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Abstract

Several 64-processor XMT systems have now been shipped to
customers and there have been 128-processor, 256-processor and 512-
processor systems tested in Cray’s development lab. We describe some
techniques we have used for tuning performance in hopes that
applications continued to scale on these larger systems. We discuss
how the programmer must work with the XMT compiler to extract
maximum parallelism and performance, especially from multiply
nested loops, and how the performance tools provide vital information
about whether or how the compiler has parallelized loops and where
performance bottlenecks may be occurring. We also show data that
indicate that the maximum performance of a given application on a
given size XMT system is limited by memory or network bandwidth, in
a way that is somewhat independent of the number of processors
used.

Introduction

A few 64-processor Cray XMT systems [8] are now in the hands of Department of Defense and
Department of Energy users. As of this writing, there is a 512-processor system and a 128-
processor system under software testing in Cray’s lab, and a 256-processor system has also
been tested there. The authors have, by now, experimented with several applications and
application kernels on the 128-processor and 256-processor prototypes.

The XMT is a direct successor of the Cray/Tera MTA-2 [1]. The processor has the same
multithreaded architecture and instruction set, and the C/C++ compiler, debugger,



performance tools, and operating system are the next generations of those on the MTA-2 [4].
There are several differences between the MTA-2 and the XMT, however:

e The XMT processor is faster, 500 MHz as opposed to the MTA-2’s 220 MHz.

e Rather than having the MTA-2’s custom network, the XMT is based on the Cray XT3
circuit board and 3-D torus network infrastructure, for economic reasons.

e Rather than having a custom memory system like the MTA-2, the XMT uses commodity
DDR1 memories and memory controllers, also for economic reasons.

For the above three reasons, the balance between processor throughput and memory or
network bandwidth is significantly different on the XMT from what it was on the MTA-2.

Another significant difference is that larger XMT systems have been built. The largest MTA-2
system ever built had 44 processors. As mentioned above, XMT systems as large as 512
processors have been prototyped, 64-processor systems are in the hands of customers, and
larger ones will be shipping in the near future. A larger number of processors implies a scaling
challenge to the performance-minded programmer. Inefficiencies in the code or in the
parallelization approach, that may not have been significant at lower numbers of processors,
can hamper the application’s ability to scale well to larger numbers of processors. The purpose
of this paper is to present several examples of code modifications we had to make in order to
scale XMT programs to numbers of processors larger than 64, and what feedback from the
compiler and performance tools led us to these modifications.

Characteristics of the XMT System

As in the MTA-2 processor architecture, the XMT processor provides storage for the contexts of
128 threads. The processor hardware that holds the context of one thread is referred to as a
“stream” in the MTA/XMT vernacular. In addition, many more threads can be defined in
software and stored in memory, with the XMT runtime swapping them into and out of the
processor. The processor can, in effect, perform a thread context switch on every instruction
cycle, choosing at each cycle the next instruction from one of the threads that is ready to issue.
When executing an application with a high degree of parallelism, there are enough threads
ready to issue at any given time that XMT processors rarely stall waiting for results to arrive
from memory or the network. The effect of this is that XMT processors tend to keep issuing
network and/or memory requests. In modern parallel computer systems, memory and network
are more often the performance bottleneck than is processor throughput. A massively
multithreaded system like the XMT can usually keep the bottlenecked resource saturated,
which is the best one can expect to do on any architecture. This performance characteristic of



the XMT shows up particularly well on codes dominated by remote references. We have seen

applications designed to perform analysis of extremely large graphs perform one or two orders

of magnitude faster on the XMT than on contemporary distributed memory systems, because

those systems have relatively high latency and overhead when fetching or sending data from

remote memories, and their commaodity microprocessors stall after a small number of

outstanding memory requests. Most of the examples in this paper entail operations performed

on huge graphs that would be difficult or impossible to partition across the nodes of a

distributed memory system in such a way that most references were local.

