
High Performance Descriptive Semantic

Analysis of Semantic Graph Databases?

Cliff Joslyn1, Bob Adolf1, Sinan al-Saffar1, John Feo1,
Eric Goodman2, David Haglin1, Greg Mackey2, and David Mizell3

1 Pacific Northwest National Laboratory
2 Sandia National Laboratories

3 Cray Inc.

Abstract. As semantic graph database technology grows to address
components ranging from large triple stores to SPARQL endpoints over
SQL-structured relational databases, it will become increasingly impor-
tant to be able to understand their inherent semantic structure, whether
codified in explicit ontologies or not. Our group is researching novel meth-
ods for what we call descriptive semantic analysis of RDF triplestores,
to serve purposes of analysis, interpretation, visualization, and optimiza-
tion. But data size and computational complexity makes it increasingly
necessary to bring high performance computational resources to bear
on this task. Our research group built a high performance hybrid sys-
tem comprising computational capability for semantic graph database
processing utilizing the multi-threaded architecture of the Cray XMT
platform, conventional servers, and large data stores. In this paper we
describe that architecture and our methods, and present the results of
our analyses of basic properties, connected components, namespace in-
teraction, and typed paths of the Billion Triple Challenge 2010 dataset.

Keywords: Semantic graph databases, high performance computing,
semantic networks.

1 Introduction

As semantic graph database (SGDB) technology grows to address components
ranging from extant large triple stores to SPARQL endpoints over SQL-structured
relational databases, it will become increasingly important to be able to un-
derstand their inherent semantic structure, whether codified in explicit ontolo-
gies or not, for tasks ranging from analysis, interpretation, and visualization to
optimization. But the ability to understand the semantic structure of a vast
SGDB awaits both the development of a coherent methodology and the high-
performance computational platforms within which to exercise such methods.

A number of factors make SGDB problems different from those where net-
work science and graph theoretical methods are typically applied. Perhaps most
prominently, their formal nature are as structures which are not only large
graphs, but have high data complexity in that they are typed and directed
networks: types on nodes and links carry the specifically semantic information
of their assertions, while the directionality of the links indicates the argument
? Corresponding author: Cliff Joslyn, Pacific Northwest National Laboratory,

cjoslyn@pnl.gov, 206-552-0351.



structure of the links, seen as predicates. But standard methods in network sci-
ence (e.g. connected components, minimum path, centrality, etc.) have generally
been developed for networks of large size but low data type complexity, that is
for untyped, and undirected graphs.

Where such methods ignore semantics in order to reduce complexity, it is
becoming increasingly important to develop methods that tackle high data com-
plexity directly. This paper describes some novel methods for analyzing such se-
mantic structures in graph data, and their significance on large graphs. To that
end, our research group built a novel high performance hybrid system comprising
computational capability for semantic graph database processing utilizing high
capacity standard servers together with the multi-threaded architecture of the
Cray XMT platform. We have brought these capabilities to bear on the 2010
Billion Triple Challenge4 dataset (BTC10) [6].

In this paper we describe these systems and our work to interrogate BTC10
with respect to its large-scale semantic structure. We first describe our hybrid
computational platform and the Cray XMT machine at its core. We then provide
base statistics on BTC10 node and link types and namespaces, including factor-
ing the ontological semantic meta-data from the rdf, rdfs, and owl namespaces.
We then consider interaction among namespaces in BTC10, and analyze the con-
nected component structure of BTC10, with and without semantic filtering. We
then perform semantic analysis over classes and predicates, building up a sta-
tistical ontological map. Finally we factor BTC10 according to network motifs
which are short, typed paths, specifically link type bigrams and trigrams. This
analysis reveals the inherent semantic structure of BTC10.

There is some previous work related to some of the mapping efforts we use
here for namespaces [5, 7, 8], and performing network scientific analyses of large
graph data [8], including connected components. We understand our work to
be novel both in looking at the predicate sensitivity of connected components,
its ability to do statistical mapping down to the predicate level, its statistical
modeling approach to graph motif analysis, and of course its scaling to graphs
with billions of edges.

2 High-Performance Computational Architecture

Our high-performance computing platform includes a Cray XMT and a high-end
server. We use the high-end server—with 48 GBs of memory and two quad-core
2.96 GHz Intel Xeon CPUs—to perform initial investigations into the BTC10
using both leading commercial triple store software and custom software to per-
form scans of the data with regular memory accesses.

