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Abstract
Three implementations of a concurrently-updateable linked list
were compared, one that emulates a lock-free approach based on
a compare-and-swap instruction, one that makes direct use of the
Cray XMT’s full-empty synchronization bits on every word of
memory, and a third that uses the XMT’s atomic int_fetch_add
instruction. The relative performance of the three implementations
was experimentally compared on a 512-processor XMT. The direct
implementation approach performed up to twice as fast as the
other two approaches under conditions of low contention, but the
three implementations performed about the same when the

amount of contention was high.
The Cray XMT

The Cray XMT is a heavily multithreaded
architecture, with 128 hardware threads per
processor. This degree of multithreading
provides a significant amount of latency
tolerance, to the point that a global shared
memory is practical. The 512-processor XMT
prototype now in Cray’s testing laboratory
provides 4 terabytes of globally-addressed,
shared memory. Shared memory of this size
together with the XMT’s unique degree of
latency tolerance gives the XMT outstanding
performance on applications that lack any
processor affinity or spatial locality for a parallel
applications programmer to exploit. In
particular, the XMT can provide better scaling
and performance than its distributed
memory/commaodity processor competition for
commonly used graph analysis kernels [9]. This
makes it a promising parallel system for
applications, such as social network analysis,
that have to process huge, graph-oriented data
structures.

For this class of applications, holding large,
complex data structures in main memory
appears to be inevitable. Performance
requirements coupled with the presence of
many thousands of hardware and software
threads on the XMT dictate that these data
structures be concurrently accessible and
updateable, without becoming scaling
bottlenecks. Accordingly, it is attractive to
consider using lock-free implementations of
shared data structures. Lock-free data
structures have the potential for high
performance because of their ability to be
concurrently updated and accessed.
Furthermore, there is a significant software
productivity consideration: they are already
designed and written, and in many cases tested,
for a large number of commonly-used data
structures [11, 12].

There has been a great deal of research over
the past 20 years on lock-free data structures
and approaches to their implementation [2, 6,
7, 10]. A few of these have focused on
performance evaluation [1, 3, 4], as does this
paper. The attractiveness of using lock-free data



structures stems from their support of fine-
grain, concurrent updates and their
characteristic of being non-blocking: the failure
of one thread doesn’t affect the ability of other
threads to progress. This is contrasted with a
blocking style of synchronization in just this
way: suppose a thread fails while it is holding a
lock. Any other threads waiting for that lock to
be released will not make progress. At least on
the XMT architecture, however, robustness in
the face of a thread failure of this sort isn’t a
significant issue, because failures will occur, or
at least will be detected, at the processor/node
level. The user is certain to have larger
problems than some threads being blocked; 128
threads and 8 gigabytes of memory will be
gone.

The high parallel computational throughput
potential of fine-grain accesses and updates is
very attractive, however. The problem for the
Cray XMT is that most lock-free data structure
implementations employ the atomic compare-
and-swap (CAS) operation, which the XMT
instruction set does not have. Instead, the XMT
provides ubiquitous, fine-grain, blocking
synchronization, in the form of an additional bit,
called the full-empty bit, on every 64-bit word
of memory. The instruction set includes
specialized load and store and instructions, such
as readfe() (“read full-empty”), the semantics of
which can be thought of as follows:

readfe(word):
{ block until word is marked full
load contents and mark word empty

}
Symmetrically, the writeef() (“write empty-full”)
instruction blocks until a word is marked empty,
then stores a value into the word and marks it
full.

Additionally, the Cray XMT instruction set

includes an atomic int_fetch_add() operation,

the semantics of which are as follows:
int_fetch_add( word, value) = do these two
steps atomically:

e Add “value” to the contents of “word.”
e Return the previous contents of “word.”

This suggests three possible approaches to
implementing data structures with fine-grain,
concurrent updates on the XMT:

e Emulate CAS using full-empty bits, and
implement a “classical,” CAS-based data
structure from the lock-free research
literature.

e Directly implement a concurrently-
updateable data structure with blocking,
but fine-grain synchronization, using the
full-empty bits and the blocking read and
write instructions.

o Implement fine-grain synchronization on
data structure components by including a
synchronization integer with each
component. Perform an int_fetch_add on
the synchronization integer, with an add
value of 1. Initialize each sync integer to 0.
If the returned value is 0, then the attempt
to lock the component was successful.
Otherwise, perform another int_fetch_add
with a -1 value to return the sync integer to
its previous state, and try again later.

In this experiment, we implemented a linked list
using each of these approaches and compared
their performance.

