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Abstract—The goal of N — x contingency selection is to pick
a subset of critical cases to assess their potential to initiate a
severe crippling of an electric power grid. Even for a moderate-
sized system there can be an overwhelmingly large number of
contingency cases that need to be studied. The number grows
exponentially with z. This combinatorial explosion renders any
exhaustive search strategy computationally infeasible, even for
small to medium sized systems. We propose a novel method
for N — x contingency selection for =z > 2 using group
betweenness centrality and show that computation can be
relatively decoupled from the problem size. Thus, making
contingency analysis feasible for large systems with = > 2.
Consequently, it may be that N — = (for = > 2) contingency
selection can be effectively deployed despite the combinatorial
explosion of the number of potential N — x contingencies.

Keywords-Contingency analysis, group betweenness central-
ity, graph centrality

I. INTRODUCTION

Contingency analysis, a key function in Energy Man-
agement Systems, is a systematic study of the impact of
individual system-component failures on the overall system
based on power system state estimations. The goal of an
N — 1 contingency analysis is to assess if any single
failure (initiating event or contingency) has the potential to
propagate into a cascading blackout (severe crippling of a
power grid). In N — z analysis, where > 2, the goal is
to study the impact of various combinations of x individual
components failing concurrently. While N — 1 analysis is
computationally intensive for a large system, the number of
contingencies in [N —x analysis grows exponentially with x.
For example, consider the Western Electricity Coordinating
Council system with about 20, 000 components. The number
of contingency cases for N — 1 analysis are 20, 000, about
108 cases for N —2, and about 10'2 cases for N —3 analysis.

Unlike systems of the past, power grids of today have
less marginal tolerance and more intermittent sources of
renewable energy resulting in higher probabilities of sta-
bility issues. Power grid blackouts result from cascading
failures often originating from concurrent failure of multiple
components as evident from recent examples [1]. After the
blackout of August 14, 2003, the North American Electricity
Reliability Corporation updated its reliability standards to
ensure that the transmission system is operated such that

instability, uncontrolled separation, or cascading outages will
not occur as a result of the most severe single contingency
and specified multiple contingencies [2].

Considering multiple failures is also critical when artificial
boundaries of a single network are made for administrative
purposes, known as Balancing Authorities (BAs) [3]. In such
cases, independent analysis is done by different operators
on their BAs. While an independent analysis may show
that the local network is resilient, concurrent single failures
in separate BAs could result in blackouts. An additional
requirement for accurate contingency analysis comes from
market operations and regulations, for example the Financial
Transmission Rights [3]. It is important to make the system
secure not only for any given N — 1 contingency but also
for selected N —x contingency cases. This results in a large
number of contingency cases that need to be analyzed.

Given the exponential nature of N — x analysis that leads
to computational infeasibility, effective contingency selec-
tion techniques must be developed to identify critical power
transmission components from a large set of possibilities.
Subsequently, full analysis can be done only on the selected
cases, drastically reducing computational requirements. In
this paper, we propose a method based on graph centrality
for contingency selection.

Developed in the context of social network analysis,
graph centrality is a concept that captures the relative
importance of an entity in a network [4], [5]. Based on its
topology and estimated power flows, a power grid can be
modeled as a graph. A graph consists of a set of vertices
(nodes) representing entities such as buses and a set of
edges (links) representing binary relationships on vertices,
for example transmission lines joining two buses. There
are several measures of centrality, the popular ones being
betweenness centrality and closeness centrality. However,
centrality measures are for individual entities (a vertex or
an edge). In order to perform N — z analysis we need
to compute metrics for groups of entities. The notion of
group betweenness centrality was introduced by Everett
and Borgatti [6], [7] to identify groups of individuals who
have collective influence in a social network. While existing
algorithms can be modified to compute group betweenness
of a group, the number of groups that need to be considered



is exponential with respect to the size of a group ({X ) In
Section III we introduce the concept of group betweenness,
discuss the algorithm of Puzis, et al., [8] and apply it for
N — x analysis.

We make two major contributions with this paper: (i) We
present a novel scheme to apply N — x group between-
ness centrality to contingency analysis (Section III), and
demonstrate its efficacy on two well published IEEE test
systems (Section V); and (éi) We show that this method is
computationally feasible for z > 2 (Section IV).