Characteristics of the XMT software stack are equally important to the programmer:

The XMT’s C/C++ compiler [4] is one of the most powerful, sophisticated
optimizing/parallelizing compilers extant. In addition to parallelizing loops in any of
several different ways, the compiler restructures, interchanges, or collapses loops, as
well as performing a wide variety of serial code optimizations. Furthermore, the XMT
programmer is practically dependent upon the XMT compiler. There is no way provided
to application software to bypass the compiler or the thread management runtime and
control parallelism directly. There is no analog of MPI or OpenMP, in the sense that
those notations give the programmer much more explicit control over processes and
threads. What the programmer does have is a diverse set of pragmas to insert into the
source code, for communicating to the compiler that a loop can be parallelized without
semantic error, for example, or what parallelization approach should be used for a given
loop.

Because the compiler does so much more optimizing and parallelizing than the user can
do by hand, Cray provides CANAL [9], a software tool that annotates the source code
line by line and loop by loop with information regarding how the code was optimized
and parallelized. The performance-tuning XMT programmer simply will not succeed
without understanding and frequently using CANAL.

TRACEVIEW is also a valuable performance-tuning tool. TRACEVIEW and CANAL are both
provided within Cray’s performance-tuning environment Apprentice 2. TRACEVIEW
provides detailed events tracing, tied to designated points in the source code. It can also
provide a graphical plot over time of overall processor utilization, helping the
programmer identify places in the code with low degrees of parallelism —which may be
caused by a load imbalance or by a serial section of code.

DASHBOARD is a graphical tool that the programmer can watch as the program
executes, showing plots in real time of processor and memory utilization.



On distributed memory systems using MPI, it is fairly common for a performance-tuning
programmer’s only software tool to be the timer function. That is, the programmer’s
performance tuning routine is to iterate between modifying the source code, recompiling, and
measuring the new execution time. This approach is ineffective for the XMT. The appropriate
performance-tuning paradigm for the XMT is to modify the source code or the pragmas,
compile, examine the CANAL output to understand whether and how the compiler parallelized
loops, either start over or make a performance-measurement run and look at the TRACEVIEW

output; continue.

Example 1: Breadth-First Search Loop Parallelization

This is a simple example aimed at illustrating how critical the CANAL tool is in discovering how
the compiler treated a loop. The kernel performed a breadth-first search on a large graph,
starting from the vertex specified in the call. The defining data of the graph was held in a top-
level C “struct”, specified as follows:

typedef struct {
int N;
int *Marked;
Neighbor *Neighbors;
int *numNeighbors;
} graph;
The integer array Marked represents whether or not a given vertex has yet been visited in the

search. It is initialized to -1, then given the ID of the vertex’s immediate predecessor once a
thread has visited it. The first version of the initialization loop looked as follows:

in FS(lnt root, graph *A)
{

//initialize Marked array
for( i=0; i<A->N; i++) A->Marked[i] = -1;

Performance of the BFS was dismal. Examination of the CANAL output determined that this
simple initialization loop was the culprit.

| //initialize Marked array



X | for( i=0; i<A->N; i++) A->Marked[i] = -1;
|

The X indicates that the loop was not parallelized. The compiler could not be sure whether or
not there was some dependency between loop iterations hidden by the A pointer.

The cure was to manually dereference the A pointer:

int BFS(int root, graph *A)
{
int *Marked = A->Marked;
int N = A->N;
for(int i=0;i<N;i++) Marked[i] = -1;

Again, the CANAL output shows that the problem was solved by this change:

| int *Marked = A->Marked;
| int N = A->N;
P | for(int 1=0;i<N;i++) Marked[1] = -1;
The P indicates that the compiler parallelized this loop. The improvement in performance was a
factor of 50, for 16 processors and a random graph with 10M vertices.

Example 2: Breadth-First Search Queue Management

In our original implementation of breadth-first search, written by our colleague John Feo, the
conceptually recursive loop in which a thread starts at some vertex, visits each of its neighbors,
and while visiting a neighboring vertex creates the work for visiting each of that vertex’s
neighbors, was implemented as a doubly nested loop. The outer loop picks the ID of a vertex
from a queue and visits it. If it hasn’t already been visited, the thread goes into the inner loop,
which places that vertex’s neighbors into the queue. Here’s the relevant code snippet of the
inner loop.