But for problems, such as graph problems, which are dominated by unpre-
dictable memory references, that is, with almost no locality, the Cray XMT
can significantly outperform distributed-memory parallel architectures based on
commodity processors. The XMT also has a significant amount of shared mem-
ory (1024 GBs) so that the entire graph can fit into memory at once, obviating
the usual requirement of paging data into limited RAM.

4 http://www.cs.vu.nl/˜pmika/swc/submissions.html



Our Cray XMT has 128 custom Threadstorm processors, each of which sup-
ports 128 hardware thread contexts, so that each Threadstorm can be viewed
as a 128-way hyperthreaded processor. For unpredictable memory reference pat-
terns, cache memory is ineffective. To overcome the latency of memory references
with no cache hits, programs are designed and written for high amounts of con-
currency. Thus at any time, each of the Threadstorms is likely to have at least
one of its 128 threads ready to compute while other threads await arrival of data
from memory. This architecture is designed for running programs with large
memory footprints and 12,000 threads in a single program. With 1TB of shared
memory, we were not memory-constrained in our processing of the BTC10 data.

The amount of parallelism in applications running on the XMT can only be
supported by fine-grain synchronization support in the hardware and runtime
systems. It is commonly understood that fundamental data structures need to
be specialized to run on a system with this much concurrency. Members of our
team have recently developed hashing data structures that are used extensively
in our BTC10 work [4].

Our productivity in exploring BTC10 on the Cray XMT was facilitated by
two open source libraries that specifically target the Cray XMT: the Multi-
Threaded Graph Library (MTGL)5 and the Semantic Processing Executed Ef-
ficiently and Dynamically (SPEED-MT)6 library. The first is a set of graph
algorithms and data structures designed to run scalably on shared-memory plat-
forms such as the XMT. The second is a novel scalable Semantic Web processing
capability being developed for the XMT.

We used a character string tokenization package from the SPEED-MT li-
brary to translate the verbose BTC10 data into 64-bit integers, to increase com-
putational efficiency and reduce the memory footprint. The XMT’s large global
memory allowed us to hash each URI, blank node, or literal into a shared hash
table and assign each a unique integer identifier. The process of translating from
strings to integers took a total of 1h 35m, with 75% of the time being file I/O.

3 First-Pass Semantic Data Analysis

We acquired BTC10 and verified it as an RDF graph with 3.2B 〈s, p, o, q〉 quads,
which we projected to 1.4B unique 〈s, p, o〉 triples, ignoring the quad field (useful
for provenance and other operations but not for analyzing the main content).

We identified duplicates by hashing the triples, now of integers, into a shared
hash table in 10 min. 37 s. A parallel for loop iterated over the triples, inserting
them into a hash table class that is part of MTGL. The hash table class im-
plements a thread synchronization method described in more detail in [4] that
scales effectively for both uniform and power law distributions. Hash class colli-
sions are handled with linear probing. The entire process of converting the data
from string to integers, removing the quad field, and deduplicating compressed
BTC10 from 624 GBs to 32 GBs. This does not include the mapping file back
to the integers, which would be another 21.5 GBs.

5 https://software.sandia.gov/trac/mtgl
6 https://software.sandia.gov/trac/MapReduceXMT



Abbreviation Prefix
bestbuy: http://products.semweb.bestbuy.com/company.rdf
dgtwc: http://data-gov.tw.rpi.edu/2009/data-gov-twc.rdf
fao: http://www.fao.org/aims/aos/languagecode.owl
foaf: http://xmlns.com/foaf/0.1/
freebase: http://rdf.freebase.com/ns/
geonames: http://www.geonames.org/ontology#
geospecies: http://rdf.geospecies.org/ont/geospecies
linkedmdb: http://data.linkedmdb.org/resource/oddlinker/
owl: http://www.w3.org/2002/07/owl
purl: http://purl.org/dc/elements/1.1/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/2000/01/rdf-schema
sioc: http://rdfs.org/sioc/ns
skos: http://www.w3.org/2004/02/skos/core

Table 1. Some prefix abbreviations used.