II. BACKGROUND

We now present a brief background for the N — 1 contin-
gency analysis problem, issues and challenges in solving this
problem, and then provide an intuition for our solution. Note
that we are interested in the contingency selection problem,
where the goal is to select and rank the contingency cases
depending on a given method. Our solution is based on
graph betweenness centrality. Further, we are interested in
computing the impact of a failed transmission line which
is represented as an edge in the graph modeling the power
network.

A. N — 1 Contingency Selection Problem

The underlying assumption for N —1 contingency analysis
is that cascading failures might occur from the failure of
a single critical unit. Thus, the goal is to identify such a
single credible contingency that has the potential to start a
cascading blackout. The importance of an edge is determined
by two factors (i) the weight of an edge, and (i) its
relationship with other edges in the graph. The relationship
of an edge will be measured as the degree of influence
on the connectivity within the graph which conceptually
captures the flow in a network. In particular, given the path
between any two vertices in a graph, we should be able
to address the impact a given edge has on this flow. It
would play a critical role if the only path that connects the
two vertices contains this edge. Based on this intuition, we
introduced the use of betweenness centrality for contingency
analysis [9]. Betweenness centrality is defined as the ratio
of the number of shortest paths that pass through an edge
to the total number of shortest paths between all possible
pairs of vertices. Mathematically, betweenness centrality of
an edge can be expressed as

Bi(e) = Z a(s,tle)

s,tEV O(S’t)

where o(s,t|e) represents the number of shortest paths in
the graph between s and ¢ that contain edge e in them, and
o(s,t) represents the number of shortest paths in the graph
between s and t. A path can be simply represented as a
series of edges, P = {e1,€2,...,en}.

In addition to the influence on the connectivity, we are
equally interested in capturing the power load of an edge

which is represented as its weight. Brandes noted that an
accurate way of incorporating the weight into betweenness
is to interpret the length of a path as the sum of the weights
on its edges [10]. In other words, to compute the shortest
path of minimum weight. This can be achieved by replacing
the shortest-path algorithm with Dijkstra’s algorithm for
computing the betweenness centralities of edges. We refer
the reader to [9] for further details on this approach.

B. Issues and Challenges

There are many issues and challenges that hinder the
direct application of graph centrality based solutions for
contingency selection. We discuss some of the major chal-
lenges here in order to motivate the need for a systematic
approach to problem formulation, algorithm selection and
experimentation.

o Graphs provide a simple yet powerful means to cap-
ture different kinds of interactions. However, they are
limited in their ability to model power grids where
topology, heterogeneity of components and electrical
properties are challenging to capture in a consistent and
concise manner [11].

« Centrality is an abstract notion to capture the relative
importance of an entity in a network. A variety of ways
exist to measure the relative importance of a node or
an edge, but the quality varies depending on different
factors specific to an application and the input data.
The foremost challenge is to emulate the physical laws
that govern the flow of electrons in a power grid, as
well as human intervention (in the form of policies) at
different points in the network.

e The N — z problem is a group-based analysis prob-
lem. While group-based methodologies exist, they are
mostly from the perspective of clustering. There is a
need for research of new methodologies.

o Unlike other fields of research such as data mining,
large scale standard datasets for power grids are not
readily available [12]. Extensive research needs to be
conducted on developing different characteristics of
input and on developing input datasets that are rep-
resentative of power grids in practice.

o The potential for cascading failures need to be moni-
tored continuously, thus resulting in a dynamic system
rather than a static system with additional restrictions
on computational delays that could render a solution
meaningless by the time it is computed.

o Since accepted methods for N — x analysis are com-
putationally infeasible for large systems, validation of
newer methods for N — x analysis is challenging.

Based on these issues we conclude that no single graph-
based approach can be considered sufficient by itself. There-
fore, we provide a framework to systematically study the
different aspects of power grids and their graph models,
and graph centrality measures. This framework will also



enable systematic comparison of different approaches. We
also propose these methods with an understanding that our
goal is not to determine the most important contingency
cases, but to eliminate the vast majority of non-critical cases
that would otherwise make the computation infeasible. Our
framework consists of the following components:

1) Graph type: directed or undirected graph, regular or
a line graph of the original graph. A line graph of an
undirected graph is also a graph that represents the
relationships between edges in the original graph.

