
Generalizing k-Betweenness Centrality Using Short Paths and a Parallel
Multithreaded Implementation

Karl Jiang David Ediger David A. Bader
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

Abstract

We present a new parallel algorithm that extends and gen-
eralizes the traditional graph analysis metric of betweenness
centrality to include additional non-shortest paths according
to an input parameter k. Betweenness centrality is a useful
kernel for analyzing the importance of vertices in a graph
and has found uses in social networks, biological networks,
and power grids among others. k-Betweenness centrality
captures the additional information provided by paths whose
length is within k units of the shortest path length. These
additional paths provide robustness that is not captured in
traditional betweenness centrality computations, and they
may become important shortest paths if key edges are
removed (by link failure or other means). We implement our
parallel algorithm using lock-free methods on a massively
multithreaded Cray XMT. We apply this implementation to
a real-world data set of pages on the World Wide Web and
show the importance of the additional data incorporated by
our algorithm.

1. Introduction

The development of algorithms for the analysis of large
graph data sets has driven much research in high perfor-
mance computing today. Real-world networks from appli-
cation domains, such as computational biology, economics,
sociology, and computer networks, are sparse in nature and
often exhibit “small world” properties. The algorithms often
exhibit low amounts of temporal and spatial locality, while
revealing little computation to hide the memory access times.
Thus, their performance is often limited by the speed of main
memory. Additionally, it can be difficult to obtain a balanced
partition across processors in a modern parallel system when
working with massive real-world graphs.

A useful analysis kernel for large graphs has been the
computation of betweenness centrality. As defined by Free-
man in [6], betweenness centrality is a measure of the
number of shortest paths in a graph passing through a given
vertex. For a graph G(V,E), let σst denote the number of
shortest paths between vertices s and t, and σst(v) the count

of shortest paths that pass through a specified vertex v. The
betweenness centrality of v is defined as:

BC(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

(1)

Betweenness centrality can be used to identify critical
vertices in a network. High centrality scores indicate that
a vertex lies on a considerable fraction of shortest paths
connecting pairs of vertices. This metric has been applied
extensively to the study of various networks including bio-
logical networks [8], sexual networks and the transmission
of the AIDS virus [10], identifying key actors in terrorist
networks [5], organizational behavior, and transportation
networks [7].

In our earlier work, we developed the first parallel algo-
rithm for betweenness centrality [1], [12]. In the remainder
of this paper, we will motivate and present an extension
of Freeman’s betweenness centrality and our previous algo-
rithm. We generalize the definition to include paths in the
graph whose length is within a specified value k of the length
of the shortest path. We extend our recent parallel, lock-free
algorithm for computing betweenness centrality to compute
generalized k-betweenness centrality scores. Next, we will
give details of an implementation of our new algoirthm on
the massively multithreaded Cray XMT and describe the
performance effects of this extension in terms of execution
time and memory usage. Last, we will compare the results
of this algorithm on synthetic and real-world data sets.

2. Extending Betweenness Centrality

The traditional definition of betweenness centrality given
in [6] enumerates all shortests paths in a graph and defines
betweenness centrality in terms of the percentage of shortest
paths passing through a vertex v. This metric has proved
valuable for a number of graph analysis applications, but
fails capture the robustness of a graph. A vertex that lies
on a number of paths whose length is just one greater than
the shortest path receives no additional value compared to
a vertex with an equally large number of shortest paths, but
few paths of length one greater.



We will define k-betweenness centrality in the following
manner. For an arbitrary graph G(V,E), let d(s, t) denote
the length of the shortest path between vertices s and t. We
define σstk to be the number of paths between s and t whose
length is less than or equal to d(s, t) + k. Likewise, σst(v)
is the count of the subset of paths that pass through vertex
v. Therefore, k-betweenness centrality is given by:

BCk(v) =
∑

s 6=v 6=t∈V

σstk(v)
σst

(2)

This definition of k-betweenness centrality subsumes
Freeman’s definition of betweenness centrality for k = 0.
From this definition, it is clear that there are multiple ways
to count paths whoses length is greater than d(s, t), but less
than or equal to d(s, t) + k. Above, each of the paths is
counted equal to a shortest path. It might also be reasonable
to count each of according to a linearly decreasing or
exponentially decreasing function. This is a topic for future
work.

