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Abstract

The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy
(FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif
Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies
as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small
labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges
represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA
are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web
Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature
of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby
bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed
manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical
inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH
provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable
to any ontological system with an OWL representation.

Introduction

Ontologies are shared conceptualizations of a domain represented in a formal language[1]. They represent not only the
concepts and classes used in scientific work, but just as importantly, the relationships between the concepts/classes.
Ontologies have become a critical component in biomedical information management. They are used to handle ter-
minological heterogeneity, facilitate system interoperability, and enable knowledge discovery. Familiar in their role in
supporting application menus similar to those generated by MeSH Headings, ontologies are also becoming valuable for
designing intuitive and novel interfaces to query, access, and visualize large sets of distributed biomedical datasets [2,3,4].
Researchers are increasingly relying on biomedical ontologies as critical resources throughout their experimental work
flows. In the last decade, more than 5,000 publications indexed by PubMed involved the use of ontologies. The Bio-
Portal of the NCBO lists nearly 300 ontologies consisting of 5.3M terms used in a range of biomedical informatics
applications from bench experiments to patient care at the bedside.

However, by their nature as formal representations of knowledge, ontologies are often incomplete, under-specified,
and non-static. New applications are calling for new ontologies or expansion and enhancement of existing ones while
many additional factors, such as manual editing, may introduce unintended defects. Thus Ontology Quality Assurance
(OQA) has become an integral part of the ontology development life-cycle [5,6]. Existing work includes the design of
specific relational patterns for capturing circular, mutually exhaustive, redundant, and missed entries [7], checking for
lattice-violating fragments motivated by Formal Concept Analysis [8], and logical [9,10] lexical [11], and content-based
approaches [12].

We introduce a novel method for OQA by exploiting the interaction of multiple types of relationships, called Motif
Checking (MOCH). MOCH has a unique combination of features. It leverages antonyms to uncover the disjointness
relation between concepts, not explicitly modeled in FMA; It combines the interaction of multiple times of relationships
in the context of the disjointness property to achieve greater auditing specificity; It is computationally scalable, through
the use of Semantic Web technology, so small graph motifs can be exhaustively enumerated and systematically checked;
It has a strong rule-based flavor and is generally applicable to other ontological systems (not just FMA). The primary
use case considered in this paper is the Foundational Model of Anatomy (FMA[13]), which involves five main relational
subtypes: subclass (is-a), part-of, regional-part-of, constitutional-part-of, and systemic-part-of. Such subtypes are
explicitly supported by the Foundational Model Explorer (http://fme.biostr.washington.edu:8080).

The standard semantics for “part-of” is this following: class A is classified as part of class B if every instance of
A has some instance of B as a part. This can be formally expressed in description logic [15] as: A part-of B if and
only if A v ∃pB, where p is the relation capturing the part-of relation at the instance level. By chaining of logical
implications (i.e. X v Y and Y v Z implies X v Z), we obtain the following as a general principle, which we call
subclass-partonomy mixing (Fig. 1): if A is-a B, and B is part-of C, then A is part-of C.
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Figure 1: The subclass-
partonomy mixing motif. Dotted
line represents the inferred
relation instance. This principle
is sometimes called “relation
dependence [16].”

Does FMA conform to this? To answer this question, consider an example

A = Male urinary system (FMA222947),
B = Urinary system (FMA7159), and
C = Female human body (FMA67812).

about which FMA asserted two relational instances:

1. Male urinary system (A) is a subclass of Urinary system (B), and
2. Urinary system (B) is a part of Female human body (C).

Therefore, we obtain “Male urinary system” is a part of “Female human body,” im-
plying that the two classes should share instances, which is of course incorrect because
Male urinary system and Female human body are disjoint classes. We know this based
on external knowledge about canonical human anatomy, which is not represented in
FMA. Therefore, such errors cannot be detected by checking logical consistency of
FMA because it is under-specified with respect to disjointness.

A B

C

is-a

part-of

disjoint

222947 7159

67812

is-a

part-of

disjoint

Figure 2: A disjoint open jaw mo-
tif (above) and a matching instance
in FMA (below; numbers displayed
are FMA ID).

The main objective of MOCH is to provide an exhaustive, computationally scal-
able approach to analyze the effect of interactions of multiple types of relations in
ontological systems and provide a unique source of information valuable for quality
assurance. This unique feature comes from the idea of “negative thinking:” mo-
tifs are designed to capture seemingly impossible configurations, aided by syntactic
grounding on possible disjointness of concepts using antonyms in the names.