2) Edge weight: a function of estimated power flow in
conjunction with the line-capacities.

3) Graph centrality metric: a variety of metrics such as
betweenness, group betweenness, closeness, bridging,
information, and routing centralities. Metrics can be
for vertices, edges, or combinations and groups of
these. Details are provided in Section VI.

4) Graph search type: shortest paths (distance) or shortest
paths of minimum weight; paths between all possible
pairs of vertices, or paths restricted from sources to
all vertices or to sinks.

5) Optimality: exact algorithms versus approximation al-
gorithms.

This framework provides a wide range of combinations
to explore, and encompasses a majority of approaches for
contingency analysis. In our experiments we have explored
betweenness centrality (for N — 1) and group betweenness
centrality (for N — z) as the primary metric for determining
relative importance of an edge. We plan to explore other
metrics in our future work. We have considered both directed
and undirected graphs with different combinations of edge-
weights and search restrictions (Section III-C). While we
have considered exact algorithms in our experiments, our
analysis provides an insight for the need (performance
reasons) as well as the validity of approximate methods.

We have presented a preliminary exploration of how to
systematically compare two metrics within a contingency
analysis framework [13]. Further refinements to this process
may be necessary as more of our framework space is
explored.

III. METHODOLOGY FOR N — x CONTINGENCY
SELECTION

The goal of N —x analysis is to identify groups of x edges
whose failure would have maximal impact on the network.
The importance of a group depends on (i) the weights of
edges in the group, (ii) the relationship of the individual
edges with other edges in that graph, and (iéi) the mutual
relationship of edges within a group. Again, relationship is
measured as the influence on the connectivity in the graph.

A. Problem Formulation

A graph G = (V, E) consists of a set of vertices (or
nodes) V' representing entities and a set of edges (or links)

E that represent binary relation on V' with a weight function
w : E — R*. For a graph representing a power grid
transmission network the vertices represent entities such as
generators and loads, generally known as buses. The edges
represent transmission lines and transformers. A graph can
be directed or undirected. Based on the power flow values
(state estimations) the input graph can be directed. However,
we can choose to ignore the directionality in order to model
the grid as an undirected graph. Power generators and loads
can be identified from the input and can be additionally
considered as sources and sinks in the graph. We utilize the
directionality and presence of sources and sinks to address
a shortcoming of the centrality-based approach that will be
discussed in Section III-C.

Each edge has a weight associated with it which captures
its relative importance. The weights are computed as a
function of the estimated power flow (P) and line-capacities
(Pphaz) for a given model. In particular, we experimented
with %, and %. Using the former, the higher the value
of P, the greater its importance in power grids. Thus, %
would likely be a part of many paths selected using an
objective function which minimizes the sum of weights
on a path. Thus, the edge would have a larger value of
betweenness reflecting its importance. For the ratio %,
a value closer to one implies that a line is carrying a load
close to its capacity and therefore is of high importance. A
large value for the ratio implies that the line is currently
being underutilized, and thus of lesser importance. For the
sake of brevity, we will not consider using edge weights of
i ez in this paper, as it did not perform as well.

Our formulation of the N — x contingency selection was
inspired by the Key Player Problem(KPP-POS) proposed
by Borgatti [7]. The KPP-POS problem can be defined as
identifying the key players in a social network for two basic
purposes (i) for optimally spreading something through the
network by using key players as the seeds (KPP-POS), and
(#¢) for optimally disrupting or breaking the network by
eliminating the key players (KPP-NEG). We now provide
the details of our approach.

B. Group Betweenness Centrality

The concept of edge-betweenness centrality for N — 1
can be logically extended to the N — x contingency analysis
where multiple concurrent failures of links (edges) are
considered. We argue that this is different from a series of
x failures of single links, one at a time. In such a case,
after each failure the edge weights change (due to power
flow) resulting in new and modified shorter paths. In addition
to changes in weight, there are also changes in the graph
structure due to deletion of edges that can result in new
paths leading to recomputation of betweenness scores of all
entities of interest. This is illustrated in Figure 1(b) where
deletion of edge (0 — 1) will result in the recomputation of
betweenness scores for all the vertices. Another difference



in the N — z analysis is that in addition to weight and
relationship of the edges, we should also consider the mutual
relationship of edges within a group. Again, relationships are
measured in terms of influence on connectivity in a graph.
To identify the importance of a group of edges, we use
the concept of group betweenness introduced by Everett and
Borgatti [6]. Group betweenness is defined as the ratio of
shortest paths that pass through any member of the group
to all shortest paths between all pairs of vertices in a graph.
Mathematically, group betweenness can be expressed as

$ o(s, t|Eg)

Be(Eg) = o(s,t)

s,teV\E}

where EY, is a subset of edges of interest, o (s, ¢) the number
of shortest paths between s and ¢, and o (s, t| E;) the number
of shortest paths between s and ¢ that contain any member
of EL.

