George R. Brown
School of Engineering
Computer Science

Asynchronous Runtime Systems for
Irregular Applications

Vivek Sarkar
— OREILY E.D. Butcher Chair in Engineering
— Professor of Computer Science

Rice University
vsarkar@rice.edu

Processor 2 Processor 80 Chip

- o
FUL T |l T
I I

Crossbar Network |

= > Sx| 5| poresoramy,
B £8 - % B Controller

iR

.
¥

Multicore Processors and Extreme Scale Systems

= Characteristics of Extreme Scale systems in the next decade

= Massively multi-core (~ 100’s of cores/chip)
= Performance driven by parallelism, constrained by energy & data movement

= Subject to frequent faults and failures
= Many Classes of Extreme Scale Systems

an>30I>

Mobile, < 10 Watts, Embedded, 100’s of Watts, Departmental, Data Center
0(107) concurrency 0(10°) concurrency 100’s of KW, > 1MW,
106 0(10°) concurrenc
Key Challenges 0(10°) concurrency (10°) y
= Concurrency References:
= Energy efficiency * DARPA Exascale Software study, Sep 2009

= Localit « “Software Challenges in Extreme Scale Systems”. V. Sarkar,
y W. Harrod, A.E. Snavely. SciDAC Review, January 2010. ﬁ

,,; RICE = Resiliency :

L)

Performance Variability is on the rise

= Concurrency --- increased performance variability with
Increased parallelism

= Energy efficiency --- increased performance variability with
increased non-uniformity and heterogeneity in processors

= |ocality --- increased performance variability with increased
memory hierarchy depths

= Resiliency --- increased performance variability with fault

tolerance adaptation (migration, rollback, redundancy, ...)
= Brian Van Straalen: “All Fault-Tolerance will ook like variable performance”

=> Even reqular applications will exhibit irreqular performance
%' RICE 3

Irregular Parallelism is also on the rise

= Science --- need for increased precision in models

= |ocality --- decreasing bytes/flops ratio Is forcing increased
movement to sparse data structures and to revisit compute-
data trade-offs in irregular algorithms

= Concurrency --- scope of parallelism has to extend to

Irregular computations
= Resiliency --- many fault-tolerant algorithms are irregular in
structure

= Big Data --- many data analysis problems of interest are
based on sparse structures, such as graphs

RICE 4

Runtime Challenges

= Extreme Scale computing is limited by concurrency, energy
efficiency, locality and resiliency

= |nherent variability in extreme-scale system software and
hardware components calls for end-to-end asynchrony in
system design

= Tight integration of homogeneous multicore,
heterogeneous multicore and communication runtime
systems has proven elusive thus far

= |mportant to use right runtime primitives as enablers for
future languages, compilers, and tools

=» The runtime system will play a pivotal role in bridging the

_ Programmability and Performance Gaps
% RICE ;

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

—

Parallel Applications

=

Portable execution model

Habanero Two-level programming model
:r)al;nffztr‘ge'ght asynchronous tasks and data B Declarative Coordination
Language for Domain Experts:
=Creation: async tasks, future tasks, data- Languages guag P

driven tasks
=Termination: finish, future get, await

Habanero Static

CnC-HC, CnC-Java, CnC-Python,
CnC-Matlab, ... +

=Data Transfers: asyncPut, asyncGet, Comopiler & Task-Parallel Languages for
asynclSend, asyncIRecv Parallel Parallelism-aware Developers:
2) Locality control for task and data Intermediate Habanero.c’ Habanero.Java,
dlstrlbutllon. | | | Representation Habanero-Scala

=Task Distributions: hierarchical places

=Data Distributions: hierarchical places, Habar.lero .

gIOb al name SRE R Parll\llllfjlligrit-rgawious

3) Inter-task synchronization operations System tloo) Developers

=Mutual exclusion: isolated, actors

=Collective and point-to-point s v

synchronization: phasers

Concurrency Experts

Extreme Scale Platforms

6

http://habanero.rice.edu

Target Platforms

Habanero programs have been executed on a wide range of
production and experimental systems

= Multicore SMPs (IBM, Intel)

= Discrete GPUs (AMD, NVIDIA)
* |ntegrated GPUs (AMD, Intel)