3. A Parallel Algorithm for k-Betweenness
Centrality

Much research has been done to develop fast algorithms
for computing betweenness centrality. Brandes offered the
first algorithm for computing betweenness in O(mn) time
for an unweighted graph [3]. Madduri and Bader developed
a parallel version of Brandes’ algorithm exploiting both
coarse- and fine-grained parallelism in low-diameter graphs
in [1] and improved performance of this algorithm using
lock-free methods in [12]. In this paper, we will extend
the work in [12] to incorporate our new definition of k-
betweenness centrality.

We define d(s, t) to be the length of the shortest path
between s and t. Paths must be acyclic and directed outwards
from the source vertex. Let σstk(v) be the number of paths
between s and t with length equal to d(s, t)+k and passing
through v. Let σstk be the number of paths with length less
than or equal to d(s, t)+k between s and t. And let σst=k

be
the number of paths with length exactly equal to d(s, t)+k.
Then, σstk(v) is given by:

σstk(v) =
k∑
i=0

σsv=i · σvt=k−j
(3)

Clearly, for k = 0, we have reproduced the original value
of σst(v) from Brandes where d(s, t) ≥ d(s, v) + d(v, t)
(the Bellman criterion).

The k-betweenness centrality of vertex v is obtained by
summing the pair-dependencies for that vertex:

BCk(v) =
k∑
i=0

∑
s6=v 6=t∈V

δstk(v) (4)

δstk(v) is given by a ratio of the number of paths whose
length is equal to d(s, t) + k passing through vertex v over
the total count of the paths of length less than or equal to
d(s, t) + k between s and t.

δstk(v) =
σstk(v)
σstk

(5)

In his work, Brandes cleverly derives a recursive relation
for the dependency of s on any other vertex v in the graph.
Likewise, we have derived the general expression for any
path length k greater than the shortest path. We define
∆D(w, v) as d(s, v) − d(s, w) + 1, where s is the source
vertex and w is a neighbor of v. ∆D is bounded by k for
neighbors lying on a +k−path in which we are interested.
We define δsk

(v), the dependence of s on v through paths
of length d(s, t) + k, to be:

δsk
(v) =

∑
t∈V,t6=s

δstk(v) (6)

BCk(v) =
k∑
i=0

∑
s∈V

δsk
(v) (7)

It follows that BCk(v) can be directly calculated from a
sum of these dependence values. A formula for this relation
is given in Figure 1. Note that for negative i, σsvi

is defined
to be zero. The reasoning for this equation is as follows:
In [3], Brandes gives a definition for δst(v, {v, w}) being
the ratio of shortest paths from s to t that travel through
both the vertex v and the edge {v, w}. Similarly we can
define δstk(v, {v, w}) as being the ratio of paths of length
d(s, t) + k from s to t that travel through v and {v, w}. If
we do this, it is easy to see that we can express δstk as a
sum of δstk(v, {v, w}) across all vertices w such that w is
a neighbor of v and ∆D(w, v) ≤ k.

Now we see that if t = w then δstk(v, {v, w}) is simply
σsvk−∆D

σsw
where σsw is the number of paths from s to w

which are of length d(s, w) + k or less. The interesting part
is when t 6= w. In the shortest paths case, δst(v, {v, w}) can
be derived as the ratio of shortest paths to w that go through
v times the fraction of shortest paths from s to t that go
through w, via the Bellman criterion. However we do not
have the luxury of doing this as δstk(v, {v, w}) depends not
only on σstk(w) but on σsti(w) ∀ i ≤ k. To construct this
dependency we take our general formula for σstk(w) and
extend it to take into account the constraint that we need
to pass through a certain edge {v, w}. To do this we can
consider σswk

(v, {v, w}), which is exactly σsvk−∆D(w,v)(v),
and σwt=k

, which is the number of shortest paths from w to
t with length exactly d(w, t) + k, and which is unknown in
our algorithm. It can be seen that for w 6= t:

δstk(v, {v, w}) =
1
σstk

k∑
i=0

σsvk−∆D(w,v)(v)σwt=k
(8)



But here the problem is that we do not compute the value
σwt=k

at all. Therefore, we must infer it from other data. We
want to get some expression in terms of σstk(w), since this
will reduce in summation to a recurrence on δsk

(w). From
equation (3) we can derive a recurence relation for σwt=k

:

σwt=k
=
σstk(w)−

∑k
i=1 σsw=i

· σwt=k−1

σsw0

(9)

Then we are prepared to calculate a formula for δsk
(v).

