
Chapel Realms:
Language Support for Hybrid Computation†

Chapel Team, Cray Inc., chapel info@cray.com

I. MOTIVATION

This paper describes the realm—a proposed extension to
the Chapel parallel programming language for the purpose
of executing a single Chapel program using multiple distinct
target architectures. The assumption is that a Chapel user
would want to do this in order to take advantage of the
unique processing capabilities of each architecture, or simply
to harness the increased computational power available when
using multiple machines in concert. The immediate motivation
for this work is to support heterogeneous node types within
a single system such as the multithreading and SIO nodes
of a Cray XMT, or the Marble and Granite nodes of a Cray
Cascade system. We also envision realms as being useful for
distributing a computation across multiple distinct systems that
happen to share a network.

II. BACKGROUND

This section provides a brief overview of how Chapel
currently represents the target architecture’s resources in order
to provide context for the new concepts introduced by this
paper. For further details, please refer to the Chapel Language
Specification.1

A. Chapel Locales

Currently, the Chapel language defines the concept of a
locale to represent a unit of the target system architecture
that is useful for reasoning about locality. The purpose of
the locale is to permit the programmer to control how a
program executes relative to the target architecture’s resources.
In particular, locales enable a programmer to specify and
query where data is stored and where tasks execute. This
ability to reason about locality and affinity is often crucial
for obtaining scalable performance on large-scale systems
given that memory is typically distributed between a machine’s
nodes. In an application that has poor affinity between its tasks
and the variables they access, the resulting network latencies
can become a bottleneck and a barrier to achieving scalable
performance.

†This work was funded under the Center for Adaptive Supercomputing
Software—Multithreaded Architectures (CASS-MT) at the Dept. of Energy’s
Pacific Northwest National Laboratory. Pacific Northwest National Labora-
tory is operated by Battelle Memorial Institute under Contract DE-ACO6-
76RL01830. The material in this report is also based upon work supported
by the Defense Advanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001.

1The current version of the Chapel Language Specification (0.780 at the
time of this writing) is available at http://chapel.cs.washington.edu.

Chapel’s locales are defined as follows. A locale has the
ability to execute computations (tasks) and to store data
(variables). Tasks can access variables stored in any locale,
but variables stored within the task’s locale can be accessed
more cheaply than those in other (remote) locales. Any two
tasks running within the same locale should have fairly similar
access times to a given variable stored on the system.

The definition of a locale is intentionally abstract in order
to make it applicable to a wide variety of target architectures.
The specific meaning of locale for a given target architecture is
defined by the Chapel compiler used to build the program. This
binding should be well-documented to permit users to reason
about how their Chapel programs will execute on a given
system. For example, our current Chapel compiler defines a
locale for a commodity cluster or Cray XT4 as a single node
of the architecture—a multicore processor or SMP node and
its associated memory. For a machine like the Cray XMT
which presents a completely flat view of shared memory to
the user, all of the nodes being used to execute a user’s job are
considered to be a single locale since there is no distinction in
the programming model between “here” and “there,” nor any
way at the user’s level to specify where a particular piece of
data should be allocated or a task run.

The current implementation of Chapel assumes that locales
are reasonably homogeneous. For example, a group of locales
must use the same data representation and must be able
to run a single binary executable. Aside from these rules,
minor differences are permitted. For example, the number of
processing cores and amount of memory may vary from one
locale to the next. The target platform is specified by the user
at compile time via a flag or environment variable.

At Chapel program execution time, the user can specify the
number of locales on which the program should be run. For
example, in our current compiler, a user wanting to execute a
program myProg on 16 locales of the target platform would
write:

prompt% ./myProg -nl 16

or:

prompt% ./myProg --numLocales=16

This request is used by the Chapel program to allocate the
corresponding machine resources and to load the binary onto
the appropriate nodes. After this bootstrapping process, the
user code begins executing from its entry point (main()) using
a single logical task running on locale 0.



B. Locales within the Chapel Language

Within the language itself, Chapel represents the locale con-
cept using a type named locale. During the bootstrapping
process, a unique locale value is created for each of the locales
requested by the user. These values represent the machine
resources on which the code is running, and each locale value
is allocated within the memory of the locale that it represents.
In the current language design, locale values may neither be
created nor destroyed during program execution.