MOCH represents patterns of such interactions as small labeled sub-graph mo-
tifs, whose nodes represent class variables, and labeled edges represent the type of
relationship. The motifs can be designed in such a way to deliberately capture “im-
possible” or “inconsistent” situations, such as the one on top of Fig. 2. If an actual
subgraph is found which matches this motif, such as that shown in the lower part of
Fig. 2, then it represents an auditing candidate. It invites us to re-examine the two
asserted relational instances, Male urinary system is a subclass of Urinary system,
and Urinary system is a part of Female human body, one of which is likely to be
incorrect. In this particular example, the latter is incorrect because not all Urinary
systems (male and female) are a part of Female human body.

This paper reports our implementation of MOCH for FMA in a Semantic Web
(OWL, RDF, SPARQL) framework which is proven effective in lattice-based audit-
ing of a different ontology[8]. By representing FMA as an RDF data store and motifs
as SPARQL queries, fragments of FMA satisfying the constraints expressed by the
motifs are automatically obtained as auditing candidates. Leveraging the scalability

and reconfigurability of RDF and SPARQL[14], we performed exhaustive analyses of three two-node motifs, resulting in
638 matching FMA configurations; twelve three-node motifs, resulting in 202,960 configurations; and 755 root nodes
with 4,100 respective descendants with opposing antonyms in their class names, for arbitrary-length motifs.

The analysis of such arbitrary-length motifs is achieved by an extension of MOCH, called Principal Ideal Explorer
(PIE). PIE accounts for classes which may be vertically separated in the hierarchy by a sequence of mixed relationships.
This achieves the ability to completely check arbitrary-length motifs by computationally manageable transitive closure
operations. We found that the PIE extension can capture some situations not captured by MOCH alone, since the
disjoint classes can be more than 8 steps away (i.e., requiring 8 relationship instances to reach from one end to the
other). Although computationally more expensive, PIE is especially valuable since it would be very difficult to manually
uncover errors following a long sequence of relations, particularly if one has to traverse different kinds of relations.

The rest of the paper is organized as follows. In Section 1 we review the background knowledge that our work draws
from, such as FMA, RDF, SPARQL, and graph motifs. In Section 2 we describe the approach, computational pipeline,
and the motifs studied. In Section 3 we present and discuss results obtained, and limitations. Concluding remarks are
provided in the last section.

1 Background

Our methodology leverages two technological domains as a basis for analysis of the Foundational Model of Anatomy
(FMA) ontology. The first technological domain we draw from is a subset of the Semantic Web technologies: the Web
Ontology Language (OWL), the Resource Description Framework (RDF), and its associated query language SPARQL.
The other technological domain is that of motif-based data mining. Below, we give an overview of these areas to explain
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the details of the methodology described in the subsequent sections. We begin with an overview of FMA.

1.1 The Digital Anatomist Foundational Model (FMA)

The FMA is both a theory of human anatomy and an ontology artifact [13]. As a theory, it provides a unifying frame-
work for the nature of the diverse entities that make up the bodily structure of biological organisms as well as the
relationships between them. In particular, it is a theory of the canonical, phenotypic structure of the human organism
at all biologically salient levels of granularity. As a theory of canonical anatomy, it ranges over those categories of
entities which are idealizations of an organism’s body and its typical component parts. As a computational artifact,
it is a formal representation of this theory, suitable for machine manipulation. The FMA is organized in a hierarchy
of mutually-disjoint concepts [16]. FMA modeling principles support the assumption that all the direct subclasses of a
class are mutually disjoint. For example, Esophagus (FMA7131) and Stomach (FMA7148) are two direct subclasses of
“Organ with organ cavity (FMA55672),” which are disjoint in the sense that an instance of “Esophagus” cannot be also
an instance of “Stomach[17].”

For the purpose of this work, since we are not working with direct sibling classes, we use implied disjointness
property between classes using lexical information in class names. That is, we leverage antonyms for likely (but not
always) disjointness, where disjointness of classes A and B means that no instance is both A as well as B; in set
notation, A ∩B = ∅. For example, we infer that “Male urinary system” and “Female human body” are disjoint classes
because their use of the antonym pair (male, female). (And indeed these are disjoint classes because an instance of
“Male urinary system” cannot be also an instance of “Female human body”).

Table 1 includes common antonyms that may imply disjointness when used as pairs. We selected such anatomically
relevant ones from a total of 400 common antonyms. Note that we listed only two lexicons, “first” and “second,” but
of course this extends to subsequent numerals such as “third,” “forth,” etc. Strictly speaking, (first, second) are not
antonyms.