For the emulated CAS instruction, we
implemented a software compare-and-swap,
using full-empty bits to guarantee atomicity.
The C++ implementation is shown below.

typedef uint64_t word;

bool CAS( word* x, word match,
word replace )
{
word temp = readfe(x);
//lock x (mark It empty)
1T( temp == match ) {
writeef(x, replace);
//unlock
return true;
} else {



writeef(x, temp);
return false;
s

3

For the CAS-based linked list we implemented
John Valois’s linked list design from [8].Valois’s
approach uses two types of nodes: “normal”
nodes that contain data, and an equal number
of “auxiliary” nodes, one between every two
normal nodes in the list. The auxiliary nodes are
used to avoid the correctness problems CAS-
based approaches can get into when two or
more updates are occurring very near each
other. Following the deletion of a normal node,
there may be more than one auxiliary node in
the linked list between two normal nodes, but
these are cleaned up during subsequent
searches of the list. Valois’s design assumes that
the data items in the linked list (we used non-
negative integers) are maintained in increasing
order.

To insert a new node into the list or delete one
from it, Valois’s design starts at the beginning of
the list and searches it in order, until either the
relevant value is found, or a value larger than it
is found. To carry out the search, Valois uses a
data structure he calls a “cursor,” which
consists of three pointers: one (“target”) that
points to a normal node being visited, one
(“pre_aux”) that points to an auxiliary node
proceeding this normal node, and one
(“pre_cell”) that points to the previous normal
node. As the cursor is stepped forward through
the list, a procedure named “update” takes care
of deleting any extra auxiliary nodes that
appear between two normal nodes. Valois’s
“Insert” procedure repeatedly calls “Trylnsert,”
a procedure containing a CAS operation, to
perform the insert when conditions are right —
that is, when the CAS determines that the
relevant node pointer has not changed since
this thread last accessed it. The “Delete”
procedure similarly spins calling a “TryDelete”
procedure that contains a CAS, until conditions
are right.

We did not implement two parts of the Valois
design. One consisted of two procedures,
SafeRead and Release, which manages the
memory occupied by deleted nodes, in such a
way to avoid the version of the “ABA problem”
that occurs when the same section of memory
is re-cycled by the OS’s memory manager and
deceptively appears to the application program
never to have been changed. We did not free
deleted nodes to the memory manager in either
implementation, so the performance
comparisons are independent of that aspect.
This simplified the code considerably, because
we didn’t have to worry about freeing a node
that still had some cursor pointing to it. This
also allowed us to skate around the critical race
problem in Valois’s original design, addressed
by Michael and Scott in [5]. The other
unimplemented component was a fairly
complex mechanism within TryDelete which
uses backpointers to search for any extra
auxiliary nodes resulting from a normal node’s
deletion. Since the next cursor in this section of
the list accomplishes this anyway, we left this
part out of the implementation of TryDelete.

In the implementation that directly uses full-
empty synchronization, we still followed the
top-level structure of the Valois design fairly
closely. An insert entails a search from the start
of the list for the place to insert the new node,
and a delete starts with a search for the node to
be deleted. One difference is that the direct
full-empty implementation did not need the
auxiliary nodes. This saves about 33% of the
memory consumed by the CAS-based linked list
— but note that this fraction would be much
smaller in a realistic application in which
“normal” nodes contained nontrivial amounts
of data. It also affected overall performance, as
is explained below. In the full-empty
implementation, a two-element cursor data
structure points at the current node of interest
and its immediate predecessor as the list is
searched.

Rather than spinning on the CAS procedure, the
direct implementation of delete uses a



procedure named “Reserve3,” which uses
readfe() to mark a word empty in three nodes:
the node to be deleted, the previous node, and
the successive node. Insert calls “Reserve2,”
which similarly locks each of the two nodes that
are on either side of where the new node is
going to be inserted. To avoid deadlock, the
readfe() locks are done in increasing order in
the list. The word in each node that the readfe()
is performed on is a “valid” flag, which is set to
0 while the node is in use and to 1 when it is
deleted. If either of the Reserve procedures
finds an “invalid” node, it unlocks anything it
has locked and returns information about which
node was invalid. If it was the lowest node in
the set being locked, the program starts the
search over from the beginning of the list — it
has no better information about an appropriate
place to restart. If, however, the first node in
the set is still valid, the program resumes the
search from there.

The Test Harness

All three versions were implemented in C++ on
the XMT, and compiled with Cray’s specialized,
parallelizing XMT compiler. We wrote a main
program that creates a linked list of “LISTSIZE”
nodes and then performs “NUMTRIES” updates
on it. The data values in the nodes are initialized
to be increasing even integers between 0 and
LISTSIZE x 2. Building and initializing the list and
the random number arrays is untimed; only the
update phase is timed for the experiment. In
the first phase of the update operations, the
update loop randomly chooses, with 50%
probability, either to delete a node containing
an even integer or to insert a node containing
an odd integer. This guaranteed that, for
openers, a lot of inserts as well as deletes would
happen. Preliminary experiments determined
that after about LISTSIZE x 2 iterations of this
loop, the list contained about 50% even and
50% odd values. So for subsequent updates, a
50-50 mix of inserts and deletes were
performed using a random array of even and
odd integers from 0 to LISTSIZE x 2.