The Chapel programmer is provided with three built-in
variables that represent the set of locales on which the program
is executing. An integer variable numLocales represents the
number of locales as specified by the user at execution
time. A 1-dimensional array, Locales, stores the numLocales
unique locale values that represent the machine resources
being used. And finally, a 1-dimensional domain, LocaleSpace,
represents the index set corresponding to the Locales array:
0 . . . numLocales − 1. These variables can be thought of as
being implemented using the following Chapel declarations:

config const numLocales: int = 1;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale = ...;

Locality-minded programmers can use these variables to
control where their program data is stored and where their
tasks execute. The main feature for doing so is the on-clause,
which prefixes a Chapel statement to indicate that it should
be executed on a specific locale. The on-clause takes a single
expression as its argument. If the expression evaluates to a
locale value, the corresponding statement will be executed
on that locale. If the expression is a variable expression with
storage associated with it, the statement will be executed by
the locale on which the value is stored. If the expression is
a literal expression then the on-clause is degenerate (i.e., the
statement will execute locally) since the value will be stored
locally to the currently-executing task.

Here are some examples of the on-clause in use:

// Program execution starts on locale 0

var x: real; // x is stored on locale 0

on Locales(1) { // move execution to locale 1
var y: real; // y is stored on locale 1

on x { // move to where x is (locale 0)
y += x; // requires a remote get/put of y

} // return to locale 1

on 0 do // degenerate since the integer
write("hi"); // literal "0" is local to the

// current task by definition;
// thus, it runs on the current
// locale (locale 1 in this case)

} // return to locale 0

Note that while this program is sequential, in practice on-
clauses are often used with task invocations to launch a number
of parallel tasks across a set of locales. For example, a very

common idiom is to use a parallel loop to start a task per
locale:
coforall loc in Locales do
on loc do

...

Chapel users can query the placement of data and tasks
using a small set of intuitive language concepts. A built-in
method .locale can be applied to any variable and returns the
locale on which that variable is stored. A built-in locale-private
constant, here, can be used to refer to the locale on which the
current task is executing.

Locale values support a few important methods as well.
Applying the .id method to a locale value returns its index
from 0 to numLocales − 1. The .name method returns a
string corresponding to the identity of the locale on the target
machine, similar to that which would be returned by invoking
hostname from a shell running on the node. Other methods
support the ability to query the amount of memory or number
of processor cores associated with the locale.

Here is a simple example of these concepts in use:
// Program execution starts on locale 0

var x: real; // x is stored on locale 0

writeln((x.locale.id,
here.id)); // writes (0, 0)

on Locales(1) do // migrate to locale 1
writeln((x.locale.id,

here.id)); // writes (0, 1)

Finally, locales are important to Chapel’s concept of dis-
tributed domains and arrays in which a single logical data
aggregate can be implemented using the disparate memories
of multiple locales. Most distributions take a set of locales
as an argument and distribute the domain indices and array
elements between those locales. For example our Block1D
distribution which partitions 1D domains/arrays across a set
of locales takes a 1D array of locales as an argument, with
a default value of Locales. In this way, users can specify a
specific set of locales over which to distribute an array, or
they can distribute it over all of the locales by default.

C. Possible Extensions to Locales
There are a number of ways in which Chapel’s current locale

concept could be extended to make Chapel more general,
flexible, or useful. We present a list of such extensions here:
• As proposed in the current work, the locale concept

could be extended to support heterogeneous or hybrid
target architectures. In this model, we envision a Chapel
program being run across multiple machines, each with
distinct capabilities. For example, the program may have
a highly dynamic, unpredictable phase that would run best
on an XMT; a highly regular, computationally intensive
phase that would be well-suited for the XMT’s SIO
nodes; and a visualization package that would be most
usefully run on a desktop workstation.

• A second means of introducing heterogeneity into the
locale concept would be to expose distinct capabilities



within a processing node, such as the presence of copro-
cessors or accelerators in the form of (GP)GPUs, vector
units, etc. In our current thinking, this would be done by
making the locale type less of a black box, permitting
the user to refer to architectural substructures within the
locale.