Antonym #FMA classes Type
(male, female) (165,155) gender
(long, short) (162, 116) length
(left, right) (19,494, 19,443) lateral
(first, second) (2,502, 2,902) order
(simple, complex) (16, 14) order
(major, minor) (346, 369) order
(anterior, posterior) (3,848, 5,519) position
(upper, lower) (1,423, 1,379) position
(frontal(front), back) (350(6), 120) position
(horizontal, vertical) (70, 44) position
(outer, inner) (89, 109) position
(small, large) (104, 78) size

Table 1: A list of antonyms used in FMA class names which
could, but not always, imply disjoint classes. The num-
ber represents the total number of FMA classes using the
antonym in their class name.

Note that classes using antonyms are not automatically dis-
joint. For example, it likely takes a domain expert to con-
clude that the class “Transitional myocyte of right branch of
atrioventricular bundle (FMA263172),” containing the sub-
string “right,” is disjoint from “Region of wall of left ventricle
(FMA85471)” which contains the substring “left.” The heuris-
tics we exploit is that in some cases, especially gender, such
classes are indeed disjoint. Nonetheless, some gender spe-
cific information may not be explicitly reflected in class names,
such as “Prostate (FMA9600),” a male only anatomical class
which does not contain “male” in the label.

1.2 Semantic Web Technology: OWL, RDF and SPARQL

In the Semantic Web, RDF is used as a format to represent
directed, labeled multi-graphs. It models entities in a triple
structure consisting of a subject, predicate, and object [18]. The
Web Ontology Language (OWL[19]) is a formal language for
specifying the constraints of a particular domain, and is meant
to govern the structure and meaning of the vocabulary used by RDF content. OWL ontologies are often distributed as
RDF graphs in a document format.

The query language for RDF is called SPARQL[20]. SPARQL queries are comprised of patterns and logical combi-
nations thereof. The patterns in a SPARQL query also have a triple structure, but the terms can also use variables that
represent wildcards. They are evaluated against an RDF database (a.k.a. RDF store) that is typically hosted on a remote
server over a standard, web-based protocol. SPARQL queries result in matching subgraphs as solutions, which map
variables in the query to the variable terms that comprise the triple structure of an RDF graph in the data store.

1.3 Networks, Graph Motifs, and Disjointness

Ontologies like the FMA can be represented in RDF as a directed, labeled graph. In such a graph, classes are RDF
subjects and objects, semantic relationships between classes are RDF predicates interpreted as edge labels, and class
labels are attached to class nodes via other triples using the RDF predicate rdf:type. This way, powerful results from
network science, such as motif analysis [21,22] in graph mining[23], can be used to provide analytical characterizations of
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networks of different types and the distributions of the constituent small subgraph components, in ontologies.

Methods in both network science and graph mining are aimed almost exclusively at unlabeled graphs, either directed
or undirected. But in semantic graphs like ontologies, the semantics are exactly carried by the label information in the
semantic relation predicates and class labels, in addition to the directionality of the links (triples are not generally sym-
metric). We bring specifically methods in labeled and directed motifs to bear in MOCH and PIE to identify anomalous
patterns within the FMA. Such patterns hinge upon the property of disjointness between classes. Although disjointness
is not explicitly represented in FMA, we approximate it syntactically from antonyms (Section 1.1).

We use SPARQL queries to represent graph motifs. Such queries, when evaluated against an RDF store, will return
a set of configurations satisfying the motif. Thus it is very natural to use RDF and SPARQL as the computational
framework to implement our methods. We use Virtuoso, an implementation of RDF and SPARQL by OpenLink, for
this study.

2 Methods

The MOCH approach for identifying FMA auditing fragments for review involves the following steps: 1) acquiring
FMA data and generating RDF data store; 2) creating SPARQL queries to encode two-node, three-node motifs; 3)
executing the motifs to obtain detected configurations.

2.1 Acquiring FMA Data

The model underlying the FMA is a frame-based representation with 78,977 concepts including macroscopic, micro-
scopic and sub-cellular canonical anatomy. For our analysis, we used the legacy version of the OWL translation of
FMA from the Open Biomedical Ontology (OBO) Foundry. The FMA OWL version from OBO foundry is distributed
as an RDF/XML-based serialization that enables it to be stored in an RDF data store and made available to be queried
via SPARQL over internet protocol.

2.2 Preparing SPARQL-based Motif Templates

SPARQL queries were created in three distinct categories corresponding to the three types of motifs we investigated:
two-node motifs, three-node motifs, and arbitrary-length motifs. For single node, the motif would amount to checking
cycles, which we have not found any in FMA, consistent with known-observations [15].

Two-node Motif. A two-node motif is the smallest motif of interest. With one relationship instance between two
class nodes, this become the basic building block of primitive asserted relationship instances. The following motifs are

considered:
(I) A is-a B and also A is a part-of B at the same time;
(II) A is-a B, and A and B involve antonyms in their class names;
(III) A is a part-of B, and A and B involve antonyms in their class names.