/* Mark each unmarked neighbor node */
for (i = firstNode; 1 < lastNode; i++) {
int neighbor = Neighbors[i];
iT (Marked[neighbor] < 0) {
int mark = readfe(Marked + neighbor);



if (mark < 0) {
mark = node;
int k = int_fetch_add(N,1);
Q[k] = neighbor;

¥

writeef(Marked + neighbor, mark);

}

Note that this code snippet illustrates three of the XMT’s synchronization primitives. XMT
memory words have 64 bits for data and an additional bit that holds the word’s “full/empty”
state. The processor issues a readfe() (“read when full, set empty”) as if it were a normal
memory read, but the read only succeeds if the word’s full/empty bit is set to full. Otherwise,
the read has to wait until the condition is true. The hardware is designed to retry the read
several times, and then trap to the runtime, which will probably swap the thread out of its
stream, assuming that it will have to wait for a while longer. Once the read succeeds, the
contents of the word are fetched to the processor and the word’s full/empty bit is set to empty.
Symmetrically, the writeef() (“write when empty, set full”) only succeeds if the word is marked
empty. Once this condition is met, the data contents are stored into the word and its full/empty
bit is marked full. In this example, the thread is essentially locking the Marked array entry it is
currently checking and possibly modifying, to prevent any other thread from touching this entry
at the same time. The writeef() at the end unlocks the entry so that it is once again accessible to
other threads.

Between those synchronized read and write calls, one can also see an int_fetch_add() call. This
invokes an atomic fetch-and-add on the referenced memory word. In the code snippet above,
the integer pointed to by the pointer variable N will have a 1 atomically added to its value.

This code scaled well, but only up to 32 processors. The problem was that the queue index
variable, represented by the variable N in the snippet above, became a hot spot. All the threads
doing neighbor visits were trying to increment the same variable in order to place their next
vertex into the queue. The atomic int_fetch_add() operation helped the index increment work
correctly, but no more quickly.

A way to confirm that a hot spot like this one is occurring is to instrument the code with the
XMT intrinsic functions that access the system’s hardware counters. The code snippet below
illustrates how reads of the hardware counters are wrapped around the call to the BFS function
just as the timer calls are:



issues = mta_get task counter(RT_ISSUES);
memrefs= mta_get_task counter(RT_MEMREFS);
concur= mta_get_ task counter(RT_CONCURRENCY);
streams= mta_get_task counter(RT_STREAMS);
traps = mta_get_ task counter(RT_TRAP);
retries = mta_get_task counter(RT_MEM_RETRY);

timel = timer();

int maxDist = BFS(0, A);

time2 = timer();

issues = mta _get task counter(RT_ISSUES) - issues;
memrefs= mta_get task counter(RT_MEMREFS) - memrefs;
concur= mta_get_task_counter(RT_CONCURRENCY) - concur;
streams= mta_get_task counter(RT_STREAMS) - streams;
traps = mta_get task counter(RT_TRAP) - traps;

retries = mta_get task counter(RT_MEM_RETRY) - retries;

Because an unsuccessful attempt to read or update a shared variable will retry many times and
then trap to the runtime, recording the number of retries and traps can indicate a hot-spotting
problem. The table below shows the number of traps and how they increased for higher
numbers of processors running this version of BFS.

Processors | tra ps

8 143
16 292
32 3377696

64 12716939




Feo tried to relieve the hot-spotting problem by splitting the inner loop into two loops. The first
loop would count how many unvisited neighbors the current vertex had. Only then would it
increment the shared queue variable with the total number of unmarked neighbors this thread
was about to add to the queue. That would effectively “reserve” enough entries in the queue
for this thread to use without contention from any other thread. In the second loop, the thread
would walk back through the neighbors, pick out the unmarked ones, and add them to the
gueue in the reserved slots.

This approach was twice as slow as the original for small numbers of processors, namely
because it walked through the set of neighbors of a vertex twice in the innermost loop. It did
relieve the hot-spotting problem somewhat, though, and scaled to around 48 processors.
Collection of hardware counter statistics, however, indicated that hot-spotting on the queue
variables was still a problem.

