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Abstract

Graph mining algorithms that seek to find interesting
structure in a graph are compelling for many reasons
but may not lead to useful information learned from the
data. This position paper explores the current graph
mining approaches and suggests why certain algo-
rithms may provide misleading information whereas
others may be just what is needed. In particular, algo-
rithms that ignore the rich set of node and edge prop-
erties that are prevalent in many real-world graphs
are in danger of finding results based on the wrong
information.

1. Introduction

Graph theory has a long and rich history going
back more than 250 years [1]. It is therefore natural
to explore how to employ machine learning (ML)
techniques on graph data. We define a graph to be
a collection of structural information in the form of
nodes connected by edges combined with property
values associated with both the nodes and the edges.
Throughout this paper we refer to the two types of data
as structural and value. While many ML algorithms
learn from either graph structure or the edge and node
property data, it is our belief that ML algorithms that
draw from both structural and value information are
needed to gain insight into our ever-growing complex
graph data.

We note that in real-world graphs, between any sin-
gle pair of nodes there may be zero, one or many (per-
haps even millions of) edges. Where multiple edges
between a given pair of nodes exist, the expectation is

that the combination of edge properties on each of the
edges will delineate one edge from the others.

This paper presents a brief survey of ML techniques
on graph data, emphasizing the reality of current ML
graph algorithms trying to learn from structural or
value data, but not both. We then present two use cases
where the representative data has a rich combination
of both structural and value data. Some natural ques-
tions are presented for each of these use cases where
learning from only one or other form of information
might lead to incorrect conclusions.

2. Survey of Supervised Machine Learning
in Graphs

There are two main scenarios for supervised ma-
chine learning in graphs. One is the graph transaction
scenario, where you are given a set of disconnected,
relatively small graphs, and each graph is assigned a
class (e.g., positive or negative). And the other scenario
is one large graph where some parts of the graph
are given a class designation. For example, each node
might be assigned to one of two classes.

2.1. Graph Transaction Scenario

One approach to learning in this setting is to define
a set of features over these graphs, and then each graph
is represented by a feature vector. The features can be
global graph features [2] or frequent subgraphs across
the whole set of graphs [3]. At this point any standard
(non-graph) machine learning method can be applied.
Support Vector Machines (SVMs) using a radial basis
function (RBF) kernel seems to generally work well.
Of course, it is difficult to understand the classifier



in terms of characteristics of the graph that makes it
positive or negative. Another approach to the graph
transaction scenario is to use a graph kernel based
SVM, bypassing the need to define features [4], [5].
One final approach is to simply look for subgraphs
that occur often in the positive graphs and not in
the negative graphs. This is the approach used by the
SUBDUE method [6].

2.2. One Large Graph Scenario

The second scenario for supervised machine learn-
ing in graphs is where the input is one large graph.
In this scenario, nodes (sometimes edges, sometimes
subgraphs) are labeled positive or negative, and then
learning is applied. One approach is to extract sub-
graphs from around the neighborhood of these nodes,
and then treat the problem as in the Graph Transaction
scenario.. Silva et al. present an approach to find
correlations between subgraphs induced by vertices
with specific attributes and the density of the subgraph
patterns [7]. But the edges in their graphs are without
any properties. Another approach, which also assumes
some nodes have unknown classes, is to use semi-
supervised learning, i.e., classify unknown nodes based
on the classes of their neighbors and iterate [8]. Their
definition of the input graph has a vector of attributes
on each node, but the edges are not enriched with any
properties.

A recent position paper by Turkett et al. asserted that
nodes and edges ought to be enriched with information
to provide better machine learning accuracy from the
data [9]. Their application domain is computer network
activity, and they described aggregating all traffic be-
tween two servers and representing connectivity with
a single edge. The enrichment they suggest is to add
properties to the edges such as “average number of
packets per connect” between each of the nodes. Why
not have an edge for each connection and an edge
property of “number of packets”?

2.3. Temporal Aspects of Graphs

The ML algorithms discussed thus far assume a
static graph. While this may be good for analysis
of historical operations, finding trends relies on the
existence of temporal information. This can be impor-
tant to some analysis that the graph data structures
themselves—not just the learning algorithms—need
to accommodate ingesting new information and aging
off old information. McGregor describes an approach
to graph mining on streams [10], but this work is
on graphs whose nodes do not carry properties and

edges that have only a single weight. Bifet et al.
explore mining frequent closed graphs on evolving
data streams [11]. Their work focuses on a stream
of graphs consisting of graphs with node labels (i.e.,
a single node property) and edges with no properties
(but multiple edges between two nodes are supported).
However, they assert that any type of graph would be
supported by their algorithm provided it is possible
to define a partial ordering among all possible graphs.
While their work does not explicitly capture the notion
of temporal information, an implicit temporal relation-
ship is implied by the ordering of the input graphs
within the data stream.