We were interested in this kind of motifs because such multiple types of relationships between the same classes
looked counterintuitive at first.

Three-node Motif. With a single edge relation linking three node classes, we considered 12 motifs as displayed in
Table 2.

A B

1 C

is-a

is-ais-a

A B

2 C

is-a

is-a

part-of

A B

3 C

is-a

part-of

is-a

A B

4 C

is-a

part-of

part-of

A B

5 C

part-of

is-ais-a

A B

6 C

part-of

is-a

part-of

A B

7 C

part-of

part-of

is-a

A B

8 C

part-of

part-of

part-of

A B

9 C

is-a

is-a

disjoint

A B

10 C

is-a

part-of

disjoint

A B

11 C

part-of

is-a

disjoint

A B

12 C

part-of

part-of

disjoint

Table 2: The first 8 motifs accounts for all possible combinations of two relational types, is-a and part-of, between any pair among
three classes. The remainder 4 motifs (9-12) represent configurations that fix any two relationships between A, B and B, C, but
leaves the third one, between A, C, to be possibly disjoint. Disjointness exists between opposing gender classes, but may not be
automatically inferred from antonyms.
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Principal Ideal Exploration. One of the limitations of three-node motifs is that the classes at the two ends are
separated by precisely two links, i.e., two asserted relationship instances. We use Principal Ideal Explorer (PIE) to
extend MOCH to account for situations where classes at the two ends are separated by an arbitrary number of links,
exploiting the transitivity property of is-a and part-of. Thus PIE will extend motif analysis to principal ideals to achieve
completeness of quality checking throughout the hierarchy.

The idea behind PIE is that properties that hold for more general (“ancestor”) classes in taxonomies and partonomies
also hold for more specific (“descendant”) classes. If class A and class B are connected by a sequence of relational
instances (is-a or part-of), in the same direction, then A and B should not be disjoint (otherwise it is not possible
to inherit properties from the ancestor class). For an illustration, Fig. 3 depicts the class “Superficial fascia of male
perineum (FMA20722),” which is linked to the class “Female body wall (FMA259159)” through a sequence of 5 links.
What makes this situation incorrect is the disjointness of the class at one end (“Superficial fascia of male perineum”)
with one at the other end (“Female body wall”).

Superficial fascia 
of male perineum

(FMA20722)
is a

Superficial fascia 
of perineum
(FMA18085)

Integument 
of perineum
(FMA74755)

Integument 
of trunk proper
(FMA259163)

Integument 
of trunk

(FMA74662)

Female 
body wall

(FMA259159)
part of part of part of part of

Figure 3: The class “Superficial fascia of male perineum (FMA20722)” is linked to the class “Female body wall (FMA259159)”
through a sequence of five “is-a” and “part-of” relationship instances.

In order theory, the group of descendants of a class is called a “principal ideal.” The systematic calculation of
principal ideals involves transitive closure, which is computational prohibitive when multiple types of relations are
involved. Therefore, to achieve a feasible PIE motifs implementation using SPARQL, we perform the computation in
two phases. The first phase transforms the FMA OWL/XML source file by converting every part-of relational instance
to an is-a instance. A relation-type-ignorant RDF store is created from this transformed source which encapsulates
structural, or hierarchical information only since directionality and linkage are maintained. The second phase involves
look-ups, after interesting structural information is obtained, into a separate RDF store which faithfully encapsulates
distinct relationships (which we use for two-node and three-node motifs). The second phase is used to query relational
types necessary for detailed final results.

2.3 Implementation

The FMA OWL file was loaded into a Virtuoso RDF store, version 06.01.3127, hosted on a MacPro desktop machine
with 32GB of RAM and one 2.8GHz Quad-Core Intel Xeon “Nehalem” processor, running Max OS X Snow Leopard.
The motif-specific SPARQL queries patterns were executed against the Virtuoso store using a simple script.

The script executed the two-node and three-node motifs in SPARQL queries in a straightforward manner. For
example, following SPARQL query retrieved the 9 results for motif 10 in Table 3, displayed in detail in Table 4.

PIE was implemented in several steps (see Fig. 5): (1) convert all part-of relation to is-a relation in the XML data
source, for computational efficiency when performing transitive closure; (2) create a relation-type-ignorant RDF store
in Virtuoso from the converted data source; (3) feed antonyms and (4) perform SPARQL query for transitive closure
against Virtuoso’s SPARQL API through a custom Ruby script; (5) output matching configurations in a csv file.

An independent set of length-specific SPARQL queries was created and executed to validate the result for the (male,
female) antonym pair, for motif lengths ranging from 3 to 8, involving 4 to 9 nodes. In fact, Fig. 3 was a part of the
result for a six-node PIE motif.