The general algorithm for computing edge betweenness
centrality can be augmented to compute group betweenness
for a given group with the same computational complex-
ity [10]. However, the general algorithm can only help if
a group has already been determined, and here the number
of groups of size x is exponential with respect to x. This
is illustrated in Algorithm 1, where different groups of z
are formulated in Line 2 and the algorithm for computing
betweenness is called for each group in Line 4.

Algorithm 1 Naive GBC Algorithm

1: procedure NAIVE(G(V, E),w : E — R™)
2: Identify all groups of x edges in G, Eg;
3: for each group E¢; € G; do

4: Compute Ba(Eg);

> Use algorithm of Brandes

Computation of group betweennes can be made feasible
by: (i) identifying a set of important edges based on a some
criteria and conducting further analysis only on the smaller
set of edges. (i¢) identifying a method for computing the
group betweenness for different groups efficiently. For the
former, we can use edge-betweenness scores to identify a
set of important edges, or use other known charateristics of
a given input. The latter is a challenging problem for which
we provide an intuition now.

The intuition for computing the influence of a group on
connectivity in a graph is to consider the full influence of
the first edge, but only consider additional influences of the
subsequent edges in the group. For example, if edge e; is
part of NV paths and edge e5 is part of M paths, the influence
of the group consisting of edges e; and ey is (N + M —§),
where ¢ is the number of paths that contain both e; and es.
This is illustrated in Figure 1(c), where edges (1 — 2) and
(3 — 4) will have a greater importance over edges (s — 1)
and (1 —2), or (1 —2) and (2 —1).

Puzis, et al., study a similar problem in the context of in-
formation monitoring in a communication network [8], [14],

[15]. They propose fast algorithms, based on heuristic search
and iteration, for computing a group of prominent vertices
in the graph representing the communication network. The
proposed algorithms are important because, after an initial
computation on the original graph, computation of group
betweenness is proportional only to the size of the group
and not the entire graph. This is achieved by using additional
storage of values such as number of paths and distances. The
trick is to quickly compute the mutual influence of any two
edges on the paths that flow through them. In particular,
identify how many paths between (s,t) pair contains both
of these edges (§, from previous discussion). Puzis, et al.,
introduce the concept of path betweenness to capture this
measure. Given a set S = (v, vs,...,v) of vertices, let
0s,t(S) denote the number of shortest paths between s and
t that traverse all the vertices in S in that order. The path
betweenness for an ordered set S is defined as

pos) = Y 2,

O
s,teV 8t

where o, ; represents the number of shortest paths between
s and t.

The algorithm of Puzis, et al., can be used to com-
pute group betweenness of different groups as illustrated
in Algorithm 2. The edge betweenness for each edge is
computed using the algorithm of Brandes (Line 2). A subset
of important edges can be identified as discussed earlier
(Line 3). For each edge in X, compute path betweenness
using an algorithm that is similar in spirit to the algorithm
of Brandes. We refer you to [8] for details on computing
Pg(X). Once the path betweenness scores are computed,
the group betweenness scores can be computed based on
these scores efficiently.