Our colleague Petr Konecny chose an approach that drastically reduced the hot-spotting and
allowed BFS to scale to much larger numbers of processors. His approach was to explicitly take
into account the number of threads that were going to be searching the graph, and allocate
them each a section of the queue that they could use privately. A relevant snippet of the code
is below. Note the call to the XMT runtime function MTA_NUM_STREAMS(), which returns the
overall number of streams this job has available. The idea is that each active thread gets its own
chunk of the queue, of size INBLOCK, that it can insert vertex IDs into without having to
synchronize after it receives its allocation.

#pragma mta assert parallel
#pragma mta use 100 streams
for(int th=0; th<MTA NUM_STREAMS(Q); th++) {
unsigned outhead = 0, outtail = O;
for(G;) {
// grab INBLOCK nodes (& stubs) from the input
unsigned inhead = int_fetch_add(&newhead, INBLOCK);
// avoid overrun
unsigned intail = min(inhead + INBLOCK, oldtail);
iT (inhead>=intail) break; //stop 1T no work left

for(int i=inhead; i<intail; i++) {
int u = Q[i1%qcap];



if (u>=0) {
int begin = numNeighbors[u];
int end = numNeighbors[u+1];
for(int j=begin;j<end;j++) {
int v = neighbors[j];
if (Marked[v]<0) {
int mark = readfe(&Marked[Vv]);
int newmark = mark<O ? u : mark;
Marked[v] = newmark;
i (mark<0) {
// we have set v°s parent to u
// reserve space for enqueueing OUTBLOCK nodes
ifT (outhead>=outtail) {
outhead int_fetch_add(&tail, OUTBLOCK);
outtail = outhead+OUTBLOCK;
// check for overflow

assert(outtail-oldhead<qcap);

}
Q[ (outhead++)%qcap] = Vv;

L A

Using this approach also enabled him to reduce the inner loop back to one pass through the
vertex’s neighbors. This is an example of how reducing the number of trips to memory in the
inner loops can significantly improve performance on the XMT. A comparison of the three BFS
versions is shown in the graph below. These runs were all done on a randomly generated graph
with vertices having a uniformly distributed out-degree. The vertical axis represents millions of
vertices visited per second for each run. One can see that John Feo’s first version showed good
performance on a small number of processors, but didn’t scale. His second version was slower
on a small number of processors, but scaled somewhat better. Petr Konecny’s version shows
much better scaling, at least for this type of random graph.
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One might argue that this version is less elegant than the original, but sometimes such code
redesign is necessary in order to scale to larger numbers of processors.

Example 3: Betweenness Centrality Loop Parallelization

Betweenness centrality [7] is a fairly complex graph analytic algorithm that originated in the
social network analysis community, and is now seeing use across a large set of directed graph-
oriented applications, such as Internet social networking, biology and electrical power grids.
Informally, the betweenness centrality metric of a vertex is the ratio of shortest paths that pass
through that vertex versus all shortest paths.

Our XMT implementation is based on that of Bader and Madduri [3], which entails repeated
breadth-first searches with some numerical “scorekeeping” added, with each search starting at
a different vertex of the graph. Our first implementation had a sequential outer loop, each
iteration of which launched a breadth-first search, which was implemented with doubly-nested
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loops similar to those described in previous examples. Code snippets illustrating the loop
structure are as follows:

/* Use |Vs] nodes to compute centrality values */
for (s = 0; (s < NV) && (Vs > 0); s ++) {

#pragma mta assert no dependence
for (J = QHead[nQ - 1]; jJ < QHead[nQ]:; j++) {

int myStart = start[Vv];

int myEnd = start[v + 1];
#pragma mta assert no dependence
for (k = myStart; k < myEnd; k++) {