• Similar to the previous item, even in a reasonably homo-
geneous node such as a multicore processor, one might
want to control the placement of threads on cores or
the placement of data within memory banks—particularly
as multicore chips become larger and more hierarchical
making intranode locality more of an issue. Again, we
would imagine making this change by allowing the locale
concept to be “opened up,” permitting the user to refer
to hierarchy within the locale.

• The current restriction against creating and destroying
locale values could be relaxed, permitting the set of
locales to grow and shrink during program execution.
This capability could permit a programmer to dynami-
cally change the size and/or membership of their Locales
array in order to adapt to changing program requirements
or system utilization. It may also provide a means of
reflecting failed nodes or varying system resources to the
program.

• A layer of virtualization could be injected between the
language-level locale values and the resources on which
the program is running, for instance to provide resiliency
by mapping a single locale value to multiple physical
nodes and performing redundant storage and computation
to tolerate machine failures.

While all of these directions are of interest to us as language
designers and developers, this paper and our current scope of
work only tackle the first of these items.

III. REALMS

This section introduces the proposed realm concept for
describing multiple target architectures. The purpose of a
realm is to introduce a new language type and value that
represents distinct target systems, permitting users to bind
computations and data to the machines just as they currently
use locales to do so for a single machine’s resources. We
distinguish between realms and locales for a couple of rea-
sons: First, because realms generally require the compiler
to create multiple executables, one per target architecture.
Second, because the cost of communicating between realms
will typically be greater than communicating between locales
due to increased latencies and the potential for data repre-
sentation conversions. By exposing this distinction, we enable
the compiler and user to reason about and optimize inter- vs.
intra-realm communications.

A multi-realm Chapel program will commence execution
of the user’s entry point using a single logical task executing
on locale 0 of realm 0. Existing Chapel programs can be
thought of as being single-realm executions in which variables
associated with a realm are exposed to the user in the global
scope. We expect that single-realm executions will continue

to be a common and important case, both for the user and for
the compiler to optimize for. This is somewhat analogous to
our current Chapel compiler’s support for specifying a single-
locale execution for optimization purposes.

As a running example for this discussion, assume that the
programmer wants to execute using three distinct realms: a
64-node Cray XMT (treated as one locale), its 16 SIO nodes
(each a distinct locale), and a desktop Macintosh (also a single
locale).

A. Realms within the Chapel Language

Since the compiler will need to generate distinct executables
for different architectures, the user will need to specify the
realms on which they want the Chapel program to execute
at compile-time. This will be supported via a set of built-in
parameters, similar to the constants supported in the current
language definition to describe locales:

config param numRealms: int = 1;

param RealmSpace = [0..#numRealms];

config param realmTypes: [RealmSpace] string
= getenv("CHPL_TARGET_PLATFORM");

The numRealms variable indicates the number of distinct
machines on which the Chapel program will execute. If
unspecified, numRealms will default to “1” and the compiler
will execute on a single target architecture as it does today.
The RealmSpace domain stores the index space for the target
machines, just as LocaleSpace does for the locales in a
traditional Chapel program. The realmTypes array stores a se-
ries of implementation-specific strings that uniquely represent
the architectures being targeted. To implement the specified
computation, the Chapel compiler will need to generate an
executable for each distinct value in realmTypes.

Given these configuration parameters, a programmer want-
ing to invoke the Chapel compiler for the multi-realm case
from our motivating example might use the following com-
mand line:

prompt% chpl -o myProg myProg.chpl --numRealms=3 \
--realmTypes=("xmt", "xmt-sio", "darwin")

Note that the mechanisms for specifying configuration param-
eters can vary between Chapel implementations.

