. Haglin†, Chad Scherrer†,
Daniel Chavarrı́a-Miranda†, Jace Mogill†, John Feo†

∗Sandia National Laboratories
Albuquerque, NM, 87123 USA

elgoodm@sandia.gov
†Pacific Northwest National Laboratory

Richland, WA, 99354 USA
{david.haglin, chad.scherrer, daniel.chavarria, jace.mogill, john.feo}@pnl.gov

Abstract—Two of the most commonly used hashing
strategies—linear probing and hashing with chaining—are
adapted for efficient execution on a Cray XMT. These
strategies are designed to minimize memory contention.
Datasets that follow a power law distribution cause signif-
icant performance challenges to shared memory parallel
hashing implementations. Experimental results show good
scalability up to 128 processors on two power law datasets
with different data types: integer and string. These imple-
mentations can be used in a wide range of applications.

I. INTRODUCTION

Hash tables are a fundamental data structure used
throughout many application domains. Hash tables can
be applied to problems that require efficiently map-
ping a set of data elements (typically called keys) into
another set of data elements (typically called values).
Other names for the abstract notion of mapping keys to
values are associative array and dictionary. Many data
structures can be used for this problem, but hash tables
have been found to be able to provide “constant” time
lookups and insertions into the structure.

Hash tables utilize a hash function that maps keys
to indices of an array called the hash table (the entry
in the table is typically called a bucket), where the
key and its corresponding value resides. The ideal hash
function is one that uniquely maps a key into a bucket,
however that is rarely achieved in practice, so a strategy
to deal with collisions—multiple keys mapping to the
same bucket—must be an integral part of the definition
and implementation of the hash table. Two common
strategies for dealing with collisions are: linear probing
(sometimes called linear open addressing), where the
location of the second and later keys with the same
hash function value are stored in the region of the hash
table (array) immediately following the initial slot; and
hashing with chaining, where instead of the hash table
containing the keys and values, it contains head pointers
to linked lists containing the keys and values. Given a
reasonable hash function that exhibits a low collision
rate, the average time cost of looking up a key in the hash

table tends to be constant, independent of the collision
handling mechanism used.

Variations on the use of hash tables allow for a wider
range of applications with only slight changes to the
infrastructure. Rather than assigning a value to a key
(as in a dictionary), it is possible to count the number of
times a key is encountered. This variation can be used
to count the frequency of occurrences of keys; a typical
example of this is to count the frequency of words in a
corpus of text documents. We call this variation hash-
based frequency counting.

Hash tables have been used for a long time in comput-
ing and in a wide range of applications. An entire chapter
in the popular text by Cormen, et al., is devoted to the
use of hash tables [1]. According to Donald Knuth [2],
H. P. Luhn was the first to describe hashing techniques
in an internal IBM memo in 1953. In spite of the
pervasiveness of hashing strategies, practical techniques
for implementing hash tables on shared-memory parallel
machines have not been explored in depth. Moreover,
several applications developed for the XMT utilize a
hashing strategy as part of their application [3]–[5].

A. Background of Parallel Hashing

Hashing strategies have been used extensively in a
wide range of computing applications. Running these
applications on parallel machines faces a particular set
of challenges to achieve good performance; most notable
is the challenge of memory contention. In their 1986
work on parallel hashing, Karlin and Upfal explore
strategies to minimize memory contention on a PRAM
and proposed an algorithm for p processors to store
and retrieve an arbitrary set of p data items in O(log p)
parallel steps [6]. Lee explored parallel hashing on bulk
synchronous parallel (BSP) and queued shared memory
(QSM) models of computation [7]. Distributed hash
tables are used in a wide range of popular applications,
including Domain Name System (DNS), peer-to-peer file
sharing, and content distribution such as BitTorrent.

B. Dynamic Memory in Hashing with Chaining
One of the challenges that must be addressed for an

efficient implementation of hashing with chaining is the
mechanism used to allocate memory when adding a new
entry in to a chain. We have developed a mechanism
that is an amalgamation of two specialized memory pool
techniques: arena memory management [8] and region-
based memory pools [9]–[11].