SELECT distinct ?A ?B ?C {
?A1 rdfs:label ?A .
?B1 rdfs:label ?B .
?C1 rdfs:label ?C .
?A1 rdfs:subClassOf ?B1.
?B1 rdfs:subClassOf [owl:onProperty ?a2bProp; owl:someValuesFrom ?C1].

FILTER((REGEX(?A, "[Ff]emale.*") && REGEX(?C, "(Male|[^e][Mm]ale).*")) ||
(REGEX(?C, "[Ff]emale.*") && REGEX(?A, "(Male|[^e][Mm]ale).*")))

FILTER(?a2bProp = obo:regional_part_of || ?a2bProp = obo:constitutional_part_of
|| ?a2bProp = obo:systemic_part_of || ?a2bProp = obo:part_of ) }

Figure 4: Sample SPARQL query for a three-node motif with the male-female antonym.
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Figure 5: PIE computational pipeline.

3 Results

The results are organized around the sizes of the motifs: two-node, three-node, and arbitrary-length motifs.

3.1 Two-Node Motifs

A is-a B and also A is a part-of B (Type (I)). We found 180 pairs (A, B) such that A is-a B and also A is a part-of B.
For example, “White matter of right cerebral hemisphere” is both a subclass of, as well as a regional part of “Cerebral
white matter.” All pairs involve continuous structures, such as “branch,” “surface,” “vessel,” “join,” and “layer.” All of
the 180 cases, except one, involve the “regional-part-of” relation. The exception involves “Joint of head of rib” being a
systemic part of “Costovertebral synovial joint,” in addition to being a subclass and a regional part of it.

A is-a B, and A and B involve antonyms (Type (II)). We found no male-female anatomic pairs, but two upper-
lower pairs: “Inferior margin of left upper lobe” is a subclass of “Inferior margin of lower lobe of lung,” and “Set of
upper superficial inguinal lymph nodes” is a subclass of “Set of lymph nodes of lower limb.” These warrant further
discussion on their validity. The remaining 34 cases of right-left, 15 cases of left-right, 151 cases of posterior-anterior
and 128 cases of anterior-posterior pairs did not result in any apparent inconsistency. This is because both opposite
antonyms appear in the same class name (in either one or both A and B), such as “Parenchyma of superior division of
posterior part of right anterior bronchopulmonary subsegment.”

A is a part-of B, and A and B involve antonyms (Type (III)). We found no male-female anatomic pairs, but
7 lower-upper pairs, 17 left-right pairs, 33 right-left pairs, 40 posterior-anterior pairs, and 33 anterior-posterior pairs.
Some left-right instances for case 2.3 are worth further discussion: “Tarsal gland of lower eyelid” is a regional part of
“Skin of left upper eyelid;” “Cavity of interchondral joint of left 5th and 6th ribs” is a regional part of “Interchondral
joint of right 5th and 6th ribs;” “Set of right subclavian lymphatic vessels” is a constitutional part of “Left subclavian
lymphatic chain;” “Skin of lower inner quadrant of right breast” is a regional part of “Skin of left breast;” “Anterior
lamina of splenorenal ligament” is a regional part of “Posterior wall of splenic part of lesser sac.” Such cases may
indicate the challenges in precisely defining the meaning of “regional part of” and “constitutional part of,” both of
which seem to refer to some larger anatomical contexts not explicitly specified.

3.2 Three-Node Motifs

With a single edge relation linking three node classes, we considered 12 motifs as displayed in Table 2. Table 3
summarizes the number of cases for each of the 12 motifs, with results for motifs 1-8 given in Table 3 (a) and motifs
9-12 in Table 3 (b). As indicated in Table 3 (a), Motif 1 and Motif 3 have no instances. This is reasonable because
the transitivity for subclass (is-a) is implicitly assumed and rarely explicitly asserted. Motif 2 has 30 instances. As
discussed in the two-node case, this reflects a small subset of anatomical structures that are recursive or continuous.
Motif 7’s 13 instances represent similar situations. The remaining Motifs 4,5,6 and 8 have more instances.