Some of the namespace abbreviations used below are shown in Table 1. Com-
plete documentation of all the abbreviations used is too cumbersome for publica-
tion, but are straightforward and should be able to be determined from context.

We measured BTC10’s very low graph density of 1.8 ×10−8 links/node2.
The left of Table 2 shows the distribution of the top 20 of the 58.6M non-blank
subjects present, comprising only 0.085% of all 960.7M non-blank subjects; the
right shows the distribution of the top 20 of the 95.5M non-blank, non-literal
objects present, comprising 29.3% of all 429.5M non-blank, non-literal objects.
As with namespaces, URIs are also abbreviated and summarized to assist with
meaningfulness; full details are available in the BTC10 dataset.

Note that there are far fewer subjects than objects, by two orders of mag-
nitude, indicating a much larger in-degree of objects compared to out-degree
of subjects. The most prevalent subjects are “containers”, each (e.g. Best Buy)
pointing to a single category of a large number of objects (e.g. Offers in this case).
The subject list also contains web documents and blogs pointing to different ed-
itors, a dataset container pointing to all the comprising files, and an ontology
to all its edges and nodes with hasEdge and hasLink predicates. On the other
hand most prevalent objects are types, virtually all (e.g. foaf:Person) due to
these types being the destination of rdf:type predicates. Another explanation
for an object having a high in-degree is that it represents a global service to
many entities. Such is the case with http://www.last.fm, an account servicing
page for nodes of type foaf:OnlineAccount.

Namespaces which deal with “semantic meta-data”, or ontological typing
information, are generally prominent. Specifically the rdf:, rdfs:, and owl:
namespaces comprise 20.0% of all link instances. A histogram of the top 10
is shown in Table 3. These are dominated by rdf:type, rdfs:seeAlso, and
rdfs:label, with rdf:type alone comprising 10.7%.

Reification is prominent in BTC10. There are 4.4M edges of predicate rdf:subject
between rdf:Statement and core:protein, the main source. Overall, rdf:subject,
rdf:object, and rdf:predicate each have 6.1M instances precisely, comprising
a significant fraction of BTC10 that is reified.



Subjects K Objects M
bestbuy:BusinessEntity BestBuy 412.6 foaf:Person 68.39
data-gov dataSet-91 148.0 foaf:OnlineAccount 10.15
data-gov dataSet-90 54.0 rdf:Statement 6.06
geonames:United Kingdom 16.1 foaf:Document 4.67
geonames:Iowa 15.9 rss:item 4.65
geonames:Wisconsin 15.8 dgtwc:DataEntry 4.00
geonames:North America 15.8 dcmitype:Text 3.22
geonames:Minnesota 15.8 geospecies:Point 2.45
geonames:Michigan 15.8 opfield:Neighbour 2.36
liveJournal Entry 1 12.0 MusicOnt:Performance 2.27
liveJournal Entry 2 11.2 timeline:Interval 2.26
liveJournal Entry 3 10.9 event:Event 2.26
SMIL Webpage 9.3 geonames:Feature 2.21
liveJournal Entry 4 9.0 www.last.fm/ 1.67
liveJournal Entry 5 8.8 wordnet:Person 1.66
Prefixcc Webpage 8.8 foaf:chatEvent 1.66
www.nettrust-site.net/fdic 8.4 uniprot:classifiedWith 1.56
fao:Language Codes Ontology 1 7.8 rdfs:seeAlso 1.54
sfsu:FoodsWebs Ontology 7.7 uniprot:Domain Assignment Statement 1.50
fao:Language Codes Ontology 2 7.2 goodrelations:ProductOrServiceModel 1.46

Table 2. (Left) Top 20 subjects (thousands); (Right) top 20 objects (millions).

4 Namespace Interaction

To understand the relationships between the sources which generated the dataset,
we explore a summary metric for linkages among namespaces. Projects like the
Linking Open Data initiative7 and the Comprehensive Knowledge Archive Net-
work8 rely on manual attribution and curation of provenance. In BTC10 we
must use an approximation method for attributing triples to sources. While con-
ceptually URI’s and their namespaces should only serve to provide a unique
identifier, in practice namespaces can be used for clustering and developing a
basic understanding about the sources of the data.

p1 Count (M)
rdf:type 152.8
rdfs:seeAlso 86.7
rdfs:label 10.8
rdf:subject 6.1
rdf:object 6.1
rdf:predicate 6.1
owl:sameAs 4.7
rdfs:comment 4.1
rdfs:subClassOf 1.7
rdfs:isDefinedBy 1.3

Table 3. Top ten semantic meta-data link types (millions).