Combining (9) with (8), and summing over all ts, if we
notice that δsk

(v) = Σt
σstk

(w)

σstk
, we obtain equations (10)

and (11).
For the case when k = 0, this formula quickly reduces

to shortest path dependency of s on v from Brandes’
betweenness centrality algorithm:

δs(v) =
∑
w

σsv
σsw
· (1 + δs(w)) (12)

The recursive relation involves a combinatorial number
of terms and quickly becomes intractable for large values
of k. For our purposes, small values of k (less than 5) are
interesting, meaning that we are interested in how a few edge
changes could heavily influence a vertex’s importance. For
these, it may be possible to directly derive the expression
for δsk

(v).

Algorithm 1 A level-synchronous parallel algorithm for
computing k-betweenness centrality of vertices in un-
weighted graphs.
Input: G(V,E), k
Output: kBC[1..n], where kBC[v] gives the k-centrality

score (BCk(v)) for vertex v
1: for all v ∈ V in parallel do
2: kBC[v]← 0
3: for all s ∈ V do

I. Initialization
4: for all t ∈ V in parallel do d[t]← −1
5: for 0 ≤ i ≤ k in parallel do
6: Succ[i][t]← empty multiset, σ[i][t]← 0,
7: σ[0][s]← 1, d[s]← 0
8: phase← 0, S[phase]← empty stack
9: push s→ S[phase]

Now that a recurrence relation for the delta values has
been established, we can summarize the algorithm outlined
in Algorithm 1, 2, and 3. In the first stage we calculate σsv=k

∀ v, k from a particular source vertex s. Then we use these
σ values to recursively calculate the δsk

(v) ∀ v, k. The first
step is achieved through using breadth-first search to do a
graph traversal. In the second stage, we traverse the graph
in backward order from which it was explored during the

Algorithm 2 Part II - Graph traversal for shortest path
discovery and counting

1: count← 1
2: while count > 0 do
3: count← 0
4: for all v ∈ S[phase] in parallel do
5: for each neighbor w of v in parallel do
6: if d[w] < 0 then
7: push w → S[phase+ 1]
8: count← count+ 1
9: d[w]← d[v] + 1

10: ∆D = d[v]− d[w] + 1
11: if ∆D ≤ min(k, 1) then
12: σ[∆D][w]← σ[∆D][w] + σ[0][v]
13: if ∆D ≤ k then
14: append w → Succ[∆D][v]
15: phase← phase+ 1
16: for 1 ≤ i ≤ k do
17: for 0 ≤ p < phase do
18: for all v ∈ S[p] in parallel do
19: for all w ∈ Succ[0][v] in parallel do
20: σ[i][w]← σ[i][w] + σ[i][v]
21: if i < k then
22: for 0 < j ≤ i+ 1 in parallel do
23: for all w ∈ Succ[j][v] in parallel do
24: σ[i+ 1][w] = σ[i+ 1][w] + σ[i+ 1− j][v]

Algorithm 3 Part III - Dependency accumulation by back-
propagation

1: phase← phase− 1
2: δ[i][t]← 0 ∀ t ∈ V, 0 ≤ i ≤ k
3: for 0 ≤ k′ ≤ k do
4: p← phase
5: while p > 0 do
6: for all v ∈ S[p] in parallel do
7: for 0 ≤ d ≤ k′ in parallel do
8: for all w ∈ Succ[d][v] in parallel do
9: for 0 ≤ i ≤ k′ − d do

10: sum← 0
11: e← k′ − d− i
12: for 0 ≤ j ≤ e do
13: sum← sum+W (e− j, e, w, σ) ∗ σ[j][v]
14: δ[k′][v]← δ[k′][v] + sum ∗ δ[i][w]

σ[0][w]e+1

15: δ[k′][v]← δ[k′][v] + σ[k′−d][v]
Σiσ[i][w]

16: kBC[v]← kBC[v] + δ[k′][v]
17: p← p− 1



δsk
(v) =

∑
w∈Succ[v]

σsv=(k−∆D)

σsw
+

k∑
i=0

k−i∑
j=0

[
W (k − i− j, k − i) · σsv=(j−∆D)

] δsi(w)
σk−i+1
sw0

 (10)

W (n, d) =

{
σdsw0

, n = 0

−
∑n
i=1 σsw=i

·W (n− i, d− 1), n > 0
(11)

Figure 1. Recursive relation for the dependency of a vertex s on a vertex v in the graph.