Arena memory management is a dynamic memory
strategy that uses a pool of large buffers, where the
locking is done on each of the buffers. Thus, for multi-
threaded access to this memory pool, creating an arena
for each thread eliminates the need for locking that exists
when multiple threads share a single arena. The cost
for this approach is the extra memory needed to have a
separate arena for each thread. This can work very well
for small to modest numbers of threads.

Region-based memory pools consists of large buffers
(regions) from which smaller buffers are allocation and
the free operation is done once for either all of the N
most recent allocated smaller buffers or all of the buffers
in the region. This concept usually also includes the no-
tion of putting all instances of specific types into regions
[10]. This technique was originally developed to support
functional languages and the feature of type-safety in
addition to efficient, stack-like activation records.

Our work on the hashing with chaining strategy uses
parts of arena and region-based memory management
systems. We minimize the locking imposed by the mem-
ory pool (a goal of arena memory management systems)
by localizing thread synchronization needed to allocate
a small buffer to one atomic operation. We also utilize
the properties of the region-based memory management
system that supports the notion of quickly placing many
small buffers back in the global memory pool by simply
doing a free on each of the regions rather than freeing
each small buffer individually.

C. Cray XMT
The Cray XMT is the commercial name for the

new shared-memory multithreaded machine developed
by Cray under the code name “Eldorado” [12], [13].
The system is composed of dual-socket Opteron AMD
service nodes and custom-designed multithreaded com-
pute nodes with Threadstorm processors. The entire
system is connected using the Cray Seastar-2.2 high
speed interconnect. The system we use in this study has
128 processors and 1 TB of shared memory.

Each Threadstorm processor is able to schedule 128
fine-grained hardware threads (the XMT terminology
for this is stream) to avoid memory-access generated
pipeline stalls on a cycle-by-cycle basis. At runtime,
a software thread is mapped to a hardware stream
comprised of a program counter, a status word, 8 target

registers and 32 general purpose registers. Each Thread-
storm processor has a VLIW (Very Long Instruction
Word) pipeline containing operations for the Memory
functional unit, the Arithmetic unit and the Control unit.

Memory is structured with full-empty-, pointer
forwarding- and trap- bits to support fine grained thread
synchronization with little overhead. The memory is
hashed at a granularity of 64 bytes and fully accessible
through load/store operations to any Threadstorm pro-
cessor connected to the Seastar-2.2 network, which is
configured in a 3D toroidal topology.

The software environment on the Cray XMT in-
cludes a custom, multithreaded operating system for
the Threadstorm, a parallelizing C/C++ cross-compiler
targeting Threadstorm, a standard Linux 64-bit envi-
ronment executing on the service and I/O nodes, and
the necessary libraries to provide communication and
interaction between the two parts of the XMT sys-
tem. The parallelizing compiler generates multithreaded
code that is mapped to the threaded capabilities of the
processors automatically. Parallelism discovery happens
fully- or semi-automatically by the addition of pragmas
(directives) to the C/C++ source code. This discovery
focuses on analyzing loop nests and mapping the loop’s
iterations in a data-parallel manner to threads.

To understand the lightweight synchronization fea-
tures of the XMT, we review two aspects of the program-
ming model: full-empty bits and generic functions. Each
8-byte word of memory has an associated full-empty
bit enabling lightweight synchronization operations. The
software (compiler and runtime) allows programs to
manipulate the full-empty bits with generic functions are
executed atomically within one instruction cycle. Our
code uses these generic functions:

• readxx: Returns the value of a variable without
checking the full-empty bit.

• readfe: Returns the value of a variable when the
variable is in a full state, and simultaneously sets
the bit to be empty.

• writeef : Writes a value to a variable if the variable
is in the empty state, and simultaneously sets the bit
to be full.

• int fetch add: Atomically adds an integer value
to a variable.

D. XMT-Specific Issues For Hashing
The foremost concern with hashing on the XMT is the

memory contention. There are two types of contention
that needs to be considered: synchronization and hotspot-
ting. The synchronization issues are similar to those of
the general PRAM model and involve locking (or other
synchronization mechanisms) to ensure correctness of
the data structure while multiple threads attempt to alter
the underlying data structure.