= FPGA (Convey, w/ GPU added)
= HPC Clusters

= Hadoop Clusters

= |BM Cyclops

= |ntel SCC

% RICE 7

Elements of Habanero Execution Model

1) Lightweight asynchronous tasks and data transfers

= Creation: async tasks, future tasks, data-driven tasks

= Termination: finish, future get, await

= Data Transfers: asyncPut, asyncGet, asynclSend, asyncliRecv
2) Locality control for control and data distribution

= Lightweight data blocks: global name space

= Task Distributions: hierarchical places

= Data Distributions: hierarchical places

3) Inter-task synchronization operations

= Mutual exclusion: global/object-based isolation, actors
= Collective and point-to-point synchronization: phasers

Goal: unified model of parallelism that spans a wide range of

-, extreme scale platforms
A RICE

8

Properties of Habanero Execution Model

= Deadlock freedom guarantee for large subset of operations

All operations except explicit wait in phasers and explicit await clause in async

= Data-race freedom guarantee for subset of data accesses

Future values, accumulator values
Read-write permission regions
|solated accesses, actors

= Determinacy guarantee for subset of programs

Data-race freedom implies determinacy for all programs that do not use mutual
exclusion constructs (isolated, actors)

= Amenable to efficient asynchronous and portable implementations

Locality-aware work-stealing

Hierarchical places with support for heterogeneous processors
Integration with cluster-level communication runtime systems
Scalable synchronization with phasers and delegated isolation
Compiler optimizations for structured parallelism

9

L

Semantic Classification of
Habanero Parallel Programs

5) DRF-ALL

4) DLF-DRF-ALL

2) DLF-
DRF-DET

1) DLF-
DRF-DET-SER

= | egend
= DLF = DeadLock-Free
» DRF = Data-Race-Free
= DET = Determinate
= DRF=>»DET = DRF implies DET
= SER = Serializable

= |f a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRF=»DET +
SER class

= Adding phasers yields programs in
the DLF + DRF=»DET class

= Adding async await yields programs in
the DRF=>DET class

= Restricting shared data accesses to

futures, isolated, actors yields programs
in the DRF-ALL class

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako, ﬁt’

IR
VRICE ' vivek sarkar PPPy 2011 10

Lightweight Asynchronous Tasks

async S

= (Creates a new child task that executes
statement S

= Like OpenMP’s task pragma

= Parent task moves on to statement
following the async

» (Can be used to implement higher level
constructs like forall loops

//A, (Parent)

finish S
= Execute S, but wait until all

(transitively) spawned asyncs in
S's scope have terminated

= Like OpenMP’s taskwait

= Implicit finish between start and
end of main program

= Use of finish cannot create a
deadlock cycle

finish { //Begin finish-----=-==—===—---- -
async { é / asyncC
STMT1; //A,(Child)
\ " STMT1 STMT2
STMT2 ; //A, terminate
T whit
A //End finish _ _ _ _ _ _ _ _ _ _ ______°_ —
%i RIC:}E “X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

Irregular Example #1: Parallel Spanning Tree Algorithm

class V {
V [] neighbors; // Input adjacency list
V parent; // Output spanning tree

boolean retVal = false;

isolated(this) // Object-based isolation
if (parent == null) {

compute

1

2

3

4 . . .

5. boolean tryLabeling(V n) {
6

7

8

9. parent = n; retVal = true; } .

10. return retval; compute compute
11. } // tryLabeling

12. void compute() { >

13. for (int i=0; i<neighbors.length; i++) { Asyncedge

14. V child = neighbors[i]; >

15. if (child.tryLabeling(this)) Hthedge

16. async child.compute(); //escaping async

17. }

18. '} // compute
19. } // class V
20. root.parent = root; //Use self-cycle to identify root

. finish root.compute(); ﬁ

Z QRICE 12

Runtime Schedulers for Async-Finish Task Parallelism

global queue

tail head

Work-Sharing (Java ThreadPoolExecutor, OpenMP, ...)
= Busy worker pushes task at one end of global deque i) §>)
= Access to global deque needs to be synchronized faske (

efftasks

\ \

Work-Stealing (Cilk, TBB, Java ForkJoin, ...) 1] (W2 | [Ws
work-sharing

= One deque per worker (better scalability) deque
steaktasks

= |dle worker steals tasks from busy workers

= Two scheduling policies of interest
&op tasks

= Work-first policy: worker executes child task

eagerly and leaves continuation to be stolen push
= Help-first policy: worker pushes child task to be
stolen (asks for help) and executes continuation (
= Adaptive algorithm dynamically selects best policy for Wi W Wy Wy
each async instance work-stealing

= “Work-First and Help-First Scheduling Policies for Terminally Strict Parallel Programs”, Y.Guo, R.Barik, R.Raman, V.Sarkar, IPDPS 2009. \
= “SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems”, Y.Guo, J.Zhao, V.Cave, V.Sarkar, IPDPS 2010.