Algorithm 2 Optimal GBC Algorithm

1: procedure OPTIMAL(G(V, E),w : E — R™)

2: Compute Be(G); > Use algorithm of Brandes
3: Identify X C E edges; > (X < E)
4: Compute Pp(X);
5.
6
7

Identify all groups of z edges in X, Eg;
for each group £ € G do
Compute Bg(Eg) from Pg(X);

C. Search Restrictions

The different centrality measures as applied to power
grids suffer from a fundamental weakness in that vertices
and edges on the fringe will receive relatively lower scores
compared to those located in the core of the graphs. This is
illustrated in Figure 1(a) where we have identified that vertex
0 is an important node (such as a large power generator) and
therefore the edge (0 — 3) is an important edge. However,
because of the way shortest paths are computed, this edge
will not receive a high score. In order to circumvent this
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Figure 1: Figure 1(a) illustrates the problem of important vertices and edges on the boundary receiving smaller scores than
relatively unimportant vertices and edges in the middle. Figure 1(b) provides an example where removing the edge (0 — 1)
results in recomputation of betweenness for every vertex. Figure 1(c) provides the intuition for group betweenness — if
edges (1 — 2) and (3 — 4) are removed then all paths from s to ¢ will be lost.

problem we experimented with three different formulations
of the problem:

o ALL-PAIRS: compute paths between all possible pairs
of vertices,

e« SRC-TO-ALL: compute paths from identified sources
(such as generators) to all possible vertices, and

e SRC-TO-SINK: compute paths from identified
sources (such as generators) to identified sinks (such
as loads).

As expected, restricted paths from source to sinks provided
better results and are detailed in Section V. While the pre-
liminary results are encouraging extensive experimentation
is needed and will be part of our future work.

IV. COMPUTATIONAL FEASIBILITY OF GROUP
BETWEENNESS CENTRALITY

Consider a weighted undirected graph G(V, E) represent-
ing the power network, where V' represents the set of vertices
and E the set of edges with a weight function w : E — R™.
Let n = |V| be the number of vertices (nodes) and m = |E|
the number of edges. The complexity for computing ver-
tex (and edge) betweenness with an optimal algorithm (of
Brandes) is given by T(BA) = O(nmlogn + n?logn).
Dijkstra’s algorithm is used to compute the shortest-path of
minimum cost with binary heap data structure.

Group betweenness can be computed either with the
Algorithm 1 or with Algorithm 2. Let us consider the cost
of N — x selection when x = 2 (all groups of two edges).
The complexity of Algorithm 1 is given by O(m?(T(BA))),
where T'(BA) represents the time to compute edge between-
ness using the algorithm of Brandes, and the term O(m?) is
the cost of comparing all groups of two edges. The complex-
ity of Algorithm 2 is given by O(T(BA) + (m?) + (m?)),
where the the term O(m3) is the cost of computing path
betweenness scores for all pair-wise edges. Note that this
cost can be reduced by considering a subset of edges and

needs to be computed only once. The existence of power-law
distribution among the betweenness scores as provided in [9]
holds the promise that a small subset of important edges can
be preselected from a large pool. The net improvement of
Algorithm 2 over Algorithm 1 is given by O(nmlogn).

When searches are restricted from a few sources instead of
all possible pairs of vertices, the cost of computing the edge
betweenness can be decreased to T'(BA) = O(Smlogn +
Snlogn) with a speedup of %, where S represents the
number of sources.

V. CASE STUDIES

An effective N — z contingency screening algorithm re-
quires both asymptotically lower computational costs, which
we have shown in the previous section, as well as accuracy
in selecting important cases. To demonstrate the latter, we
applied our group betweenness method to two standard case
studies: the IEEE 14-bus, 20-branch test system [16], shown
in figure 2(a), and the IEEE 24-bus, 33-branch reliability
test system [17], shown in figure 2(b). The original 14-
bus system did not contain line rating information, so we
have manually assigned a maximum rating of 85 MW
to all branches except line 1-2, to which we assigned a
maximum value of 200 MW. These assigned ratings should
not affect the validity of the test cases, as contingency
selection methods should be able to handle any ratings a
real life system may have.

To establish a baseline for comparison, we exhaustively
computed AC load flow solutions for every N-1 and N-2
contingency case on both systems. Using this data, we scored
each all the N-2 contingency cases using both performance
index, PI, (we use the definition presented in [18]) and the
undirected, source-to-sink version of the group betweenness
algorithm. The results of the top 10 cases with the highest
PI scores are presented in tables 4(a) and 4(b) for the 14-bus
system and 24-bus system, respectively. From these tables,
we can observe that there exists at least some correlation




between our betweenness method and the performance index
— many of the highest Pl-ranked scores appear in both top
10 lists, particularly for the 14-bus test system. Note that in
table 4(a) outage 1-2 created an unsolvable powerflow and
was therefore given a PI score of infinity. Unfortunately,
because of the sheer volume of contingency cases produced
by N — z analysis, it is difficult to draw any kind of general
conclusion about the efficacy of our algorithm. A sample
size of 10 in a pool of 196 or 576 (the number of N — 2
cases for the 14-bus and 24-bus systems, respectively) is far
too small.