Figure 2. Illustration of σ propogation in the k = 2 case. Shown is a segment of the breadth-first search. The
table represents the ∆D value as well as the propogation occurring as the result of each edge. The color of the σ
propogation represents in which stage that addition will occur.

Algorithm 4 Function W (k, d, w, σ): a recursive method
producing a polynomial expansion with constant subscript
sum.
Input: k, d, w, two-dimensional array σ
Output: A multivariate polynomial in σ[xi][w] where each

term has sum of exponents d and also in each term
Σixi = k, evaluated with values from σ.

1: if k = 0 then return σ[0][w]d

2: else
3: sum← 0
4: for 0 < i ≤ k in parallel do
5: sum← sum− σ[i][w] ∗W (k − i, d− 1, w, σ)

return sum

search stage. We repeat this for each source vertex s and
sum the δ values for each vertex v to obtain the BCk value.

We must modify the graph traversal phase from that of our
previous work in [12] in order to correctly propagate values
of σst=k

. When k = 0, it suffices to do a single breadth first
search and propagate the value of σ from level to the next.

For k > 0, we must do k + 1 breadth first searches. Notice
that when we are updating σ values, for neighbors on the
next level in the breadth-first search, we have that σsw=i

=
σsv=i

∀ i, based on our generalized Bellman criterion. But
we must also increment the σ values for neighbors in the
current or previous levels of the search, which can be a
problem since these neighbors then need to also pass on
these values to their neighbors.

We solve this by only passing on σ values of a certain
rank to forward vertices and of another rank to vertices that
are behind the breadth first search frontier. Specifically, the
forward propagation always trails the backward propagation
by one level. In the first step, we calculate and forward-
propagate σ0 and back-propagate σ1. In the second step,
we forward-propagate σ1 and back-propagate σ2. If k = 2,
in the final step, we forward-propagate σ2. See Figure 2
for a demonstration of this process. We “back-propagate”
σk to vertices at the same level or a previous level when
we identify them as a neighbor of a vertex in the current
level and whose ∆D is appropriate for the phase of σk we



are propagating. We “forward-propagate” σk to neighboring
vertices on the shortest path that we discover during the
breadth first search. During the first breadth first search we
store k + 1 successor (or child) arrays. When we find a
neighbor during breadth first seach whose ∆D ≤ k, we
append that neighbor’s index to the ∆Dth successor array.

Therefore, we need not re-run the breadth first search after
the first time: as long as we synchronize on the phases,
we may directly scan the successor arrays to perform our
propagation, avoiding contention on a common vertex queue,
and also allowing us to ignore far away neighbors and jump
to exactly the neighbors we are interested in. In each case we
exploit parallelism in the traversal by exploring the neigh-
bors of the current level of vertices concurrently. For a small-
world graph, where graph diameter is small, the number of
levels in the breadth-first search is correspondingly small,
and parallelism is thus high. In the first traversal, all the
vertices must add newly discovered vertices to a atomically
accessed queue, which is the main bottleneck in the search.
Since that work is done in the first phase, we can store
some data so that subsequent searches do not rely on this
queue and thus do not have a sequential bottleneck to their
parallelism.

For the δ−accumulation step, we start by performing
shortest-path accumulation as before, in Brandes’s original
algorithm. However, having these δ0 values allows us to
repeat the backward traversal to recursively calculate δ1, and
so on and so forth. Notice that in Figure 1, the δk value
of the current vertex sometimes relies on the δk values of
vertices after, before, and on the same level of the breadth
first search. This may seem to preclude recursion, however
as it works out, for the same level of δ, the −∆D term on the
subscript of σsv cancels out any dependencies on vertices
on the same level or lower, meaning we can perform the
recursive step as before, so long as we only calculate one
level of δ per recursive traversal.