Another temporal issue is with recording time as
a property on either nodes or edges. Several options
exist such as a date and time stamp, seconds (or
milliseconds) elapsed since some “start” time, a time
interval, and a duration. Learning from these data may
be impacted by the data format.

3. Use Cases

3.1. eBay

Suppose you are managing a company like eBay
where your customers sell things to other customers
using your infrastructure. You track the transactions
and try to make sure that all of your customers are
happy.

Unfortunately for you, some of your customers may
not be abiding by all of the laws in their country.
You are handed a list of customers that some law
enforcement agency asserts are all selling stolen mer-
chandise using your services. You are asked to find
other customers who may be doing similar activities.
It is in your best interest to do so in order to maintain
good customer and public relations. How do you find
them?

Some observations about this use case:
1) This is (potentially) a supervised machine learn-

ing activity. You are given a small percentage of
your customers as being labeled “bad”, and you
assume the vast majority of the rest are labeled
“good”.

2) Ideally, you would like to find some “signature”
that has a high correlation to the “bad” cus-
tomers, but with few false positives.

3) The signature could be structural (e.g., having
one- or two-hop neighbor substructures that con-
tain certain graph connectivity) or they may be
property-based (e.g., the bad customers only sell
product X in category Y for price P, and that
price is well below the average of all product X’s



Table 1. Node properties for the eBay Use Case

Property Notes

Account A unique identifier for a particular customer/user. This is the unique name used for each
node in the graph.

Address A postal address associated with this account. It should be possible to compute a geographic
distance between two customers.

Age of Account Some indication as to how long the account has been active, perhaps computable if the
date of opening the account is recorded.

Table 2. Edge properties for the eBay Use Case

Property Notes

Seller A customer account.

Buyer A customer account.

Date/Time The date/time the transaction was established. This may not be the date/time of the actual
exchange of the item being sold.

Price This numeric value may need to include a currency (US Dollar, Euro, etc.) so that
aggregation and comparisons can be done.

Item Category It is likely helpful to your company to have a taxonomy of item categories for tracking
purposes.

sold on your system). More likely, the signature
is a combination of structural and property-
based.

4) The signature might be community-based. For
example, it might be that bad customers buy
things from only other bad customers and sell
things only to good customers.

5) It is clear that the more properties available on
each node (customer) and edge (transaction) the
more likely you are to find valuable insight.

3.1.1. Data Layout. Each node in the graph will
correspond to one of the customer accounts as shown
in Table 1. We note that a single person might have
multiple accounts, so entity disambiguation may be
useful.

Each edge of the graph corresponds to one buy/sell
order between two customers. Several examples of
edge properties are shown in Table 2.

In addition to these two tables of data, there may
be other data available to enrich the graph structure.
One example is a collection of information about each
item. Another example might be some way to associate
several item transactions into a single “sale” where
a buyer and seller may agree on a transaction of
multiple items. Still others include: capturing shipping

information (e.g., tracking numbers), bank or credit
card account information associated with a customer,
and possibly even tracking model and serial numbers
of items being sold.

3.1.2. Malicious Activity Description. Suppose the
customers engaged in selling stolen merchandise were
all operating together in the following way. Some of
the perpetrators brought stolen goods into your system
and posted them for sale at prices higher than the
average price to avoid enticing innocent participants.
We call these the suppliers. Within two days, a broker
then offers something closer to the average price and
the supplier accepts. Some time later (perhaps 10 or
more days later) the broker then posts the item for
sale at a low price and waits for an innocent buyer to
arrange a sale.

There may be a couple of variations on how the
items get moved from supplier to broker. One might
be that they are geographically close to each other and
the transfer is taken care of offline. Another is that they
arrange for a shipment.

3.1.3. Trying to Hide in the Data. Given our assumed
malicious activity description, what could the perpetra-
tors do to hide in the data? If our ML algorithm were



going to be aimed at learning only from the graph
structure, the suppliers would need to periodically
buy items from other (non-broker) customers. And
the brokers need to periodically buy items from non-
supplier customers. That way, the following graph
signatures of illicit activity would be hard to detect.

• Supplier: only sells items to one of a small group
of customers. These have only out-degree, no in-
degree.

• Broker: only buys items from one of the small
group of sell-only customers and sells to many.
These have only incoming edges from “suppli-
ers”, recognizable as zero in-degree nodes, and
never sells items to one of the “supplier” types.

3.1.4. False Positives. There may be lots of non-
supplier customers who only sell items and refuse to
consider buying. Yet, these customers might be flagged
as possible suppliers. To reduce the risk of alerting
on false positives, it would be helpful to consider
more than the zero-in-degree structure pattern as an
indication of a supplier. For example, a supplier may
repeatedly sell lots of items in the same category of
your taxonomy. They may sell items only above some
significant price threshold. They may sell items only
to buyers within a certain distance.