We call triples “linked” when two or more of the subject, predicate, or ob-
ject map to different fully-qualified domain names (FQDNs). Table 4 shows the
sources of linked data for the top 50 FQDNs as broken down by pair-wise po-
sition relationships. This data shows that a majority of triples in the BTC10
data use at least one entity created by a different organization, but most of this
interlinking stems from the reuse and sharing of predicates. This entire process,
including FQDN extraction, individual-, and pair-wise relationship counts, was
computed in just over half an hour using 64 processors on the XMT.

5 Connected Components

In the previous section we discussed how prefixes can be used to understand
the interconnectedness of the BTC10 graph. In this section we discuss a more

7 http://linkeddata.org
8 http://ckan.net



Relationship Distinct FQDNs Identical FQDNs Literal or Blank
Subject-Predicate 1976.0 M 62% 464.9 M 14% 725.1 M 22%
Subject-Object 528.9 M 16% 1997.5 M 63% 620.3 M 19%
Predicate-Object 1313.5 M 41% 1776.8 M 56% 59.5 M 1%

Table 4. Sources of cross-linking by entity position

graph theoretic approach: connected components. This approach is used to find
the set of maximally connected subgraphs within a larger graph. For instances
where there is one large connected component that encompasses the majority of
vertices, a technique that works well is to first run breadth-first search, starting
at the node with the largest out-degree, to find a large component. We then find
the remaining components by using a “bully-strategy” [1].

To pose the BTC10 data in terms of connected components, we treat subjects
and objects as vertices in a graph, and the predicates as edges connecting them.
However, connected components is generally only applied to undirected graphs,
so we ignore the directionality of the predicates. Running connected components
on BTC10, we find that there are 208.3K components, with a giant component
of 278.4M vertices, or 99.8% of the total.

To gain a better understanding of the structure of the graph, we experimented
by iteratively removing edge types. We first removed ontological information
by incrementally deleting the top 10 rdfs: predicates and the top seven owl:
predicates. We also examined deleting in stages the overall top 25 predicate
types. However, while we did see an increase in the number of components, a
large component continued to dominate, rarely straying below 90% of the graph.
In fact the process was more akin to shedding the leaf nodes of the graph, as the
order of the graph diminished to half of the original.

This process did illuminate several large jumps in the number of components
when certain edges were removed. Deleting only these predicate types, namely
rdf:type, rdfs:subClassOf, rdfs:isDefinedBy, owl:imports, and foaf:knows,
we arrived at 9.0M components with the largest comprising 81.1% of the induced
graph, while only losing about 1% of the original vertices.

Finally, we performed a more extensive semantic filtering, in particular the
following five steps:
1. Retracted owl:sameAs cliques to a single new meta-node
2. Removed reification definitions, specifically triples where p = rdf:predicate,

rdf:subject, rdf:object, or rdf:Statement.
3. Removed reification itself in addition to its definition, that is, all paths reach-

ing to and from the reifying node of type rdf:Statement.
4. Removed edges where o is a literal.
5. Removed all edges where p = rdf:type.

This procedure resulted in producing 980.7K components, with the largest
component now only 111.3M nodes, or 54.95% of the total. The distribution of
the sizes of the top 10 components in shown in Table 5.

Connected components on the XMT achieved 46x speedup from 1 to 128
processors, with computation time for 128 processors 10.3 seconds (see Fig. 1).



Component # Size (M) %
1 111.3 57.8%
2 73.6 38.2%
3 3.8 2.0%
4 1.7 0.9%
5 0.5 0.3%
6 0.4 0.2%
7 0.3 0.1%
8 0.2 0.1%
9 0.1 0.1%

10 0.1 0.0%

Table 5. Sizes of the top ten components after semantic filtering.