While each of the iterations of the betweenness centrality outer loop is independent of the
others except for the summation of centrality scores at the end, our implementation uses
several arrays of a size equal to the number of vertices in the graph. Because we were working
with graphs with vertex counts in the billions on the XMT, we felt that there probably wouldn’t
be room to replicate all those arrays and run several breadth-first searches in parallel. A
speedup curve for this version of betweenness centrality is shown below. All of our
betweenness centrality experiments were done in the context of SSCA2, the graph algorithms
benchmark defined by David Bader and Kamesh Madduri [2]. Using the nomenclature of SSCA2,
SCALE was set to 26 in these experiments, implying that the input graph had 2% vertices and 2%°
edges. The “K4approx” variable was set to 8, which means that 256 breadth-first searches were
performed by the outermost loop. The vertical axis of the graph below is in millions of “TEPS”
(traversed edges per second), Bader and Madduri’s proposed performance estimator for
betweenness centrality. TEPS serves as a sort of analog of a speedup curve, in that it consists of
a value for the amount of work done divided by the execution time.
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One can see that the original version of betweenness only scaled well up to 32 processors.

With the availability of larger XMT systems, considerations of memory limitations changed. We
calculated that it was feasible to run a few iterations of the outer loop together in parallel on
this size problem. The trick was to limit the number of iterations. Our first attempt at
parallelizing the outermost loop looked as follows:

#define BFS_THREADS 16

#pragma mta assert parallel

for(num_threads=0; num_threads < BFS_THREADS; num_threads
++){

for(G;) {
start_vertex = int_fetch_add(&Vs ptr,1);
iT (start_vertex > Vs -1) break;

#pragma mta assert no dependence
for (J = QHead[nQ - 1]; j < QHead[nQ]; j++) {

The purpose of the outer loop was to define a parallel loop of 16 iterations, the number of
breadth-first searches we calculated that we could afford to have running in parallel. The loop
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after that was intended to be the work each of the 16 threads did: grab the next vertex from
the list and do a breadth-first search starting there.

Performance was disastrous. The key clue was in the CANAL listing, where it annotated the
innermost loop:

7 pXX | for (J = QHead[nQ - 1]; jJ < QHead[nQ]:; j++) {

The lower-case p indicates that the outermost loop was parallelized by the compiler, only
because the user asserted it was parallel (see the pragma in the code snippet). The two Xs
indicate that the next two levels of loop were not parallelized. This is a common choice made
by the compiler, assuming that there is sufficient parallelism in the outer loop and it would be
more efficient, because of parallelism control overheads, to leave inner loops sequential.
Similarly, an attempt to apply the “loop future” pragma, directing the compiler to use this
particularly dynamic parallel loop scheduling approach on the outermost loop, as seen below,

#pragma mta assert parallel
#pragma mta loop future

for(num_threads=0; num_threads < BFS_THREADS; num_threads
++){

had the side effect of restricting lower-level parallelism to within a processor. Since we had
deliberately kept the number of outermost loop iterations small, this resulted in the
computation being confined to BFS_THREADS number of processors. CANAL output again made
us aware of this compiler decision, in the notes section that supplies more detail about each
loop the compiler processed:

Parallel region 7 in cenTrality in loop 6
Single processor implementation

The notes section at the end of the CANAL listing tells us (somewhat indirectly; the “parallel
regions” are sometimes hard to identify in the source code) that this loop will not be
parallelized beyond a single processor. This again reflects a compiler policy that assumes most
of the parallelism will be in the outermost loop, and a lower-overhead parallelism approach
would be more appropriate for lower levels.

A more successful approach employed XMT’s explicit “future” variables. Future variables
support a form of lazy evaluation. A thread can be assigned to compute the variable’s value,
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and the spawning thread can find out later whether the computation has completed by trying
to fetch the future variable. We assigned a future variable to every iteration of the outermost
loop we felt we could afford to run in parallel, and launched them all, as shown below:

#define BFS_THREADS 16
future iInt thread i1d[BFS_THREADS];

// Spawn off futures to run independent BFS processes

for (num_threads=0; num_threads < BFS_THREADS;
num_threads++) {

future thread_id[num_threads](num_threads, G, BC, Vs,
&Vs ptr, permV, bfs counter) {

Process cenTrality(G, BC, Vs, &Vs ptr,

for (num_threads=0; num_threads < BFS_THREADS;
num_threads++) {

touch (&thread_id[num_threads]);

}
The first loop above launches all of the futures, but launching a future doesn’t guarantee that it
is executed right away. Here, the programmer has forced that in the second loop, by calling the
“touch” function on each future variable. That forces the immediate computation of the future
value. We put the inner loops inside the Process_cenTrality() function, because the compiler
only expects a future variable to be computed via a function call, which is executed by the
spawned thread. Below is the speedup curve we achieved with this implementation.