To more comprehensively characterize the accuracy be-
havior, we define a capture rate metric: Given two lists of
contingency cases, one ranked by performance index and
the other by our betweenness algorithm, the capture rate
function is simply the percentage of contingency cases which
appear in the both lists. This intersection ratio is then plotted
against the size of the list being considered, starting with the
single top-scoring case in each list and increasing until both
full lists are compared (always producing a capture rate of
100%). If one were to plot the capture rate of a completely
random permutation of the contingency list, we would expect
to see a straight line from (0, 0) to (100, 100). This expected-
random case is shown as a light gray line in all of the plots
in figures 5 and 6.

Based on these plots, it is clear that there are still many
open questions regarding centrality-based contingency selec-
tion. While our algorithm produces statistically significant
results for N — 2 analysis on the 14-bus system, the results
for the 24-bus RTS system are less positive. Still, this is
a relatively unexplored domain, and we remain convinced
that by lowering the computational cost to within realistic
bounds for the N —x problem, further research can improve
the accuracy of these techniques to operationally-acceptable
levels.

Moreover, because group betweenness centrality is intu-
itively a reformulation and extension of edge betweenness,
we expect to see relatively similar accuracy measurements
when running edge betweenness on N-1 contingency cases
and group betweenness on N-2 contingency cases over the
same test system. As such, we present capture plots of edge
betweenness against the performance index over the N-1
contingency cases as a point of comparison. Because of this
correlation, we note that any algorithmic change to edge
betweenness which improves selection accuracy on the N-1
problem will likely extend to using group betweenness on
the N-2 problem, and vice verse.

VI. RELATED WORK

In the past several decades, extensive research has been
conducted in the area of contingency selection. The previous
research includes performance indices (PI) related contin-
gency ranking method based on approximate power flow
solutions [18], [19], contingency evaluation using concentric

relaxation [20], sparse vector methods [21], partial refactor-
ization method [22], bounding method for AC contingency
analysis [23], hybrid method [24] and quadratized power
flow sensitivity analysis [25]. Pinar, el at., use minimum cut
in thier study [26]. Bienstock and Verma use similar graph
concepts for NV — k selection [27].

These existing methods are of various qualities in iden-
tifying the credible set of contingency cases. From the
computational point of view, many of these methods still
involve some kind of simplified analysis of all contingency
cases. The methods may be feasible for NV — 1 contingency
analysis. However, for N — z analysis, the sheer number
of cases leads to the impracticality of even the simplified
computation for all cases. We must search for a more
efficient contingency selection method. The study of (N —x)
contingency selection is a relatively new area of research
and to the best of our knowledge this is the first attempt
to use group betweenness centrality metrics for contingency
selection.

Different Graph Centrality Measures: There are different
measures of centrality of which the important ones are
betweenness centrality and closeness centrality. There are
different variants of betweenness depending on how the
shortest paths are computed. For example, shortest paths of
minimum weight. We refer the reader to [28] for further ref-
erence. Other measures of centrality relevant to contingency
analysis are bridging centrality that identifies vertices that
connect clusters of vertices in a graph - removing these ver-
tices from the graph could make the graph disconnected [29],
electrical centrality (also known as information centrality)
that computes the shortest paths based on electrical proper-
ties [30], [31], and routing centrality that includes policies
that govern the flow at each vertex [32]. It can seen that
applying the notion of centrality for a given application is
not a straight-forward process and has been acknowledged
by other researchers in the past [33], [34], [35].

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel scheme for the N — x contingency
selection problem using group betweenness centrality. While
the traditional approaches to this problem are computation-
ally infeasible, we showed that an efficient algorithm can be
developed by decoupling the computation with the problem
size. Consequently, this approach will enable N —x analysis
on large scale problems with = > 2.

Using case studies we demonstrated that our approach
computes good solutions and holds a promise for larger
systems. We discussed critical issues that hinder the use of
graph centrality measures for the contingency analysis and
as a solution presented a framework with which effective
solutions can be developed.