2

Multiple threads attempting to read the same memory
location at the same time will serialize and cause a
read hotspot. Some of the threads may be delayed
long enough to be captured by a long latency trap.
The processing of these long latency traps can cause
a significant (10-fold is not uncommon) increase in
processing time. As an example, consider the situation
where 10,000 threads are trying to look up something
in a hash table. Although the 10,000 threads may be
seeking 10,000 different slots (or buckets), they must all
read the pointer to the hash table and compute the offset
into the hash table to find their slot. To avoid the read
hotspot on the hash table pointer, the programmer (or the
compiler) must be aware of whether each thread loads
the hash table pointer into a register, thus avoiding the
read hotspot.

E. Two Hashing Strategies Under Study
Hashing strategies are categorized by their mechanism

for dealing with collisions (when two different keys
map to the same hash value). One of the first hashing
strategies used was linear probing [1]. This technique
has the limitation that the hash table must be at least as
big as the number of keys to be inserted. A common
technique for hashing with an unbounded key capacity
is hashing with chaining. Each of the hash table entries
are really head pointers to a linked list of nodes holding
the keys (and their associated values) that all hash to the
same bucket.

F. Our contributions
We investigated the performance of two of the most

commonly used hashing strategies under several kinds
of input data that are particularly challenging for hash-
ing mechanisms on a multithreaded architecture. Our
implementations were tailored specifically for the Cray
XMT mutlithreaded system and show good scalability.
For the hashing with chaining strategy, we propose a
new data structure to support fast allocation for our
linked lists in the hashing with chaining strategy. This
mechanism is called Hashing with Chaining and Region-
based Memory Allocation (HACHAR).

The rest of the paper is organized as follows: section II
presents details of our two implementations; section III
describes our datasets used and presents our experimen-
tal results on those datasets; and section IV provides our
assessment of the experiments and suggests future work.

II. IMPLEMENTATIONS

All our implementations are of the hash-based fre-
quency counting variation since a significant factor lead-
ing us to investigate hashing strategies was the applica-
tion of counting word frequencies in a corpus of text
documents.

A. Common Hash-table Operations
Our implementations provide common operations:

data structure initialization (constructor), search, insert,
and data structure tear-down (destructor). In our target
applications the remove (or delete) operation is not
needed, so we did not include this operation in our
implementation. We expect that including a remove
operation would not alter the scalability.

1) Searching for a Key: In all our implementations
the task of searching for a key (without inserting) can
be done without any thread synchronization. For linear
probing, we compute the hash function to get the initial
array location, then proceed to step forward through the
array looking for either the desired key or an empty slot.
Note that “stepping forward” may involve cycling around
from the bottom to the top of the array. If an empty slot
is encountered, we return a value indicating “not found”.
Otherwise we return the value associated with the key.
For chaining, we compute the hash function to get the
bucket location, then proceed to step through the linked
list of entries in that bucket looking for the desired key.

2) Inserting a Key: When inserting a key, there are
two situations that may occur: (i) the key already exists
in the hash structure, in which case we update the
value by incrementing the associated count; or (ii) the
key does not yet exist in the hash structure, in which
case we need to (carefully) insert the key. This careful
insertion is where synchronization must occur, and we
must acquire a location. The algorithm used to acquire
a location is one of the fundamental tasks in all our
implementations of hashing and is very similar across all
of our implementations. At a high level, this is a two-
step process of first looking without locking followed by
a lock (if necessary). As shown in Figure 1, we first look
at the location to see if it is empty (if not, the attempt to
acquire the location fails). Since some other thread may
be trying to acquire the same location, we must lock the
location and look again to see if it is still empty. If the
location is still empty after locking, we have acquired
the location, so we mark it as reserved for this new key.
If we do lock the location, we must always unlock when
done processing the request.

3) Removing a Key: Although many applications do
require support for removing a key, we did not include
that in our study.

B. Linear Probing
Our linear probing implementation utilizes three, iden-

tically sized arrays: a key, value, and occupied array. The
key/value combination for a particular index in the array
can be thought of as a slot in the hash table, and the cor-
responding element in the occupied array is a boolean,
signifying whether or not the slot has been claimed.
Corresponding elements from the three arrays are passed

3

Procedure: TwoStepAcquireAttempt
Parameters: (location, key)

// first check without locking
1: if location is empty then
2: lock(location)

// then check with the lock
3: if location is still empty then
4: Reserve location for key
5: unlock(location)
6: return true
7: end if

// Another thread modified the structure before
// we could acquire location

8: unlock(location)
9: end if

10: return false . Caller needs to continue searching

Fig. 1: General procedure to acquire some memory location. The caller
may need to continue searching for the key (after being returned a
value of false) due to other threads that altered the structure before
the caller was able to acquire the location.

as parameters to the InsertLinearProbing procedure in
Figure 2. The outcome from calling InsertLinearProbing
is one of the following:

• If the slot is already holding a key (the slot key)
and it matches the candidate key, we consider the
slot claimed.