(a) Number of Cases for Motifs 1-8 in Table 2

Case # (A,B), (B,C) instances A is-a C A part-of C
1&2 108,154 0 30
3&4 22,078 0 631
5&6 31,826 810 210
7&8 40,902 13 1,047
Total 202,960 823 1,918

(b) Number of Cases for Motifs 9-12 in Table 2

Antonym\Motifs 9 10 11 12
(male, female) 0 9 0 1
(left, right) 37 39 11 78
(anterior, posterior) 146 29 36 38
(upper, lower) 3 10 8 17
Total 186 87 55 134

Table 3: Entry indicates the number of FMA configurations matching the corresponding motif. ∗: The details of the 9 configurations
for Motif 10 are displayed in Table 4.
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A B C
Skin of male breast Skin of breast Female breast
Superficial fascia of male breast Superficial fascia of breast Female breast
Male nipple Nipple Female breast
Male areola Areola Female breast
Male urinary system Urinary system Female human body
Compartment of male thorax Compartment of thorax Female thorax
Compartment of male thorax Compartment of thorax Female body compartment
Compartment of female thorax Compartment of thorax Male thorax
Compartment of female thorax Compartment of thorax Male body compartment

Table 4: All 9 fragments for Motif 10 are displayed, where A is a subclass of B, B is a part of C, with A, C involving opposite
gender and B being gender-neutral.

Table 3 (b) summarizes results for the four remaining “disjoint open-jaw” Motifs (9-12). To capture “disjointness,”
we use antonyms (Table 1) as filters to track down a subset of class pairs that are more likely to be disjoint. Each
number in Table 3 (b) represents the number of instances of antonym concept pairs (A, C) for Motifs 9 - 12. Each case
represents an unlikely or impossible configuration according to logic. For example, Table 4 lists the nine instances for
Motif 10. Each instance here implies an incorrect assertion because of the disjointness implied by the antonyms (male,
female), such as “Male urinary system” is a part of “Female human body.”

The remaining cases in Table 3 (b) are less clear as the (male, female) situation. Many FMA class names contain
multiple antonyms in the same class. Among 78,977 FMA classes, the longest has 18 words, as in “Trunk of communi-
cating branch of zygomatic branch of right facial nerve with zygomaticofacial branch of right zygomatic nerve.”

3.3 Arbitrary-length Motifs

The PIE method exploits transitivity to identify subgraph patterns with an arbitrary number of links (Section 2.2). We
have tested and validated PIE on FMA and found results beyond those captured by MOCH. Table 5 displays the number
of roots, as well as leaves of the opposing antonym. For example, there are a total of 11 roots involving “female” in their
class names, nominating a total of 112 classes involving “male” in their class names. Similarly, there are a total of 21
roots involving “male” in their class names, nominating a total of 135 classes involving “female” in their class names.

(Female, Male) (Left, Right) (Anterior, Posterior) (Lower, Upper) Total
# Roots (11, 21) (132, 143) (176, 239) (16, 17) 755

# Opposite Descendants (112, 135) (876, 960) (950, 875) (98,94) 4,100

Table 5: Summary of results for arbitrary-length motifs. Numbers indicate the corresponding number of roots, as well as numbers
of leafs involving the opposing antonym.

The details of the (11, 21) respective (Female, Male) root entry in Table 5 are plotted in Fig. 6. For example, “Skin
of female thorax” is a descendant of “Male human body” through such is-a and part-of sequences: “Skin of female
thorax” −→ “Skin of thorax” −→ “Skin of trunk proper” −→ “Skin of trunk” −→ “Skin of body proper” −→ “Skin”
−→ “Integument” −→ “Integumentary system” −→ “Male human body.” Thus “Skin of female thorax” is one of the
38 classes in Fig.6, involving the female gender that fall under the subtree rooted at “Male human body.”

All the chains in Fig. 6 involve a transition link where a gender neutral class is a direct descendant of a gender
specific class, such as “Integumentary system” −→ “Male human body.” In most cases, such relationship instances
are symmetric with respect to gender, i.e. if the instance “Integumentary system” −→ “Male human body” exists, the
instance “Integumentary system”−→ “Female human body” also exists. Table 6 provides a sample of such relationship
instances. We selected the cases that would fit a single line format, realizing that some FMA class names are quite long
and will interfere with the illustration of the flavor of results found.

3.4 Discussion

FMA. FMA is a large and complex ontological system, which currently consists of nearly 90,000 classes, over 174
spatio-structural relations, and about 2.4 million relationship instances. This paper only addresses one aspect of quality
assurance, though using an innovative approach whose results would be difficult to uncover through manual means de
novo. We found it quite impressive that only a very small fraction of the FMA suffers from inconsistency and errors
using our systematic motif checking. Such errors seem correctable without too much effort. Indeed, the Structural
Informatics Group at UW is working on correcting the inconsistencies identified in this study.
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Figure 6: The x-axis represents root class in the principal ideal, and the y-axis represents the number of descendants involving the
opposite gender that are linked to the root class by a sequence of up to 8 links of subclass and part-of relationships.