Complexity analysis: In Brandes’ original algorithm the
betweenness centrality of any vertex can be calculated in
O(mn) time and O(m+ n) space. It is easily seem that
the memory requirements of our new algorithm is exactly
k + 1 times the original, as we make k + 1 copies of the
arrays for σ, δ, and the successor and successor count
arrays, one for each level between 0 and k. The sequential
time analysis is a bit more difficult. The breadth-first search
phase is roughly k + 1 times O(mn), as we are essentially
traversing the graph k + 1 times (and in the worst case we
traverse each edge during each iteration). However in the
accumulation phase we are actually weighed down by the
calculation of the W function which grows combinatorically:
more specifically, the number of terms in W (k, d) grows as
the number of integer partitions of k, which is O

(
e
√
k
)

.
So the amount of work in this algorithm is on the order
of O

(
e
√
kmn

)
. For large k we can see that this becomes

quite difficult to compute, however at small k it is quite
manageable. For example, if we are only interested in k < 5
then the multiplier is bounded by e2 << mn.

4. Computing k-Betweenness on the Cray
XMT

Current hardware utilize a hierarchy of caches to hide the
latency to main memory. This approach works well when the
memory access pattern is predictable or when application
codes demonstrate significant levels of temporal or spatial
locality. Graph analysis kernels usually exhibit fairly low
levels of spatial or temporal locality, and execution on these
platforms is limited by the speed of the memory subsystem.
Hardware multithreading has been shown to be effective
for producing efficient implementations of parallel graph
algorithms when a signficant amount of parallelism can be
revealed [11].

The Cray XMT [9] uses massive numbers of hardware
threads to tolerate latency to main memory. The XMT uses
a 500 MHz 64-bit Threadstorm processor that supports 128
hardware streams of execution. Context switching between
threads is lightweight and requires a single clock cycle. Each
processor can support up to 16 GB of main memory that is
hashed and globally addressed. The memory has a 128 KB,
4-way set associative data buffer that caches local data only.
The system is built around Cray’s XT infrastructure and can
scale to 8,024 processors.

The Cray XT infrastructure provides the I/O facilities
and the interconnection network for the XMT. The system
utilizes the Seastar-2 interconnection network that connects
nodes in a 3D-torus topology. As a result, per-processor
bisection bandwidth decreases as the number of processors
is increased. Service nodes provide access to a Lustre file
system for the storage and retrieval of large data sets.

A novel feature of the Cray XMT is its support for
lightweight word-level synchronization mechanisms. Each
64-bit word of memory has a full/empty bit associated with
it. C-language primitives are provided to the programmer for
managing this bit and mutual exclusion locks are common.
The architecture also provides an atomic int_fetch_-
add instruction that allows for integer read-modify-write
operations. This is commonly used for zero-overhead shared
data structures like queues and stacks. See [12] for a more
detailed explanation of the synchronization and lock-free
methods used in this algorithm.

Implementation and optimization: In terms of imple-
mentation on the XMT, the underlying structure is similar
to that used in our previous work [12]. As before, utiliza-
tion of the child arrays allows us to update our δ−values
without locking. The further optimizations in our code for
k−betweenness can be seen as utilizing the fact that we will
mostly be using small k values. As one can see in Algorithm
3, there are many nested loops, however most of them are



�

�

�

�

�

2

4

6

8

10

2 4 8 16

Pa
ra

lle
l s

pe
ed

up

Number of XMT processors

Figure 3. Parallel scaling on the Cray XMT, for an R-
MAT generated graph of scale 23 (223 vertices). Scaling
is linear up to 8 processors and speedup is roughly 10
at all 16 processors. k = 1,K4approx = 8 for balanced
runtime and complexity (single node time 56 minutes).

very simple for small k and unfurl quickly. By manually
coding these loops for smaller values of k′, we significantly
reduce the execution time since the time to set up and iterate
over the small number of loop iterations quickly outstrips the
actual useful work inside of them. For a scale 20 R-MAT
(Recursive MATrix graph generator [4]) graph (having 220

vertices and 223 edges), the time to compute 1-betweenness
drops by a factor of two with this optimization. We use this
R-MAT generator to realize inputs that are similar to small-
world graphs in degree distribution.

We begin unrolling at the loop over d values. Notice that
for d = k′ the loops collapse into a very nice form, in that
it becomes the following simplified algorithm:

Algorithm 5 Loop at line 8 from Algorithm 3, reduced form.
Note that W (0, 0) = 1.

1: for all w ∈ Succ[k′][v]in parallel do
2: δ[k′][v]← δ[k′][v] + σ[0][v] ∗

(
δ[0][w]
σ[0][w] + 1

Σiσ[i][w]

)
Just from this simple equation we have reduced three

loops into one. Now since we have a formulation for d = k′

in the d loop, we may pull it out of the loop and run the
rest of the loop from 0 to k′− 1. Similarly we may wish to
pull the formulation when d = k′− 1, which we have done,
or beyond, depending on the number of iterations we wish
to work out by hand. However, as i in d = k′ − i grows,
the complexity of the resulting reduced formula grows at an
exponential rate, meaning that for larger i this reduction is
intractable.