Improved Version, Scale=26
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500 »
400 /
MTEPS 300
200

100 /
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®
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This future-variable version of the code scaled to twice as many processors as the original, but
flattened out after that. However, it achieved around twice the performance in terms of the
MTEPS metric than the original code.

Example 3 serves to illustrate how experience with the XMT system, its compiler and its tools
are integral to achieving scalability. It took us multiple tries to find a way to get the compiler to
do what we wanted, namely provide a small amount of parallelism for the outermost loops and
a large amount for the inner loops.

Example 4: Modifying the “stream_limit” Parameter

While the XMT at least holds its own in absolute performance compared to the MTA-2 and
utterly destroys it on cost-performance, it is fair to say that the XMT is not as well-balanced an
architecture as the MTA-2 was. Processor speed is higher, but memory and network bandwidth
were not increased correspondingly. Thus, as applications are scaled upwards, memory or
network bandwidth tends to saturate, rather than processor throughput. We have never seen
processor utilization much above 50% in the applications we have tested so far. Most well-
tuned applications peak out at around 30% processor utilization. As seen in the BFS example,
minimizing trips to memory in the innermost loops is a good approach to improving scalability,
because it helps avoid saturating the memory bandwidth. The notes section at the end of the
CANAL listing is very helpful in this regard. It provides information about the number of
instructions and the number of memory accesses in the inner loops.

We have seen the memory bandwidth saturate or the network congest when we try to scale a
parallel computation upwards. Too many threads trying to perform remote references can
saturate the memory bandwidth, eliminate any advantage available from the memory caches,
gueue up in the network interfaces or clog the 3-D torus network. We have relieved this in
some cases by limiting the number of streams that are active on each processor. The XMT
software system provides a configuration parameter, MTA_PARAMS, with which a user can
control the number of active streams per processor. Using the Linux bash shell, the command
looks as follows:

export MTA PARAMS="stream_limit 85~

Of the 128 hardware streams available on each processor, the runtime reserves 24 or more for
its own use, so the maximum number of streams available for application use is effectively
around 100. In the bash command above, the user has restricted the number of available
streams to 85 per processor. There is also an runtime function that can set the stream limit
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from within a program. The call to accomplish the same objective as the bash command above
looks like the following:

mta_set_stream limit(85);

Once we had improved the scalability of betweenness centrality with the (slightly) parallel
outer loop described in Example 3, we tested the code at various stream limit settings to see
the effect on performance. In every case, 128 processors were used, on a power law graph
generated using the R-MAT algorithm [5]. Our implementation set the number of parallel
iterations of the outer loop to 16, so each thread executing the outer loop did roughly 16 of the
256 breadth-first searches. The graph below shows the results of two scaling runs with the
above SSCA2 parameters. The independent variable was the number of streams made active in
each processor. The result variable is in terms of millions of “TEPS”, as before.
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The two sets of experiments were consistent up to a stream limit of 70 per processor. They also
both show an expected upward scaling, as the amount of parallelism is increased. Above 70,
however, our performance runs were inconsistent between runs. We saw this in other
experiments, as well. Apparently, when there are enough streams active to begin to cause
gueueing and congestion in the network, overall throughput becomes unpredictable.