Gender neutral class part-of Female gender class Male gender class
Liver constitutional-part-of Compartment of female abdomen Compartment of male abdomen
Neck regional-part-of Female body proper Male body proper
Head regional-part-of Female human body Male human body
Skin constitutional-part-of Female human body Male human body
Diaphragm constitutional-part-of Female thorax Male thorax
Coccyx constitutional-part-of Wall of female pelvis Wall of male pelvis

Table 6: Sample classes that are both part-of a class associated with male, and a class associated with female.

Semantics of Part-of. Formal modeling of the semantics of the different kind of partonomy relationships is a well-
recognized intricate topic [15]. It is especially challenging if logical reasoning is to be built on top of it [16]. From what we
can learn from the denotational semantics of programming languages [25], there could be three general mechanisms to
model the semantics of A is a part-of B at the class level: (a): A �1 B if (∀x ∈ A)(∃y ∈ B) p(x, y), where p is a binary
relation at the instance level representing “part-of;” (b): A �2 B if (∀y ∈ B)(∃x ∈ A) p(y, x), where p(y, x) reads
“y has-part x;” (c): A �3 B if both A �1 B and A �2 B hold. In terms of the syntax of description logic, A �1 B
amounts to A v ∃pB; A �2 B amounts to B v ∃p−A; and A �3 B amounts to (A v ∃pB) u (B v ∃p−A), where
p− is the reverse of p. The outcome of this study hinged upon interpretation (a), a standard semantic interpretation
for part-of. To differentiate the meaning of the different partonomy relationships, one might consider such different
possible interpretations. However, any change in interpretation is likely to impact the rest of the structure as well [15],
and one needs to accept all logical consequences of any semantic commitment made.

Recommendation. If we take care of the incorrect cases in Table 4, then all the cases in Fig. 6 would disappear.
There are two possible ways to amend the cases. One is to “relink,” the other is to “reinterpret.” One possible strat-
egy would be to replace, for example, “Diaphragm” is a constitutional-part-of “Female thorax” and “Diaphragm” is a
constitutional-part-of “Male thorax” simply by on assertion: “Diaphragm” is a constitutional-part-of “Thorax.” A new
version of FMA already has reflected this strategy in part of the identified cases. Either way, it is important that in a
single ontological system, the same semantic interpretation is maintained throughout the entire system.
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3.5 Limitations

There are different versions of FMA and we did not systematically test our method on all of them for cross validation.
FMA is originally represented in a frame-based structure [17], which is not DL-based. Even though the OWL version
of FMA we used is not semantically equivalent to its original representation, manual inspection with the version at
http://fme.biostr.washington.edu:8080 shows that they share anomaly types identified here.

Our motif error detection method is most effective for disjoint classes. However, other than gender, using antonyms
as a proxy for disjointness in other cases such as (left, right) turned out to be less reliable and had produce false positives
based on limited manual inspection. In most cases, automatic methods need to be complemented by manual inspection
and validation before any changes to take place.

We have not studied motifs of a more complex structure beyond 3 nodes, other than the arbitrary-length linear
motifs through PIE. However, such an investigation is entirely feasible based on our approach, as long as the complex-
structured larger motifs capture patterns of interest.

4 Conclusion

Using Semantic Web-based techniques, we have successfully implemented MOCH and PIE for ontology quality as-
surance of FMA, specifically targeting interaction of multiple types of relations captured as labeled graph motifs with
disjointness constraints, in an exhaustive manner.

Our graph motif-based approach for ontology quality assurance has several unique aspects. First, arbitrarily sized
motifs can be checked using PIE. Second, our approach has a rule-based, logical flavor, not only manifested in its
implementation as “basic graph patterns” in SPARQL, but also in disjointness constraints between nodes. Third, our
methodology and computational framework are completely general and are applicable to other ontological systems.

Gender induced disjoint classes allowed us to uncover a class of previous unidentified errors in FMA. With the
help of Nature Language Processing techniques, it might be possible to extract more reliable disjoint classes based
on the positions of a wider class of antonyms. Additionally, use of new advances in labeled motif analysis [26] can
help characterize the label assignments on the edges of structurally equivalent small graph patterns to represent the
distribution of the semantic information in those subgraphs in terms of joint link pattern to identify other anomalous
patterns within the FMA. Finally, the IHSTDO (http://www.ihtsdo.org) has launched a project for reconstructing the
anatomical ontology. Our method should remain applicable if OWL is used as the main representation mechanism, or a
translation to OWL can be readily achieved.

5 Acknowledgment

This research was supported in part by the following grants: NIH/NCRR UL1-RR024989, UL1-RR024989-05S, NIH/NINDS
P20-NS076965, and NIH/NCATS UL1TR000439. We appreciate the comments and feedback from our colleagues Jim
Brinkley, Songmao Zhang, and Sinan al-Saffar during the preparation of this manuscript.