6 Class Analysis and Extant Ontology

The semantic structure of meaningful RDF triples is illustrated in Fig. 2, where
triples t = 〈s, p, o〉 are shown as directed edges from s to o with the label p, or
s

p−→ o. t is cast as a logical predicate of the form t = p(Cs, Co), where the RDF
predicate p is a relation p ⊆ Cs × Co on classes Cs, Co. Thus a basic semantic
analysis requires looking at the distribution of the classes C = Cs ∪ Co (noting
that resources appear on both sides of predicates), and of the predicates p. We
will conclude by building a statistical ontological map, or an extant ontology, as
a directed graph on nodes as classes C, and edges as predicates p.

Fig. 1. Scaleup of component calculations.

BTC10 contains 168K different classes C but only a small number of those
classes are widely used in the data. Fig. 3 shows that 16 of the most frequent
classes would cover 80% of the used types while we can cover 95% of the data if
we use 64 classes only. The top 16 classes are shown in Fig. 4.

Fig. 5 shows the top 16 of the 95.2K predicates, comprising 35% of all 1.4B
link instances, as shown by the cumulative percentage line. The cumulative pred-
icate coverage of Fig. 5 is extended to the first 350 predicates as represented by
the solid line in Fig. 6. The 64 most frequent predicates cover about 50% of the
data. In a second run we removed the edges leading to terminal nodes, as they
do not link graph nodes but are rather node properties. We then re-calculated
the cumulative predicate distribution and obtained the dashed line in Fig. 6.



ps o

rdf:type

Cs

rdf:type pCs Co

Co

Fig. 2. The semantic structure of rdf triples.

Fig. 3. Cumulative class distribution in BTC10.

Fig. 4. Top 16 classes in BTC10.



Removing edges leading to literals significantly reduced graph size to 37% its
original size (from 1.4B to 530M edges).

Fig. 5. Top 16 predicates in BTC10.

Fig. 6. Cumulative distribution of predicates in BTC10.

Semantic graph visualization is notoriously difficult, especially when large.
However, in addition to the various statistics and figures we presented thus far,
we devised a new method to visualize the instance graph of this dataset. We
create an extant ontology as a graph G = 〈C, p〉 with nodes as classes C and
edges as predicates p, but where each edge e = Cs

p−→Co ∈ G is both labeled
by its predicate p, and also attributed with the count c(e) of the number of
occurrences of e, or with its relative frequency of occurrence.

Fig. 7 shows the extant ontology for the top 30 edge counts in BTC10. For
example we have about 70M triples with the predicate foaf:knows connecting
subject and object of class foaf:Person, the highest count. Note that many
nodes in the dataset have more than one type, so that they contribute to more
than one edge count and node label in the figure.

Effectively, Fig. 7 begins to show the statistical structure of the most sig-
nificant part of BTC10. Extending beyond the top 30 edges quickly becomes
visually difficult on paper, however we have computed the extant ontologies for



up to the top 750 edges. We are making the .pdf and .dot graph visualization
files for these bigger figures available online9.

Fig. 7. The extant Ontology for the Top 30 Link-node-types in BTC10.

7 Path Type Analysis
We wish to identify the most prominent semantic structures and semantic con-
straints present in BTC10, not only simply to understand the BTC10, but also
for future developments to exploit this semantic structure to provide targeted
inferential support, and to optimize search and visualization methods to the spe-
cific ontology, connectivity, and distributional statistics of datasets and queries.

Semantic graphs are typed and directed. Where network analysis is frequently
done in terms of paths connecting nodes, here we need to deal with directed paths
which are themselves typed. Thus for a path of length n from an initial node of
class Cs to a terminal node of class Co, we cast its path type as the vector of the
predicates 〈p1, p2, . . . , pn〉 which comprise the path.

We are interested in seeking the path types of the long paths which occur with
high frequency. We hypothesize that these are the semantic structures which
carry a large portion of the semantic information in the network in terms of
interacting link types. Towards this end, we first consider the short paths which
make them up, that is the chains of two and three link types which are connected
linearly. These small, linear graph motifs are link-type n-grams for n = 2, 3. Note
that the 1-grams are just the predicates themselves, and are shown in the extant
ontology of Fig. 7.