3.2. Electronic Stock Exchange

In this scenario you are managing an electronic
trading service like the NASDAQ. Your customers are
traders, and the transactions are exchanges of equities
for money. Like the eBay scenario, the customers are
nodes in a graph with lots of properties (e.g., account
number, address, equity holdings, permissions such as
whether trading options are allowed), and the trans-
actions are directed edges from one node to another
with lots of properties as well (e.g., timestamp, equity,
number-of-shares, price). Some of the customers will
have special designations such as being a principle in
one of the publicly traded companies.

Like the eBay scenario, you are interested in main-
taining good public relations and abiding by the laws
governing your business. If the SEC steps in and says
they are going to arrest 100 of your customers for
fraudulent activity, what could you do to look out for
this type of activity in the future without waiting for
the SEC to investigate?

3.2.1. Data Layout. This graph is a blend of nodes
representing different kinds of entities (i.e., node
types): customer accounts, and publicly-traded compa-
nies. Each customer account node has property values

as shown in Table 3 and each company node property
values are shown in Table 4.

Each edge of the graph corresponds to one trade
transaction between two account holders. Several ex-
amples of edge properties are shown in Table 5. We
note that in this graph there may be edges whose types
represent relationships other than trades. For example,
there may be edges from a company node to an account
node indicating the account owner is a key executive.
Clearly, these non-trade edges do not have the same
vector of property values as the trade edges.

3.2.2. Malicious Activity Description. Suppose the
customers engaged in fraudulent activity are somehow
finding a way to arrange for the sale of a security at
a higher price than a purchase of that security before
initiating the purchase followed nearly immediately by
the sale. This type of activity shows up as a two-path
through the graph, where the time difference between
the two edges must be less than a couple of seconds,
the equity must be the same (i.e., the same number of
shares of the same company), and the price must be
higher on the second edge than on the first edge.

While this pattern may be considered good trading,
if a customer has only this pattern of trades, then the
governing body (and the exchange) gets curious.

3.2.3. Trying to Hide in the Data. Legitimate traders
may elect to trade with this rapid turnover strategy.
But they would surely make a profit only some of the
time, perhaps 60% of their trades if they are really
good. If their success rate exceeds 90%, that seems
suspicious. For malicious traders who have a way to
game the system, they can select to buy and hold some
shares once in a while, selling portions of these shares
at different times. These trades can hide their structure
pattern and, if the equity does not move up or down
very much, the trader would not risk losing very much
on this tactic.

3.2.4. False Positives. There may be lots of traders
who trade rapidly. That is, they try to sell very shortly
after every purchase. If a person does this only once
in a while and for a few times they are lucky to
nearly always gain rather than lose money, they could
be flagged as a fraud risk. There could be other
indicators of fraudulent trading such as always trading
a lot of shares, repeatedly trading a small number of
companies, or the price difference might always be
above some threshold in spite of the very fast trade.



Table 3. Customer Account Node properties for the Stock Exchange Use Case

Property Notes

Account A unique identifier for a particular customer/user. This is the unique name used for each
node in the graph.

Address A postal address associated with this account. It should be possible to compute a geographic
distance between two customers.

Age of Account Some indication as to how long the account has been active, perhaps computable if the
date of opening the account is recorded.

Holdings Some way to capture the number of shares of the various companies owned by this account.

Cash Some way to represent cash held (available for stock purchases) in this account.

Table 4. Company Node properties for the Stock Exchange Use Case

Property Notes

Basic Info This includes such things as company name, address, web site, etc.

Key Executives The people considered by the governing body to be “insiders”. These might be in the form
of pointers to account nodes.

Financial Info Accounting that is required by the governing body.

Number of Shares Total number of shares held by the public (an aggregation of all account node’s values).

Table 5. Edge properties for the Stock Exchange Use Case

Property Notes

Seller A customer account.

Buyer A customer account.

Date/Time The date/time the transaction was established. This may not be the date/time of the actual
exchange of the item being sold.

Price This numeric value represents the basic unit (share) price.

Security A count of the number of shares and the identity (e.g., ticker) of the company.

4. Summary

We have presented a case for designing and imple-
menting graph-based machine learning algorithms that
include both Structure and Property Values. These ex-
amples suggest large datasets, perhaps from a stream-
ing source, that will clearly require HPC techniques in
order to provide insight into the data within a useful
time.

There are many additional benefits to supporting
a graph representation that allows multiple attributes
on nodes and edges. The ability to learn using this
type of data allows for the analysis of data from
heterogeneous sources, which can either be analyzed

in parallel or fused together into one graph. This is
important when we want to, e.g., combine data from
company annual reports with transaction data on the
company stock, and possibly even information about
the company appearing in news sources.
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