In addition, just as we wish to take advantage of small k
values in this outer loop, we may also utilize this property
in writing our recursive W function, which creates this rel-

atively messy σ polynomial. For small values of k′ this will
already be built into the reduced loop iterations, however
since larger inputs to the W function recurse downward to
more manageable numbers, it will be convenient to quickly
return the correct answer at lower input sizes, saving a
couple recursion steps.

Apart from manually optimizing for lower loop iterations,
other considerations were taken for this architecture. For
example, the malloc system call is rather expensive in the
case of these lightweight threads: if we have a malloc
in parallel its cost compared to the number of operations
in that thread’s lifetime can actually be quite significant.
Initially temporary arrays were kept to store the number of
children accumulated for a particular vertex during graph
traversal, however since temporary arrays require dynamic
allocation, we modified the code to skip these temporary
arrays and access the source arrays directly, at the cost of
addressing the larger array repeatedly. Reorganizing memory
accesses to avoid dynamic allocation within the loop reduced
runtime by more than 75%. Furthermore, since the system
has a plentiful amount of memory which can in essence be
accessed with minimal latency, we are encouraged to utilize
extra memory in lieu of performing extra calculations (as
long as we have sufficient network bandwidth): thus, the
expression Σiσ[i][w] in Algorithm 3 is precomputed and
stored in an array for all values of w.

In Figure 3 we show the parallel scaling of our optimized
code on the Cray XMT from 1 to 16 processors. We have
reduced the execution time from nearly an hour down to a
few minutes for this problem. On 16 processors a graph of
scale 23 takes a little over 320 seconds to run for k = 1
approximate betweenness. This approximation is based on
selecting a random sample of source vertices s, in this case,
when K4approx = 8, the number of starting vertices is
28 = 256. The plot shows good scaling up to our machine
size.

5. Evaluating k-Betweenness

In order to explore the effect of various values of k on the
calculation of k-betweenness centrality, we apply our Cray
XMT implementation to the nd-www graph data set [2]. This
graph represents the hyperlink connections of web pages
on the Internet. It is a directed graph with 325,729 vertices
and 1,497,135 edges. Its structure demonstrates a power-law
distribution in the number of neighbors. The graph displays
characteristics typical of scale-free graphs found in social
networks, biological networks, and computer networks.

To examine the graph data, we ran approximate k-
betweenness centrality for k from 0 (traditional betweenness
centrality) to 4. In an approximate calculation, a subset
of vertices are chosen at random as starting points for
the breadth first search. An exact computation would use
all vertices in the graph. For our experiments, we set



Percentile k = 1 k = 2
90th 981 2358
95th 366 644
99th 59 100

Figure 4. The number of vertices ranked in selected
percentiles for k = 1 and k = 2 whose betweenness
centrality score was 0 for k = 0 (traditional BC). There
were 51,870 vertices whose traditional BC score was
0, but whose BCk score for k = 1 was greater than
0. The ND-www graph contains 325,729 vertices and
1,497,135 edges.

K4approx = 8 as before. The betweenness scores are
compared for each value of k. An analysis directly follows.
Also, after computing betweenness centrality for k = 0, we
remove one or more of the highest ranking vertices and re-
examine the results.

Looking at the highest ranking vertices going from k = 0
to k = 4, the subset of vertices and the relative rankings
change little. This would seem to indicate that the paths k
longer than the shortest path lie along the same vertices as
the shortest path in this graph. Moreover, as predicted, the
traditional betweenness centrality metric fails to capture all
of the information in the graph. When examining the BCk
score for k > 0 of vertices whose score for k = 0 was 0 (no
shortest paths pass through these vertices), it becomes clear
that a number of very important vertices in the graph are
not counted in traditional betweenness centrality. For k = 1,
981 vertices are ranked in the top 10 percent, but received a
score of 0 for k = 0. In the 99th percentile are 59 vertices.
Likewise, 100 vertices received a traditional BC score of
0, but ranked in the top 1 percent for k = 2. In total, there
were 51,870 vertices whose betweenness centrality score for
k = 0 was 0, but had a k-betweenness centrality score of
greater than 0 for k = 1.