The user will be able to specify the number of locales per
realm at execution time, much as they do for the numLocales
variable today. This will be expressed using a configuration
constant array of integers:

config const localesPerRealm: [RealmSpace] int;

Thus, to execute using the set of locales in our motivating
example, the Chapel program would be launched as follows:

prompt% ./myProg --localesPerRealm=(1, 16, 1)

Just as Chapel currently supports a locale type and values
for reasoning about the execution set of locales, it will also
support a realm type and values, stored using a built-in array,
Realms:



const Realms: [r in RealmSpace] realm
= new realm(id=r, rtype=realmTypes(r));

Each realm will have its own private variables to describe its
locale set, equivalent to those currently supported for single-
realm executions—numLocales, LocaleSpace, and Locales.
In this sense, the realm type can be thought of as being
implemented using a record with the following structure:

record realm {
const id: int;
const rtype: string;

const numLocales: int = localesPerRealm(id);
const LocaleSpace = [0..#numLocales];
const Locales: [LocaleSpace] locale = ...;

}

To support backwards compatibility for existing Chapel
programs and to continue to make single-realm programming
convenient for the user, when numRealms is found to have the
value “1”, the compiler will introduce global variables num-
Locales, LocaleSpace, and Locales to describe the program’s
target set of locales as a convenience.

Given these features, an on-clause for a multi-realm pro-
gram might appear as follows:

on Realms(1).Locales(3) do foo();

For our running example, this statement would indicate that
foo() should be executed on the 4th SIO node of the XMT. We
will also extend on-clauses to take expressions of type realm,
causing the statement to execute on locale 0 of that realm.
Thus, the following statement would cause bar() to execute
on the Macintosh in our running example:

on Realms(2) do bar();

We also need capabilities for realms equivalent to the .locale
and here concepts currently supported for locales. To this end,
any variable expression can be queried with a built-in .realm
method to query the realm in which it is stored. Similarly,
any task can access the built-in private constant thisRealm to
query the realm in which it’s executing.

B. Semantic Notes on Realms

Apart from the new concepts described in the previous
section, we don’t anticipate changing Chapel’s semantics to
deal with multiple realms. In particular, we will not impose
semantic distinctions between realms to restrict operations to
only act on data within their realm. This continues the Chapel
theme of supporting a partitioned global namespace for the
purposes of convenience, with the caution that programs which
haphazardly access data across realm boundaries will be sub-
ject to the expected overheads of communicating between the
distinct architectures. The specific overheads will obviously
vary depending on how tightly coupled the target architectures
are.

In the same vein, note that the locale values in a multi-
realm program are all of a single locale type, permitting users
to create collections of locales that span multiple compute
resources. For example, a user can create a single array of

locales that describes all of the locales contained within all of
the realms. In general, this might be set up as follows:

const totNumLocales = + reduce localesPerRealm;
var allLocs: [0..#totNumLocales] locale;

var lo = 0;
for r in Realms {
const num = r.numLocales;
allLocs[lo..#num] = r.Locales;
lo += num;

}

Or, for the specific values in our motivating example, we could
simply write:

var allLocs: [0..17] locale;

allLocs[0] = Realms[0].Locales[0]; // the XMT
allLocs[1..16] = Realms[1].Locales; // the SIOs
allLocs[17] = Realms[2].Locales[0]; // the Mac

Given such an array of locales, one could then do things
like block distribute a domain between the locales of multiple
realms:

var D: domain(1)
distributed new Block1D(bbox=[1..m],

targetLocales=allLocs)
= [1..m];

Whether or not doing such a thing is wise would depend on
the differences in capabilities and latencies between realms.

C. Multi-Realm Examples

The following Chapel program implements a simple multi-
realm, multi-locale “Hello, world!” program:

coforall r in Realms do
on r do

coforall l in r.Locales do
on l do
writeln("Hello from locale#", here.id,

" located in realm#", thisRealm.id,
" named ", here.name);

In this code, a task is created per locale that prints out where
it is executing using the built-in here and thisRealm constants.
Equivalently, the statement in the inner loop could have been
written:

writeln("Hello from locale#", l.id,
" located in realm#", r.id,
" named ", l.name);

Note that the statement “on r do” in the code above is not
strictly necessary, but that using it causes each realm to spawn
its own parallel tasks.

The next example demonstrates the use of the shared
namespace across multiple realms:

// Program execution starts on realm 0, locale 0
// so checksum$ is stored on realm 0, locale 0
var checksum$: sync int = 0;

coforall r in Realms do
coforall l in r.Locales do

on l do
checksum$ += r.id*1000 + l.id;



In this program, a task is created on each locale that increments
a shared checksum variable by a value that is a function of its
realm and locale ID. The checksum variable is a synchronized
integer variable allocated on realm 0, locale 0 since that
is where the program starts executing. This simple example
would obviously result in a bottleneck and would be better
implemented using reductions, but it demonstrates how tasks
running on any realm or locale can access shared state declared
in enclosing lexical scopes.