• If the slot is empty we can do the two step acquire
successfully, we fill in the slot with our candidate
key and consider the slot claimed.

• If, however, the slot is already holding a key that
does not match our candidate key, we return false
indicating that the current slot is not available for
this candidate key.

C. Chaining with Region-based Memory Allocator
Recall that hashing with chaining involves hashing the

key to get the bucket index followed by chaining forward
in a linked list in search of the key. If the key is found,
the appropriate value is returned. If key is not found,
we either insert a new key into the chain or return an
indication that the key is not in the hash structure.

Although there is a good, general purpose memory
manager on the XMT designed specifically for multi-
threaded architectures [14], our memory allocation pat-
tern is well-known and specialized, so it makes sense to
implement a region-based memory allocator to achieve
better performance. We also believe that allocating many
small buffers, all of the same size, from a mechanism
designed as a general purpose memory manager is sus-
ceptible to memory contention issues. Our region-based
memory allocator provides for all linked list nodes in the
buckets to be allocated out of large regions, structured
as shown in the “Hash Table” of Figure 3.

Procedure: InsertLinearProbing
Parameters: (lock, slotKey, candidateKey)

1: status = readxx(lock)
2: if status == claimed then
3: if slotKey == candidatekey then
4: return true
5: end if
6: else
7: status = readfe(lock)

// The first thread to reach the slot?
8: if status == unclaimed then
9: slotKey = candidateKey

10: writeef(lock, claimed)
11: return true
12: else
13: if slotKey == candidateKey then
14: writeef(lock, claimed)
15: return true
16: end if
17: writeef(lock, claimed)
18: end if
19: return false
20: end if

Fig. 2: Procedure to insert (or update) a key-value pair in a linear
probing structure. This procedure returns true to indicate the slot is
holding the key we are searching for. A false return value indicates
that the slot is holding a key different from the one we are search
for. Note that the two step acquire procedure is represented in lines 2,
7–12, and 17–19.

3 

2 

Region Head  Region Tail 

Next Free Slot  Next Free Slot  Next Free Slot 

U
nu

se
d 
sl
ot
s 

Bucket 
Sizes 

Ta
bl
e 
/ 
Ch

un
k 
si
ze
 

Key  Val 

Region 0  Region 1  Region 2 

Fig. 3: Data structure used to support the Hashing with CHaining And
Region-based memory allocation(HACHAR).

The data structure is initialized by allocating a region
to serve as the hash table, allocating a bucket sizes
array, and writing zeroes in the bucket sizes array. In
anticipating buckets that exceed a size of one, an empty
region is allocated and linked from the hash table. To
dismantle this data structure at the end of using the hash
table all that is needed is to free the bucket sizes integer
array and each of the regions. If the data type of the key
or value needs to be dismantled, then each of the array
entries will need to be freed as well.

4

Procedure: InsertHACHAR(key)

1: bucket = hashFunction(key)
2: if InsertIntoEmptyBucket(key, value = 1, bucket)

then
3: return
4: end if
5: while forever do
6: Walk down linked list looking for key
7: if (key is found) then
8: int fetch add(value associated with key)
9: return

10: end if
// at end of list, try to insert into the list

11: pointer = readfe(currentNode.Next)
// still at end of list after locking?

12: if pointer == NULL then
13: newNode = Allocate(key, value = 1)
14: writeef(currentNode.Next, newNode)
15: return
16: end if

// Some other thread modified list, we need
// to continue searching from current location

17: writeef(currentNode.Next, pointer)
18: end while

Fig. 4: Procedure to insert (or update) a key-value pair in a HACHAR
structure. Note that the two-step acquire operation is embedded here
in lines 11-17.