Parallel Spanning Tree on a Torus Graph with 4M vertices
(Habanero-Java implementation)

PDFS - Niagara 2
®hf ®adp

O)

=

(o]

b= 1 2 4 8 16 32
[

Number of Workers

Work-first policy is unable to complete due to stack overflow
Adaptive (adp) policy performs better than help-first policy
14

HCMPI: Integrating Communication with Lightweight Tasks

Communication treated as Tasks Message-Driven Task Parallelism

finish{ HCMPI_Request *req;
async foo(); HCMPI_lrecv(buf, ..., &req);
HCMPIL_lsend(...);
HCMPI_lrecv(...); async await (req) {

} HCMPI_Status * s;

baz(); HCMPLGET_STATUS(req, &stius)

)

Easily ported from MPI

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

% RICE 15 6

Integrating Inter-node Communication with Intra-node
Task Scheduling in a Unified Runtime System

00 o000
Inter-Node . .
<--| -------- Nd -- Ratio of computation to
DRI communication workers can be
Communication Worker tuned for different platforms
Insert new o . _-I_—
Communication Communication Task
Task Pusthontinuation Status
Type
Continuation
r
Steal
Continuations
Computation Computation PP Computation
Worker Worker Worker

Work-Stealing .
16

Irregular Example #2: Unbalanced Tree Search (UTS)

Process 0 Process 1
steal
Root
L steal
steal
N Process 2 Process 3

= Reference MPI implementation uses inter-process work-stealing
= N*C processes used, where, N = #nodes, C = #cores/node
= HCMPI implementation adds intra-process work-stealing
= HCMPIluses N * (C - 1) cores for computation
HCMPI reserves 1 core per node for communication

S RICE :

UTS Performance on T1XXL

40.00

2 cores/node

4.00

Speedup
(MPI Time / HCMPI Time)

0.40
4

2 cores/node | 0.67
4 cores/node | 1.00
8 cores/node | 1.17
16 cores/node| 1.26

8 cores/node

8

0.67
1.00
1.17
1.26

16

0.67
1.00
1.17
1.26

» Jaguar Supercomputer at ORNL
» 18688 nodes with Gemini Interconnect
* 16 core AMD Opteron nodes with 32 GB memory

% 'RICE

32

0.67
1.00
1.17
1.26

18

W 4 cores/node

i 16 cores/node

0.67
1.00
1.17
1.33

256

0.68
1.03
1.29
1.98

512

0.69
1.10
1.66
5.76

22.31

1024

0.73

1.33

4.50
22.31

UTS Scaling on T1XXL

Unbalanced Tree Search Performance Scaling
HCMPI =MPI

er

p
w
o
o
o

Performance
(Millions of nodes

1500

4 8 16 32 64 128 256 512 1024

Compute Nodes
(16 processors per node)

Failed steals lead to scalability bottleneck in MPI
* At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M
* At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M

, b

Mutual exclusion --- Habanero isolated statement

Isolated <body>
= Like a critical section --- two tasks executing isolated statements must
perform the isolated statements in mutual exclusion
=> Weak atomicity guarantee: mutual exclusion only applies to
(isolated, isolated) pairs of statement instances, not to
(isolated,non-isolated) pairs
» |solated statements may be nested, and may contain async and finish
statements

= |n case of an exception, all updates performed by <body> before
throwing the exception will be observable after exiting <body>

Z RICE 20

Object-based isolation in HJ

isolated(<object-list>) <body>

= |n this case, programmer specifies list of objects for which isolation is
required

= Mutual exclusion is only guaranteed for instances of isolated statements
that have a non-empty intersection in their object lists

" Standard isolated is equivalent to isolated(*) by default i.e., isolation
across all objects

= |mplementation can choose to distinguish between read/write accesses
for further parallelism

" Current Habanero implementation supports object-based isolation,
but does not exploit read/write distinction

% RICE 21

L

Scalable Isolation?