When generating the arrays of random integers
to be inserted or deleted from the linked list,
we used a procedure called “focus” to
artificially create update “hot spots.” Focus took
three integer parameters, each representing a
percentage value between 0 and 100. The first
parameter represented the fraction of all the
random integers that were to be generated
within the hot spot range. The second and third
parameters were, respectively, the bottom and
top percentiles of the hot spot range. So, for
example, a call to focus() with the parameters
of 80, 90, and 100 would generate, for a list of
length 10,000, an array of random integers, 80%
of which fell within the highest 1000 of the
linked list nodes, while the other 20% were
uniformly distributed among the values held in
the other 9000 of the nodes. Giving focus() the
parameters of 100, 0 and 100 would result in
the random integers being distributed
uniformly across the whole list —i.e., without a
hot spot.

Results

All experiments were performed on a linked list
initialized to hold 10,000 nodes (10,000
“normal” nodes in the emulated CAS case), and
each experimental run attempted 100,000
updates on the list (since the update values
were randomly generated, it was possible that
an iteration could try to insert a node that was
already there, or delete a node that wasn’t
there — these attempts just ended up as
searches with no update). Table 1 shows the
performance results for the focus(100, 0, 100)
case, i.e., when updates and deletes were
uniformly distributed across the whole list.
Times are in seconds. Using the XMT’s
hardware instrumentation, we also collected
the cumulative number of memory requests for
each update loop, shown in the table in billions.
A dittoed entry signifies that the number didn’t
change significantly from the previous run. The
cumulative number of memory retries, also
collected by built-in hardware instrumentation,
is shown in the last two columns. We only
recorded them for larger numbers of
processors, because they were negligible for the



others. Memory retries happen when a thread
tries to perform a readfe() and the word turns
out to be empty, i.e. the calling thread is
blocked. Invisibly to the application
programmer, the hardware spins on the
readfe(), retrying it 1000 times before trapping
and notifying the XMT runtime software. The
runtime removes this thread from the
processor registers at this point, placing it into a
gueue from which it can be resumed once the
word is set to full. We also measured these
traps, but they were negligible for all but the
highest-contention cases, and even then were
only around 10,000.
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Figure 1: Graph of the performance results from
Table 1

One can see that all three implementations
appear to scale pretty close to linearly, with the
exception of the 30.14-sec. execution time for
the emulated CAS run on 512 processors. We
believe this to be an anomaly caused by some
exogenous factor in the system —the first XMT
to be built with 512 processors, which is still
undergoing intensive testing in our laboratory.
We re-ran this configuration later and got an
elapsed time of 62 seconds, which supports the
supposition that something exogenous is
happening.

Table 2 shows the results when 90% of the
updates were focused on the middle of the list,

from the 45" percentile up to the 55"
percentile. Table 3 shows the results when 95%
of the updates were focused on 5% of the list,
and Table 4 shows the results when 95% of the
updates were concentrated on 1% of the list.
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Figure 2: Graph of the performance results
shown in Table 2
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shown in Table 3
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Figure 4: Graph of the performance results
shown in Table 4

Analysis

All three implementations scale roughly linearly
until the number of processors approaches 512.
All three were also fairly robust under
increasing levels of contention, until we reach
the higher levels of contention, shown in Tables
3 and 4. It seems clear that when contention is
low, the full-empty bit implementation
outperforms the CAS implementation by a
factor a little above two, while the
int_fetch_add implementation lands between
the other two. This is probably because
searches in the CAS-oriented approach go
across twice as many nodes, since this
implementation employs auxiliary nodes.
Additionally, the CAS approach updates three
pointers every time the cursor moves, as
opposed to two pointers in the full-empty
approach. Furthermore, both the CAS
emulation approach and the int_fetch_add
approach have to “undo” what they have done
if their attempt to gain control of a
synchronized component has failed. On a
latency-tolerant, highly multithreaded
architecture like the XMT, memory bandwidth is
often the limiting factor for performance, and
one can see from the memory request columns

in the tables that the CAS approach accesses
memory roughly three times more often than
the direct full-empty approach, and the
int_fetch_add approach roughly twice as often.

As contention increases, however, either from
increasing the number of processors (which
increases the number of threads concurrently
performing updates) or from tightening the
focus, the performance difference between the
three implementations shrinks significantly. The
explanation appears to have to do with the
number of retries, which approach parity as
contention increases (except for the anomalous
case, which should be ignored). The measured
number of retry-induced traps was down in the
noise for every run, but one can see that the
number of retries increases significantly with
the amount of contention.