1) Acquiring a Linked List Node Location: If the key
is not already there during an insert operation, a new
node will need to be inserted. The challenge with this
operation is to ensure that exactly one thread will insert
the new node. To achieve this, we need to find the end
of the linked list, lock out other threads, check to make
sure we are still at the end of the linked list, then allocate
a new node from the unfilled region, and finally link it
in. Note that this process follows the two step acquire
described in Figure 1. The locking is done by using the
full-empty bit of the linked list next pointer itself. The
rare occasion when the unfilled region is actually full
will be discussed separately. The insert method is given
in Figure 4.

2) Memory Contention and Thread Synchronization:
All of this infrastructure is set up for the purpose of
minimizing memory contention and synchronization is-
sues. We have achieved a nearly lock-free search process
where many threads can follow a linked list looking
for their key. If many threads find the same key, then
the “update” procedure requires only the synchronization
handled by the atomic int fetch add operation.

The insert procedure is more involved. If the
key already exists, then the synchronization is es-
sentially equivalent to the search operation. If there
are an abundance of unused slots in the unfilled

Procedure: InsertIntoEmptyBucket
Parameters: (key, value, bucket)

1: if bucketSize[bucket] == 0 then
// Lock out other threads

2: status = readfe(bucketSize[bucket])
3: if status == 0 then . Check again with lock
4: Set bucket’s head node to: key = value
5: writeef(bucketSize[bucket], 1)
6: return true
7: end if

// Some other thread modified list, we need
// to go back and insert into non-empty bucket

8: writeef(bucketSize[bucket], status)
9: end if

10: return false

Fig. 5: Procedure to insert (or update) into an empty bucket in a
HACHAR structure. For data with lots of repetitions, this procedure
will merely fail the if at line 1 and then return false indicating that
nothing was done.

Procedure: Allocate(key, value)

// load a thread-local copy of tail pointer
1: ptr = tail
2: idx = int fetch add(ptr→next free slot, 1)

// If tail region is full, allocate a new region
3: while index ≥ tableSize do
4: oldTail = readfe(tail)

Is tail region still full (after locking)?
5: if oldTail == ptr then
6: oldTail = new RegionBuffer
7: ptr→next = oldTail
8: end if
9: writeef(tail, tail→next)

10: ptr = tail
11: idx = int fetch add(ptr→next free slot, 1)
12: end while
13: Set slot ptr→array[idx] to: key = value
14: return &ptr→array[idx]

Fig. 6: Procedure to allocate a new linked list node from the unfilled
region in a HACHAR structure. Note that with many threads hitting
this procedure at nearly the same time, the next free slot pointer
will move well beyond the end of the current region. This works since
we only check for ≥ to the region size and conclude that we must
move to the next region (allocating one as we go unless some other
thread allocates a region for us).

region, then the only synchronized used is the
int fetch add(next free slot, 1) in the unfilled re-
gion. This atomic operation gives each thread a unique
index thereby allocation a specific linked list node to
each thread. When this region becomes full, several
threads may end up an index pointing beyond the end
of the region’s array. All of the threads in this situation
must then coordinate which thread will allocate a new
region and all of the threads must move over to this

5

new region and allocate a linked list node from there. To
minimize the amount of time these threads must wait for
the one thread to allocate a new region, it is reasonable to
have an “on deck” region pre-allocated so that the new
(empty) region can be simply linked in when needed.
Using this scheme, a new “on deck” region would need
to be allocated at some other time. For example, when
a thread is allocated a linked list node and the unfilled
region is exactly half full, this thread could be redirected
to allocate an “on deck” region.

III. EXPERIMENTS

In order to test our hashing strategies on the XMT,
datasets that stress the performance issues of the XMT
are required. Datasets containing a few keys with very
high frequency counts will render any hash table im-
plementation susceptible to read hotspots in the hash
buckets holding the highly-frequent keys. Datasets that
follow a power law distribution exhibit this pattern.

We examined the performance of the two strategies us-
ing three data sets, a set of uniformly distributed integers,
a set of integers constructed to follow Zipf’s law, and a
snapshot of the english Wikipedia documents. For con-
venience, we will refer to the total number of elements in
each data set as Sx and the number of unique elements
as Ux where x ∈ {uniform, Zipfs, Wikipedia}. We use
Sarray to denote the size of the hash table. Of the three
datasets used in this study, two have the power law
distribution property. For comparison, we included the
uniformly distributed integers dataset since it does not
have this property.