Some of the more general conclusions we draw from
this work are: (i) group betweenness centrality provides a
computationally feasible and technically effective solution
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Figure 2: Electrical line diagrams of both case studies.

Rank Score Rank Score
Outage Violations PI | GBC PI | GBC Outage | Violations | PI | GBC PI | GBC
1-2 (no solution) 1 1 oo | 13.00 6-10 1 1 1] 259 | 42.00
2-3 4 2 2 | 7.56 | 10.00 2-6 1 2 21223 | 35.00
2-4 3 3 51523 9.00 15-24 0 3 31 | 3.05 0.00
1-5 2 4 41491 9.00 14-16 0 4 6 | 3.05 | 22.00
4-5 2 5 7| 3.58 4.00 3-24 0 5 12 | 3.04 | 11.00
5-6 1 6 3| 432 | 10.00 16-17 0 6 19 | 2.72 8.00
2-5 1 7 10 | 3.19 0.00 13-23 0 7 21 | 2.52 | 4.00
3-4 1 8 11 | 3.02 0.00 12-23 0 8 32 | 247 0.00
6-13 0 9 14 | 2.28 0.00 16-19 0 9 10 | 2.37 | 15.00
6-11 0 10 12 | 2.27 0.00 15-21 0 10 24 | 2.35 3.50

14-bus test system

24-bus test system

Figure 3: Top ten N-1 contingency cases for both case studies. PI stands for Performance Index,
betweenness centrality.

and GBC stands for Group

Rank Score Rank Score
Outages | Violations | PI | GBC PI | GBC Outages Violations | PI | GBC PI | GBC
1-2,2-3 4 1 41 7.56 | 11.00 1-2, 6-10 2 1 15 | 2.33 | 35.00
1-5, 2-3 4 2 13 | 7.56 9.00 1-3, 6-10 2 2 31 | 2.33 | 31.00
1-2, 2-4 3 3 2| 523 | 12.00 1-5, 6-10 2 3 32 | 2.33 | 31.00
1-5, 2-4 3 4 7| 5.23 | 10.00 2-4, 6-10 2 4 33 | 2.33 | 31.00
2-3,2-4 3 5 14 | 5.23 9.00 2-6, 6-10 2 5 21 | 2.33 | 33.00
1-2, 1-5 2 6 5| 491 | 10.00 3-9, 6-10 2 6 34 | 2.33 | 31.00
1-2, 4-5 2 7 6 | 3.58 | 10.00 4-9, 6-10 2 7 35| 2.33 | 31.00
1-5, 4-5 2 8 30 | 3.58 7.00 5-10, 6-10 2 8 36 | 2.33 | 31.00
2-3,4-5 2 9 31 | 3.58 7.00 1-2, 2-6 1 9 69 | 2.28 | 27.00
2-4, 4-5 2 10 32 | 3.58 7.00 1-3, 2-6 1 10 79 | 2.28 | 24.00

14-bus test system

24-bus test system

Figure 4: Top ten N-2 contingency cases for the two case studies. PI stands for Performance Index, and GBC stands for
Group betweenness centrality.
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Figure 5: Capture plots for the 14-bus test system. The capture rate represents the percentage of cases where ranking by

centrality agreed with the ranking by Performance Index.
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Figure 6: Capture plots for the 24-bus test system. The capture rate represents the percentage of cases where ranking by

centrality agreed with the ranking by Performance Index.

for N — x contingency selection problem, (i¢) strengths and
weaknesses of different centrality measures are relatively
unique and should be used with care, (7ii) the way a power
grid is modeled as a graph has important consequences on
the effectiveness of the various graph-based contingency
selection methods (iv) lack of large sized standard inputs
and computational infeasibility of traditional methods of
contingency analysis makes validation of new approaches
challenging. We expect that these insights and methods will
be helpful in the analysis of impending smart grids and in
meeting stringent regulatory rules.

In the near future, we plan to systematically explore the
different possibilities within our framework and conduct
thorough experiments on different power grid models. We
considered Performance Index (PI) as our primary tool for
validation. However, it has recently been shown that PI is a
weak predictor of contingency cases that initiate cascading
failures [36]. We will therefore consider other methods for
validation in our future work. We also plan to enhance
and open source our high performance implementations for
different graph centrality measures.
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