As a final example, consider the following code sketch as
an illustration of using each realm to compute a distinct task
suitable for its capabilities. We use a cobegin statement
to launch off a number of parallel tasks, and have those
tasks coordinate through shared state variables declared in a
common enclosing scope.

var A: ... // declare shared state

cobegin {
on Realms[0] do bigGraphComputation(A, ...);
on Realms[1] do denseArrayComputation(A, ...);
on Realms[2] do visualize(A, ...);

}

Alternatively, if the distinct phases of computation did not
need to execute concurrently, the computation could be written
to migrate sequentially from one realm to the next:

var A: ...

while (...) {
on Realms[0] do bigGraphComputation(A, ...);
on Realms[1] {
var A1 = A; // make a local copy of A
denseArrayComputation(A1, ...);
A = A1; // copy result back

}
on Realms[2] {

var A2 = A; // make a local copy of A
visualize(A2, ...);

}
}

These examples indicate just some of the ways that multiple
realms can be used. Generally speaking, the realm is a
completely composable concept within Chapel and may be
used in a wide variety of ways.

D. Future Directions

A future direction that we would like to pursue for both
multi-realm and single-realm programs is to establish the
notion of an execution context to refer to the collection of
locales on which the current task is executing. In traditional
Chapel this has been a wishlist item, but it becomes more
compelling in the presence of multi-realm execution for the
purposes of code reuse. In particular, imagine that a developer
has implemented a single-realm program that works well:

def myCode() {
coforall loc in Locales do
on loc do

...

Now the developer wants to incorporate this code to execute
within one realm of a new multi-realm program that they are

writing. For example, perhaps the multi-realm program is a
coupled model and the single-realm program is intended to
be one of the components, executing within its own realm.
The top-level control structure of the code can be written very
cleanAly:
cobegin {
on Realms[0] do myCode();
on Realms[1] do ...

}

but the code itself must be changed in order to support
the multi-realm execution. In particular, the reference to the
Locales variable has to be modified in order to refer to the
locales of a particular realm:
def myCode() {
coforall loc in thisRealm.Locales do

on loc do
...

Changes like this are tedious but necessary under our current
model. In order to better support code reuse between single-
realm and multi-realm executions, imagine the introduction
of a variable representing the execution context of a code
segment as a collection of locales. For the purposes of this
discussion, call the variable currentLocales. Any time that
an on-clause’s expression describes a realm or some other
collection of locales, the value of currentLocales would be
updated for the contained code to describe that set of locales.

Given such a feature, the original code could have been
written:
def myCode() {
coforall loc in currentLocales do

on loc do
...

and could remain unchanged when the code was incorporated
into a multi-realm program. Distributions like our Block1D
distribution would be written to take currentLocales as the
default target locale set rather than Locales.

This concept would also improve code reuse for single-
realm executions since Locales could be carved into disjoint
segments, each of which would have its own execution con-
text. For example, imagine the high-level specification of an
abstract coupled climate model:
cobegin {
on Locales[0..4] do water();
on Locales[5..10] do land();
on Locales[11..15] do air();

}

In this code, each of the routines water(), land(), and air()
would have its own execution context describing the set of
locales specified by its enclosing on-clause. Thus, loops over
currentLocales or distributions targeting currentLocales would
span the subset of locales on which that component was
executing rather than forcing the user to manage and target
these collections of locales manually.

We consider this concept to be future work because we have
not had sufficient time to vet it prior to publishing this report
and because we believe that the currently proposed support is
sufficient for supporting hybrid execution.



IV. SUMMARY

This paper proposes a new Chapel concept, the realm, to
support a Chapel program’s execution using hybrid compute
resources. The goal of the realm is to continue the Chapel
theme of supporting a global view of data and control flow
across distributed memory architectures. By minimizing the
changes to the language due to the introduction of realms,
we believe we have met this goal while continuing to give
the programmer appropriate abstractions for controlling where
data is allocated and where tasks execute.