These results prompted a further round of experiments, in which we varied both the number of
processors running the improved betweenness centrality code, and varied the stream limit
value — but tried to keep the product of the two constant. In other words, we were trying to
keep the total number of active streams the same, for varying numbers of processors. Some
results from these experiments are shown in the table below. The SSCA2 parameters of
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SCALE=27 and K4approx=8 were used in these runs. The processor/stream combinations were
chosen to be close to 8960 in the first set of runs, because the 128/70 case had achieved the
highest TEPS performance we have yet seen on the XMT. The 7680 product was chosen
because it has a lot of divisors. An R-MAT-generated graph with 2% vertices and 2*° edges was
used in each case.

processors  streams product time MTEPS
128 70 8960 409.1 587.9
90 100 9000 447.8 537.1
95 94 8930 450 534.5
112 80 8960 425.4 565.4
128 60 7680 481 500
80 96 7680 435.7 552.1
96 80 7680 470.1 511.6
120 64 7680 470.6 511
110 70 7700 415.7 578.6
102 75 7650 448.2 536.6
113 68 7684 449.2 5354
110 70 7700 417.8 575.7

One can see that there is some degree of consistency between runs with the same processor-
stream product. On a 128-processor system, running betweenness centrality, we saw
diminishing returns above 9000 streams. We suspect that this signifies that the memory
bandwidth has become saturated. This is probably not the whole story, however. The 80/96
and 110/70 data points seem to indicate that more processors and fewer streams are
advantageous. This may have something to do with network topology; it may be better to
spread the same amount of computation across more processors, and thereby employ a larger
number of network links.

This issue clearly needs further, better-instrumented experimentation before we understand it
completely.

A confounding issue is that systems in everyday use may not show the same performance
characteristics. We have performed all of these experiments on a dedicated machine. The XMT
hashes memory addresses across the entire memory space no matter how many processors a
user is running on. Thus our experimental runs using a small number of processors had
available to them all the memory bandwidth of the whole system (other than negligible
amounts consumed by the OS and runtime). The same computation on the same number of
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processors may run more slowly if it has to compete for memory and network bandwidth with
several other user jobs. The fact remains that users need to be aware that too many active
streams can choke out either the memory or the network bandwidth.

Example 5: Hashing Words from Text Documents

During 2008, we interacted with a potential XMT customer who was interested in processing
large numbers of text documents, extracting key words from each, and then using graph data
structures to analyze a variety of topical similarities between the documents. We ran some
performance experiments with a set of 2000 text documents that the customer provided us.
Together, they contained about 70,000 words. Our code first read all the documents into
memory, inserting the words from each document into an array of all the words associated with
that document. Then, using a hash table, we inverted the relationship, creating an array of
words, with each word appearing uniquely in the array and linked to a list of all the documents
it appeared in.

This application only scaled up to about 16 processors. Attempts to optimize the hash table
code did not make much difference. The insight came when we added code that gathered
statistics on the data. In particular, we generated a histogram of the number of words that
appeared in a given number of documents. The histogram’s highest value was at 1; almost
24,000 words appeared in only one document each. It decreased more or less monotonically
and reached zero at about 500, except that there were tiny blips on the histogram every 50 or
so values following that. One word appeared in 1310 documents, another word appeared in
1508 documents, and another appeared in 1844 documents. There was a load imbalance, and it
was inherent in the input data. Realizing that a few words would have very long document lists
attached to their entry in the hash table, we changed the code so that new document IDs were
inserted into the list in sorted order. This reduced the document list search by half on average,
and enabled one more scaling factor of two.

This example illustrates that although using the XMT’s performance tools is essential, the tools
don’t provide every possible insight into tuning performance. We found that this practice of
inserting into the application code a little additional code that gathered statistics about the
data was frequently useful in performance tuning and even occasionally in debugging.

Conclusions
We are excited about the Cray XMT. It has demonstrated markedly superior performance on
graph algorithms for graphs not conducive to partitioning across distributed memory
architectures. Our improved betweenness centrality implementation recently showed 350x
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faster running time on 64 processors than an MPl implementation on 64 processors of an
Opteron cluster, using the same set of SSCA2 defining parameters for the graph [6].
Furthermore, the XMT is one of the easiest parallel systems to program, in the sense that code
written in the most straightforward way usually runs reasonably well on a moderate number of
processors. What we have tried to illustrate in this paper is that success in squeezing out
maximum efficiency for the sake of scaling up to larger numbers of processors is highly
dependent on the programmer’s understanding of the XMT architecture and the XMT compiler
— and on quotidian use of CANAL and the other performance tools.
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