Conclusion

Thus, it seems to be a matter of how much
contention, or hot-spotting, the user expects,
that would determine the choice of concurrent
implementation, at least for this linked list data
structure. If a true, atomic compare-and-swap
instruction were to be implemented for some
future version of the XMT, we would expect
that the full-empty bit implementation would
still dominate for the low-contention case,
simply because it performs fewer memory
accesses, but the CAS implementation would
probably be distinctly superior under heavy
contention.

Programming Effort

Programmer productivity has become a
significant issue in the high-performance
computing community, and papers that
describe software implementations ought to
say something about how long they took,
however small the sample size and however
unscientific the estimate may be.

Implementing the Valois CAS approach took the
second author about two days to write in C++
and two more days to debug. All of the bugs
were a function of lack of familiarity with the



esoteric profundities of C++ syntax. Once the
sequential version ran correctly, so did the
parallel version — for which the credit goes to
John Valois.

The full-empty version took about a day to
write, the first time, and two days, with a
colleague’s help, to debug its parallel version
enough to realize that it contained a critical
race, and that the synchronization approach
had to be completely rewritten. The rewrite
took a day, and ran correctly immediately.
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Appendix

#processors

1
2
4
8

256
512

emulated CAS

156.77
77.1
39.42
20.67
10.97
6.97
3.56
2.17
1.57
30.14

readFE

65.47
31.06
16.18
8.8
4.64
3.24
1.63
1.69
2.48
1.59

intfetchadd

110.23
55.83
28.11
13.96

7.17
3.75
2.26
1.26
1.3
2

em. CAS

9.3

“
“«
“
“«
“
“«
“

“«

28.9

memory requests (in B)

readFE

3.1

"

"

3.5
4.7

intfetchadd

4.1
4.1

“"

“u

4.2
4.6
5.7

retries (in B)

em. CAS

0.241
0.473
1.7
4.9
152.7

Table 1: Experimental results for updates distributed uniformly across the entire list

#processors

1
2
4
8

256
512

Table 2: 90% of updates focused on the 45™ to 55™ percentile of the list

#processors

1
2
4
8

512

emulated CAS

153.21
76.21
38.75
20.87
10.93

7.01

3.7
2.21
1.59
1.58

emulated CAS

263.2
129.89
66.43
35.28
18.65
11.57
5.94
3.19
2.01
1.67

readFE

66.33
30.91
16.17
8.81
4.67
3.22
2
1.72
2.2
1.43

readFE

116.2
52.53
27.41
14.64
7.8
53
2.97
2.22
2.45
4.46

intfetchadd

112.89
55.78
28.12
14.05

7.21
4.02
2.37
1.27
0.98
1.81

intfetchadd

189.31
95.21
47.26
23.55
12.01

6.29
3.63
1.94
1.34
1.37

em. CAS

9.3

“
“«
“
“«
“
“«
“

“«

10

em. CAS

15.7

“
“
“
“
"
“
“

“

16.5

memory requests (in B)

readFE

3.1

“«

4.4

memory requests (in B)

readFE

53

“

"

6.6

intfetchadd

4.1

“"
“u

“"

4.5
5.6

intfetchadd

6.2

“

"

7.2
7.4
8.2

Table 3: 95% of the updates focused on the 85 to 90" percentile of the list

retries (in B)

em. CAS

0.241
0.661
1.8
4.9
13.2

retries (in B)

em. CAS

0.247
0.605
1.6
4.1
12.9

readFE intfetchadd

0.118

0.38
1.26 14
5.5 6.5
19.9 22.2

readFE intfetchadd

0.118

0.449
1.3 1.3
3.8 3.9
12.2 15.7

readFE  intfetchadd

0.156
0.434 0.6
14 15
3.4 3.9
14.3 13.3



#processors

o A~ N -

16
32
64
128
256
512

emulated CAS

275.14
135.55
68.63
36.91
19.07
12.15
6.33
3.53
2.1
1.73

readFE

115.0
9

54.47
28.95
15.31
8.18
5.58
3.27
241
2.48
141

memory requests (in B)
readF
intfetchadd em. CAS

199.02 16.3
97.3 “
49.3 “

25.07 “
12.99 “
6.81 “
3.5 “
2.1 “
1.48 “
1.53 17

5.5

6.7

intfetchadd

7.3

“"

7.4
7.5
7.8
8.5

Table 4: 95% of the updates focused on the 90" to 91" percentile of the list

retries (in B)

em. CAS

0.385
0.673
1.7
4.5
12.7

readFE

0.181
0.59
13
3.2
12.6

intfetchad

0.49
1.3
3.8

12.3