All of these experiments were run on a 128 processor
Cray XMT, possessing a total of one terabyte of memory.
Also, the times we report in the experiments below are
the time to insert the data into the array. We do not
include times to load the data from disk, or construct or
remove data structures.
A. Integers, Uniform Distribution

We generated a set of uniformly distributed integers
in the range [−263, 263 − 1] where Suniform = 5 × 109

and Uuniform = 5 × 109. The primary purpose of this
experiment is to test each strategy’s ability to handle
collisions. We chose the size of 5 billion integers to be
similar in size to the Zipfian data set (described later
in Subsection III-B). For linear probing, we vary Sarray

from Suniform
0.95 to Suniform

0.2 , so that the load factor is 0.2 ≤
l ≤ 0.95. Since chaining is dynamic and can handle
when Ux > Sarray, we also tried l up to 2. The hash
function we use is simple, the key multiplied by a large,
prime constant:

hash(x) = x · 31, 280, 644, 937, 747 (1)
To convert the hash into a location in the array, we
performed the following operation

getArrayIndex(x) = hash(x) & (253−1)%Sarray (2)

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

10
4

Number of Processors

T
im

e
(s

ec
on

ds
)

HACHAR (0.5)

HACHAR (1.0)

HACHAR (2.0)

Linear Probing (0.2)

Linear Probing (0.5)

Linear Probing (0.95)

Fig. 8: Comparison between Linear Probing and HACHAR for differ-
ent load factors on the uniform random integer data set.

The bitwise & with 253 − 1 is necessary to avoid the
performance hit arising from the current Cray XMT
implentation that handles division of integers greater
than 53 bits with a software routine rather than as
a hardware instruction. Observe that the large, prime
constant has the effect of separating the hash function
values of adjacent integer keys.

Figure 7(a) shows the time to insert the five billion
integers. As expected, insertion time is inversely pro-
portional to l. For 0.2 < l < 0.7, performance falls
within a tight band, but afterwards quickly degrades for
l > 0.7. Figure 7(b) keeps the number of processors
constant at 64, and shows plots for both insertion time
and number of collisions. As expected, it shows a strong
relationship between number of collisions and insertion
time. In terms of speedup, shown in Figure 7(c), the
curves are nearly identical for l ∈ [0.2, 0.7], but degrades
for l ≥ 0.8. Between l = 0.2 and l = 0.95 there is a
21.9% drop in speedup for 128 processors.

We see in Figure 8 that for light loads, linear probing
performs slightly better than HACHAR, especially as the
number of processors grow past 64. However, for lower
processor counts, HACHAR handles large load factors
significantly better than Linear Probing.

B. Integers, Zipfian Distribution

To test performance on a power law distributed set
of integers, we generated a file consisting of integers
following Zipf’s law arranged by a random shuffling.
Zipf’s law, named after George Kingsley Zipf [15], is
the empirical observation that, given some corpus of
natural language utterances, the frequency of a word is
inversely proportional to its rank. Thus, the frequency of
a word with rank k can be approximated by f(k, s, N) =

1
ksHN,s

where N is the number of distinct words in a
corpus, s is an exponent, usually close to unity, and
HN,s is the Nth generalized harmonic number. If we
set s = 1, then we arrive at the following equation for

6

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

10
4

Number of Processors

T
im

e
 (

s
e
c
o
n
d
s
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

(a) This figure shows the time in seconds
for inserting five billion integers as a func-
tion of time and load factor.

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Load Factor

T
im

e
 (

s
e
c
o

n
d

s
)

0

1

2

3

4

5
x 10

10

N
u
m

b
e
r

o
f
C

o
lli

s
io

n
s

Times for 64 processors

Number of Collisions

(b) This figure compares the number of
collisions with time needed to insert the
data into the hash set. Performance ap-
pears tightly coupled with the number of
collisions. Pairing the number of collisions
with the reported times results in a corre-
lation coefficient of 0.997.