For the bigram and trigram analysis we performed the most extensive se-
mantic filtering as was also used for component analysis in Sec. 5. Table 6 shows
the distribution of the top 20 bigrams of the 1.3M consecutive link type pairs,
9 http://cass-mt.pnl.gov/hpcsw2011



comprising 53.0% of all 17.0B consecutive link pairs present; and Table 7 shows
the distribution of the top 20 trigrams of the 72.7M consecutive predicate triples,
comprising 7.54% of all 1.04T link triples.

p1 p2 Count (M) %
dgtwc:isPartOf dgtwc:partial data 2,912.1 17.10%
geonames:inCountry geospecies:hasUnknownExpectationOf 1,701.8 9.99%
geonames:inCountry freebase:type.object.key 918.0 5.39%
geonames:inCountry foaf:depiction 905.1 5.31%
geospecies:isUnknownAboutIn geospecies:hasUnknownExpectationOf 516.2 3.03%
geonames:inCountry geonames:wikipediaArticle 202.3 1.19%
geonames:inCountry freebase:location.location.contains 178.0 1.05%
linkedmdb:link target geospecies:hasUnknownExpectationOf 158.0 0.93%
foaf:maker geospecies:hasUnknownExpectationOf 144.9 0.85%
geospecies:isExpectedIn geospecies:hasExpectationOf 142.6 0.84%
geospecies:isUnknownAboutIn geospecies:hasLowExpectationOf 139.1 0.82%
geospecies:isUnexpectedIn geospecies:hasUnknownExpectationOf 139.1 0.82%
geospecies:isExpectedIn geospecies:hasUnknownExpectationOf 132.0 0.78%
geospecies:isUnknownAboutIn geospecies:hasExpectationOf 132.0 0.78%
geonames:inCountry geospecies:hasLowExpectationOf 125.5 0.74%
geospecies:isUnexpectedIn geospecies:hasLowExpectationOf 124.1 0.73%
sioc:follows sioc:follows 116.9 0.69%
geonames:inCountry freebase:location.location.people born here 115.8 0.68%
geospecies:isUnknownAboutIn freebase:type.object.key 115.3 0.68%
geospecies:isUnknownAboutIn foaf:depiction 113.5 0.67%

Table 6. Top 20 link type bigrams (millions).

p1 p2 p3 Count %
(B)

sioc:follows sioc:follows sioc:follows 10.85 1.05%
owl:disjointWith owl:disjointWith owl:disjointWith 6.86 0.66%
geonames:inCountry geospecies:hasUnknownExpectationOf foaf:isPrimaryTopicOf 6.86 0.66%
geonames:inCountry geospecies:hasUnknownExpectationOf geospecies:isUnknownAboutIn 5.80 0.56%
geonames:inCountry freebase:location.country.admin divisions geospecies:hasUnknownExpectationOf 5.24 0.51%
geonames:inCountry geospecies:hasUnknownExpectationOf skos:closeMatch 4.63 0.45%
geonames:inCountry purl:hasPart purl:hasPart 4.27 0.41%
geonames:inCountry freebase:location.location.contains geospecies:hasUnknownExpectationOf 4.09 0.40%
geonames:inCountry purl:hasPart geospecies:hasUnknownExpectationOf 3.54 0.34%
geonames:inCountry geonames:wikipediaArticle geospecies:hasUnknownExpectationOf 2.83 0.27%
geonames:inCountry geospecies:hasUnknownExpectationOf geospecies:isExpectedIn 2.57 0.25%
geonames:inCountry freebase:location.country.admin divisions geospecies:hasLowExpectationOf 2.44 0.24%
geonames:inCountry factbook:landboundary geospecies:hasUnknownExpectationOf 2.43 0.23%
geonames:inCountry geospecies:hasUnknownExpectationOf rdfs:seeAlso 2.36 0.23%
geonames:inCountry geonames:parentFeature geospecies:hasUnknownExpectationOf 2.32 0.22%
geonames:inCountry purl:hasPart geospecies:hasLowExpectationOf 2.31 0.22%
foaf:knows foaf:knows foaf:knows 2.19 0.21%
geos:isUnknownAboutIn geospecies:hasUnknownExpectationOf geospecies:isUnknownAboutIn 2.15 0.21%
geos:hasUnknown geospecies:isUnknownAboutIn geospecies:hasUnknownExpectationOf 2.15 0.21%
ExpectationOf

geonames:inCountry freebase:location.location.contains geospecies:hasLowExpectationOf 2.03 0.20%

Table 7. Top 20 link type trigrams (billions).