References
1. Gruber TR. A translation approach to portable ontologies. Knowledge Acquisition. 1993;5(2):199-220.

2. Murphy S, Mendis ME, Berkowitz DA, Kohane Z. Integration of clinical and genetic data in the i2b2 architecture.
AMIA Annu Symp Proc; 2006.

3. Zhang GQ, Siegler T, Saxman P, Sandberg N, Mueller R, Johnson N, Hunscher D, Arabandi S. VISAGE: A Query
Interface for Clinical Research. AMIA Clinical Research Informatics Summit; March 12-13; San Francisco, 2010. p.
76-80.

4. Tran V, Johnson N, Redline S, Zhang GQ. OnWARD: Ontology-driven Web-based framework for multi-center stud-
ies. Journal of Biomedical Informatics, Dec 2011, 1:S48-53.

5. Zhu X, Fan JW, Baorto DM, Weng C, Cimino JJ. A review of auditing methods applied to the content of controlled
biomedical terminologies. J Biomed Inform 2009;42(3):413-25.

6. Bodenreider O. Quality assurance in biomedical terminologies and ontologies. Bethesda: Lister Hill National Center
for Biomedical Communications, National Library of Medicine; 2010.

7. Gu HH, Wei D, Mejino JL Jr, Elhanan G. Relationship auditing of the FMA ontology. J Biomed Inform. 2009
Jun;42(3):550-7.

8. Zhang GQ, Bodenreider O. Large-scale, exhaustive lattice-based structural auditing of SNOMED CT. AMIA Annu
Symp Proc; 2010.

1068



9. Rosse C, Kumar A, Mejino JL, Cook DL, Detwiler LT, Smith B. A strategy for improving and integrating biomedical
ontologies. AMIA Annu Symp Proc 2005. p. 639-43.

10. Rector AL, Brandt S, Schneider T. Getting the foot out of the pelvis: modeling problems affecting use of SNOMED
CT hierarchies in practical applications. J Am Med Inform Assoc. 2011;18(4):432Ð40.

11. Rector A, Iannone L. Lexically suggest, logically define: Quality assurance of the Use of qualifiers and expected
results of post-coordination in SNOMED CT. Journal of Biomedical Informatics (in press).

12. Kaleta IJ, Mejino JLV, Wang V, Whipplee M, Brinkley JF. Content-specific auditing of a large scale anatomy
ontology. Journal of Biomedical Informatics. 2009;42(3):540-9.

13. Rosse C, Mejino JLV. A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy, Journal of
Biomedical Informatics 36:pp. 478-500, 2003.

14. Huang J, Abadi DA, Ren K. Scalable SPARQL Querying of Large RDF Graphs. VLDB; 2011.

15. Beck R, Schulz S. Logic-based Remodeling of the Digital Anatomist Foundational Model, AMIA 2003 Symposium
Proceedings, pages 71-5.

16. Zhang S, Bodenreider O. Law and order: Assessing and enforcing compliance with ontological modeling principles
in the Foundational Model of Anatomy. Computers in Biology and Medicine 36 (2006) 674-93.

17. Dameron O, Rubin DL, Musen MA. Challenges in Converting Frame-Based Ontology into OWL: the Foundational
Model of Anatomy Case-Study, AMIA 2005 Symposium Proceedings, pages 181-85.

18. RDF: http://www.w3.org/RDF/

19. Hitzler P, Krötzsch, M, Parsia, B, Patel-Schneider PF, Rudolph S. OWL 2 Web Ontology Language Primer: W3C
Recommendation; 2009.

20. SPARQL: http://www.w3.org/TR/rdf-sparql-query/

21. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskil D, Alon U. Network Motifs: Simple Building Blocks of
Complex Networks, Science, v. 298, pp. 824-7, 2002.

22. Milo R, Itzkovitz S, Kashtan N, Reuven L, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U. Superfamilies of Evolved
and Designed Networks, Science, v. 303, pp. 1538-42, 2004.

23. Cook D, Holder L. Graph-Based Data Mining, IEEE Intelligent Systems, v. 15:2, pp. 32-41, 2000.

24. Zhang S, Bodenreider O, and Golbreich C. Experience in Reasoning with the Foundational Model of Anatomy in
OWL DL. Pacific Symposium on Biocomputing 11:200-211, 2006.

25. Zhang GQ. Logic of Domains. Birkhauser, Boston, 1991.

26. Joslyn C, al-Saffar S, Haglin D, Holder L. Combinatorial Information Theoretical Measurement of the Semantic
Significance of Semantic Graph Motifs, in: Mining Data Semantic Workshop (MDS 2011), SIGKDD 2011.

1069