0 50 100 150
0

20

40

60

80

100

120

140

Number of Processors

R
e
la

ti
v
e
 S

p
e
e

d
u

p

Ideal Speedup

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

(c) This figure presents the relative
speedup obtained by varying the number
of processors and load factor. The speedup
curve is largely identical for load factors
up to 0.7, and degrades thereafter. Between
l = 0.2 and l = 0.95, there is a 21.9%
drop for the 128 processor case.

Fig. 7: Linear Probing Results on five billion uniformly distributed random integers.

the count of the rank k item:

c(k) =
⌊

c(1)
k

⌋
(3)

where the flooring function is necessary to insure an
integer value. We use Equation 3 to construct a set of
integers that follows Zipf’s law by setting c(1) to be 250
million, resulting in SZipfs ≈ 4.969× 109 and UZipfs =
250× 106. We also randomly shuffled the data.

We thought that a slightly different hash function that
relies upon bitwise & rather than a division or modulus
operation would be more efficient. So we tried a slightly
different hash function for the Zipfian integers than the
function used for the uniform random data set. Instead
of allowing arbitrary array sizes, we confine Sarray ∈
{2x|x ∈ Z+}, which allows us to create a bit mask,
Sarray − 1 that we can use to obtain the index into the
array. Thus we still employ Equation 1, but instead of
using Equation 2, we use the following:

getArrayIndex(x) = hash(x) & (Sarray − 1) (4)

In a limited number of trials, using Sarray − 1 to
determine the array location from the hash performs
slightly better (∼ 1%) than the modulus operator. It may
be that this slight difference in time measurements may
be due to experimental error.

1) Results: Using Equation 4 results in no collisions
when Sarray ≥ UZipfs. Thus, for the linear probing
method, this experiment is primarily a test of how well
the method handles power law data. For HACHAR,
we allow Sarray < UZipfs to force collisions. Figure
9 compares Linear Probing with Sarray = 228, and
HACHAR with Sarray ∈ {2x|x ∈ {25, 26, 27, 28}}.
When collisions are absent, i.e. Sarray = 228 and l ≈
0.93, the results for both strategies are almost identical,
except for the case when the number of processors is

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Processors

T
im

e
 (

se
co

n
d

s)

Linear Probing (256M)
HACHAR (256M)
HACHAR (128M)
HACHAR (64M)
HACHAR (32M)

8.1

5.5

Fig. 9: Performance comparison of the two strategies on the Zipf
integer data set. Performance is nearly identical for both linear probing
and HACHAR, though HACHAR loses scalability with 128 processors.

equal to 128. The HACHAR method loses scalability at
that point. Also, as we shrink Sarray, we force collisions
and performance degrades for HACHAR, but gracefully.
Regardless of the load factor, HACHAR retains scala-
bility up through 64 processors, though all appear to hit
a bottleneck at 128 processors.

C. Wikipedia
Our final experiment involves finding the global word

count within a snapshot of Wikipedia. The snapshot we
used has SWikipedia ≈ 1.42 × 109 and UWikipedia ≈
16.3 × 106. Like most text corpora, this instance ap-
proximates Zipf’s law, and presents a good test to gage
how well we handle power law data.

1) Results: Figure 10 presents a comparison between
linear probing and HACHAR on the Wikipedia instance.
The time reported is for insertion only; it does not
include time for tokenizing the data (splitting the input
stream into strings that were separated by whitespace).

7

1 2 4 8 16 32 64 128
10

0

10
1

10
2

10
3

Number of Processors

T
im

e
(s

ec
on

ds
)

HACHAR

Linear Probing

18.4

9.2

Fig. 10: The figure compares performance of the two strategies on
a Wikipedia instance. Similar to other experiments, performance is
nearly identical for both linear probing and HACHAR, though again
HACHAR suffers scalability problems after 64 processors.

The hash table size for linear probing is 64M slots
and for HACHAR is 32M. Similar to previous exper-
iments, HACHAR and Linear Probing perform nearly
identical up to 64 processors. After 64, the scalability of
HACHAR degrades.

IV. CONCLUSIONS AND FUTURE WORK

We have adapted two standard hashing strategies —
linear probing and hashing with chaining— for efficient
execution on the Cray XMT. The experiments show
that our adaptations allow for good scaling. For those
applications where the number of keys is bounded,
linear probing works well since the hash table can be
made very large on an XMT and the two-step location
acquiring strategy we described does minimize memory
contention. For applications without a known upper
bound, our HACHAR method works reasonably well.
Also note that HACHAR is somewhat more complex to
implement than linear probing.