These vertices that get missed by traditional betweenness
centrality play an important role in the network. They do
not lie along any shortest paths, but they lie along paths
that are just one unit longer than the shortest path. If an
edge is removed that breaks one or more shortest paths,
these vertices could likely become very central to the graph.
The traditional definition of betweenness centrality fails to
capture this subtle importance, but k-betweenness centrality
makes it possible to identify these vertices.

When a vertex of high betweenness is removed from the
graph, it causes a number of changes in betweenness scores
for all values of k that we are studying. Many vertices gain
a small number of shortest paths and their ranking is fairly
unchanged. In general, those vertices ranked very highest
on the list remain at the top. This would seem to indicate
that there is a network of short paths between vertices of
extremely high betweenness. Interestingly, however, other

vertices jump wildly within the rankings. Often, several of
these are neighbors of the removed vertex. This underscores
the previous conclusion that a vertex of relatively little
importance in the graph can become extremely important
if the right vertex or combination of vertices are removed.
Future work will study the effect of removing edges of
high betweenness, rather than vertices, on the rankings of
k-betweenness centrality in these real-world networks.

6. Conclusions and Future Work

Betweenness centrality has proven itself in the past to
be a useful metric for graph analysis. We have extended
traditional betweenness centrality to the general case taking
into account additional paths longer than the shortest paths.
We have begun to analyze the effects of this metric on
real world graphs. We believe that this new tool will have
important consequences in the study of contingency analysis
and planning, failover routing in computer networks, and
extended relationships in social networks. In future work,
we look to apply this new tool to a wider range of graphs
stemming from real world data in an effort to understand
the impact that various types of paths have on the structure,
robustness, and resiliency of the graph.

Acknowledgments

This work was supported in part by the PNNL CASS-
MT Center and NSF Grant CNS-0614915. We would like
to thank PNNL for providing access to the Cray XMT. We
are grateful to Kamesh Madduri, Daniel Chavarrı́a, Jonathan
Berry, Bruce Hendrickson, John Feo, Jeremy Kepner, and
John Gilbert, for discussions on large-scale graph analysis
and algorithm design for massively multithreaded systems.

References

[1] D. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Proc. 35th Int’l
Conf. on Parallel Processing (ICPP). Columbus, OH: IEEE
Computer Society, Aug. 2006.

[2] A.-L. Barabási, “Network databases,” 2007, http://www.nd.
edu/∼networks/resources.htm.

[3] U. Brandes, “A faster algorithm for betweenness centrality,”
J. Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in Proc. 4th SIAM Intl.
Conf. on Data Mining (SDM). Orlando, FL: SIAM, Apr.
2004.

[5] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based
technologies for intelligence analysis,” Communications of
the ACM, vol. 47, no. 3, pp. 45–47, 2004.



[6] L. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[7] R. Guimerà, S. Mossa, A. Turtschi, and L. Amaral, “The
worldwide air transportation network: Anomalous centrality,
community structure, and cities’ global roles,” Proceedings
of the National Academy of Sciences USA, vol. 102, no. 22,
pp. 7794–7799, 2005.

[8] H. Jeong, S. Mason, A.-L. Barabási, and Z. Oltvai, “Lethality
and centrality in protein networks,” Nature, vol. 411, pp. 41–
42, 2001.

[9] P. Konecny, “Introducing the Cray XMT,” in Proc. Cray User
Group meeting (CUG 2007). Seattle, WA: CUG Proceedings,
May 2007.

[10] F. Liljeros, C. Edling, L. Amaral, H. Stanley, and Y. Åberg,
“The web of human sexual contacts,” Nature, vol. 411, pp.
907–908, 2001.

[11] K. Madduri, D. Bader, J. Berry, J. Crobak, and B. Hen-
drickson, “Multithreaded algorithms for processing massive
graphs,” in Petascale Computing: Algorithms and Applica-
tions, D. Bader, Ed. Chapman and Hall/CRC, 2007, ch. 12,
pp. 237–262.

[12] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarrı́a-
Miranda, “A faster parallel algorithm and efficient multi-
threaded implementations for evaluating betweenness central-
ity on massive datasets,” in Proc. Workshop on Multithreaded
Architectures and Applications (MTAAP’09), Rome, Italy,
May 2009.