Note the prominence of low-frequency predicates in both the bigrams and
trigrams. For example, consider the most frequent bigram 〈dgtwc:isPartOf,
dgtwc:partial data 〉, with a frequency of 17.1%. The constituent predicates
have frequencies of 0.0038% and 0.027% respectively, far below the top 16 shown
in Fig. 5. If these were independent, the expected joint frequency would be
minuscule. This pattern of a vast inflation of expected probability is a general
phenomenon, indicating the powerful role that these small sequence motifs play
in the semantics of BTC10.

8 Conclusions
In this work we focused explicitly on analyzing the BTC10 data set with its
1.4 billion-edge graph. We employed the Cray XMT in most of these analyses
and in the process have made important discoveries that not only explain and
help visualize the various properties of this data, but also point out to future
directions where exploiting these properties is essential to designing even better
performing semantic databases and analyses tools. The assumed graph-nature
of the data model did suggest that HPC architectures designed for graph-like
problems may be a good match for this domain and indeed we have shown the



XMT to be an excellent platform for such tasks. However we also demonstrated
that patterns are plentiful in the data. Accordingly, heavy-tail predicate and
type distributions, prevalence of terminal edges, n-grams, and extant ontological
substructures should all be further studied in order that they may be used in
designing a hybrid semantic HPC solution. We are presently working in this
direction.

Acknowledgments

Thanks first to some excellent comments from reviewers. This work was funded
by the Center for Adaptive Supercomputing Software – Multithreaded Architec-
tures (CASS-MT) at the Dept. of Energy’s Pacific Northwest National Labora-
tory. Pacific Northwest National Laboratory is operated by Battelle Memorial
Institute under Contract DE-ACO6-76RL01830.

The authors thank Liam McGrath (PNNL) for assistance on n-gram analysis.

References

1. Berry, J; Hendrickson, B; Kahan, S; and Konecny, P: (2006) “Graph Software
Development and Performance on the MTA-2 and Eldorado”, in: 48th Cray Users
Group Meeting

2. Chavarria-Miranda, D; Marquez, A; Nieplocha, J; Maschhoff, K; C Scherrer:
(2008) “Early Experience with Out-of-Core Applications on the Cray XMT”,
in: Proc. 22nd IEEE Int. Parallel and Distributed Processing Symp., pp. 1-8,
10.1109/IPDPS.2008.4536360

3. Feo, John; Harper, David; Kahan, Simon; and Konecny, Petr: (2005) “ELDO-
RADO”, in: CF ’05: Proceedings of the 2nd conference on Computing frontiers,
pp. 28-34, ACM, Ischia, Italy, http://doi.acm.org/10.1145/1062261.1062268

4. Goodman, E; Haglin, David J; Scherrer, Chad; Chavarria, D; Jace Mogill, John
Feo: (2010) “Hashing Strategies for the Cray XMT”, in: Proc. 24th IEEE Int.
Parallel and Distributed Processing Symp.

5. Christophe Guéret, Paul T. Groth, Frank van Harmelen, Stefan Schlobach: (2010)
“Finding the Achilles Heel of the Web of Data: Using Network Analysis for Link-
Recommendation”, Int. Semantic Web Conf. (1) 289-304

6. Joslyn, Cliff; Adolf, Bob; al-Saffar, Sinan; Feo, John; Eric Goodman,
David Haglin, Gregy Mackey, David Mizell: (2010) “High Performance Se-
mantic Factoring of Giga-Scale Semantic Graph Databases”, in: Seman-
tic Web Challenge 2010, Int. Semantic Web Conf., runner-up winner,
http://www.cs.vu.nl/~pmika/swc/submissions/swc2010 submission 15.pdf

7. Sheila Kinsella, Uldis Bojars, Andreas Harth, John Breslin, S Decker: (2008) “An
Interactive Map of Semantic Web Ontology Usage”, 12th Int. Conf. Conference
Information Visualisation (IV08), London, UK, IEEE Computer Society

8. Weiyi Ge, Jianfeng Chen, Wei Hu, Yuzhong Qu (2010): “Object Link Structure in
the Semantic Web”, ESWC (2) 257-271