Tracing the HACHAR code on 128 processors show
the only long latency traps coming from line 2 in
procedure InsertIntoEmptyBucket (Figure 5), which is
completely bypassed once the bucket contains at least
one key. Thus, the nominal case is not on the path
containing the hotspot, meaning the initial populating
of buckets is the root cause of the scaling limitation.

We would like to compare these two strategies against
a “thread-local (contention-free) followed by an aggrega-
tion” strategy (the name hash-reduce may be appropriate
for this strategy). We expect that a hash-reduce strategy
will have better scale further than the strategies explored
in this paper.

It would be interesting to investigate the impact that
supporting a “remove” operation would have on the
scalability of both of our hashing strategies.

ACKNOWLEDGMENTS

The authors would like to thank Jonathan Berry for
suggesting this collaboration and to thank Bob Adolf
for his thorough review of our drafts.

This work was funded under the Center for Adaptive
Supercomputing Software - Multithreaded Architectures
(CASS-MT) at the Dept. of Energys Pacific Northwest
National Laboratory. Pacific Northwest National Labo-
ratory is operated by Battelle Memorial Institute under
Contract DE-ACO6-76RL01830.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to algorithms, second edition,” 2001.

[2] D. Knuth, The Art of Computer Programming: Sorting and
Searching, 2nd ed. Addison-Wesley, 1998, vol. 3.

[3] S. H. Bokhari and J. R. Sauer, “A parallel graph decomposition
algorithm for DNA sequencing with nanopores,” Bioinformatics,
vol. 21, no. 7, pp. 889–896, 2005. [Online]. Available:
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/7/889

[4] J. Cieslewicz, J. Berry, B. Hendrickson, and K. A.
Ross, “Realizing parallelism in database operations: insights
from a massively multithreaded architecture,” in DaMoN
’06: Proceedings of the 2nd international workshop
on Data management on new hardware. New York,
NY, USA: ACM, 2006, pp. 4+. [Online]. Available:
http://dx.doi.org/10.1145/1140402.1140408

[5] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, “Soft-
ware and algorithms for graph queries on multithreaded ar-
chitectures,” Parallel and Distributed Processing Symposium,
International, vol. 0, p. 495, 2007.

[6] A. R. Karlin and E. Upfal, “Parallel hashing—an efficient im-
plementation of shared memory,” in STOC ’86: Proceedings of
the eighteenth annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1986, pp. 160–168.

[7] H. Lee, “Parallel hashing algorithms on BSP and QSM mod-
els,” in Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, April 2004, pp. 175–.

[8] P. Larson and M. Krishnan, “Memory allocation for long-running
server applications,” in Proceedings of the 1st international
symposium on Memory management. ACM New York, NY,
USA, 1998, pp. 176–185.

[9] M. Tofte and J.-P. Talpin, “Region-based memory management,”
Inf. Comput., vol. 132, no. 2, pp. 109–176, 1997.

[10] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney, “Region-based memory management in cyclone,” in
PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation. New
York, NY, USA: ACM, 2002, pp. 282–293.

[11] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg, “A retro-
spective on region-based memory management,” Higher Order
Symbol. Comput., vol. 17, no. 3, pp. 245–265, 2004.

[12] J. Feo, D. Harper, S. Kahan, and P. Konecny, “ELDORADO,”
in CF ’05: Proceedings of the 2nd conference on Computing
frontiers. New York, NY, USA: ACM, 2005, pp. 28–34.

[13] D. Chavarrı́a-Miranda, A. Marquez, J. Nieplocha, K. Maschhoff,
and C. Scherrer, “Early Experience with Out-of-Core Applica-
tions on the Cray XMT,” in Proceedings of the 22nd IEEE
International Parallel and Distributed Processing Symposium,
April 2008, pp. 1–8.

[14] S. Kahan and P. Konecny, ““MAMA!”: a memory allocator for
multithreaded architectures,” in PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming. New York, NY, USA: ACM, 2006,
pp. 178–186.

[15] G. K. Zipf, Psycho-Biology of Languages. Houghton-Mifflin,
1935.

8