= Challenge: scalable implementation of isolated without using a
single global lock

* Transactional memory approaches still incur too much
overhead?

= Qur approach:
= Focus on “async isolated” case

= Task dynamically acquires ownership of each object accessed in
isolated block (optimistic parallelism)

= On conflict, task A transfers all ownerships to conflicting task B and
delegates execution of isolated block to B

Deadlock-freedom and livelock-freedom guarantees
= Open question: use of recent hardware TM capabilities

= “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011
= “|solation for Nested Task Parallelism”, J. Zhao, R. Lublinerman, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013.

Irregular Example #3: Delauney
Mesh Refinement in Habanero-Java
and Galois-Java

1: Galois .

: —Tnew Lambda2Void<... >() {
public void call(GNode<Element> item,
ForeachContext<GNode<Element>> ctx)

5: if (!mesh.contains(item, MethodFlag.CHECK_CONFL
1: void doCavity(Triangle start) { 6: WorkNotUsefulException.throwException();
3: b1 start.isActive()) { 7: Cavity cavity = new Cavity(mesh);
4: Cavity ¢ = new Cavity(stm) : 8: cavity.initialize (item);
5: c.initialize(start); 9: cavity.build();
6: c.retriangulate(); 10: cavity.update() ;
// launch retriagnulation on new bad triangles. //remove the old data
7: Iterator bad = c.getBad().iterator(); 11: List<...> preNodes = cavity.getPre().getNodes();
8: while (bad.hasNext()) { 12: for (int i = 0; i < preNodes.size(); i++)
9: final Triangle b = (Triangle)bad.next(); 13: mesh.remove (preNodes.get (i), MethodFlag.NONE);
10: doCavity(b);
} //add new data
14: Subgraph postSubgraph = cavity.getPost();
// if original bad triangle was NOT retriangulated, 15: List<...> postNodes = postSubgraph.getNodes();
// launch its retriangulation again 16: for (int i = 0; i < postNodes.size(); i++) {
11: if (start.isActive()) 17: GNode<Element> node = postNodes.get(i);
12: doCavity(start); 18: mesh.add(node, MethodFlag.NONE);
19: .NONE) ;
} /7 end isolated 20: if (element.isBad())
} 21: ctx.add(node, MethodFlag.NONE);
}
13: void main() { 24: List<...> postEdges = postSubgraph.getEdges();
14: mesh = ... ; // Load from file 25: for (int i = 0; i < postEdges.size(); i++) {
15: initialBadTriangles = mesh.badTriangles(); 26: ObjectUndirectedEdge<...> edge = postEdges.get(i);
16:1‘ = initialBadTriangles.iterator(); 27: mesh.addEdge (edge.getSrc(), edge.getDst(),
17:(_finish 28: edge.getData(), MethodFlag.NONE);
18: while (it.hasNext()) {

19: final Triangle t = (Triangle) it.next(); 29: If (mesh.contains(item, MethodFlag.NONE)) {
20: if (t.isBad()) 30: ctx.add(item, MethodFlag.NONE);

21: Cavity.doCavity(t); }

22: }

19: } 31 }, Priority. first(ChunkedFIFO.class)

20: } . thenLocally(LIFO. class)) ;

NRICE Habanero-Java 23 Galois-Java

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

14 -

12 -

[
o
|

@ HJ (Global lock)

DSTM2 performance: — m- Chorus
0 962s w/ 1 thread —x — Java (FGL)
\ — A - - Galois
\\ 177s wi 16 threads —— HJ (Delegated Isolation)
\
° \\ RY SR @ vveennnn. @ eeeee.... @-cvovvereren @ vovnnnne P ®

[%2]
o)
c
(@)
(@}
(]
(%]
k=
(]
£
+—
HJ (SEQ)
0

threads

y 6

Acknowledgments --- Habanero Team

Faculty
= Vivek Sarkar
Senior Research Scientist
= Michael Burke
Research Scientists
= Zoran Budimli¢, Philippe Charles, Jun Shirako, Jisheng Zhao
Research Programmer
= Vincent Cavé
Postdoctoral Researchers
= Akihiro Hayashi
PhD Students

= Kumud Bhandari, Sanjay Chatterjee, Max Grossman, Shams Imam, Deepak Majeti, Alina
Sbirlea, Dragos Sbirlea, Kamal Sharma, Rishi Surendran, Sagnak Tasirlar, Nick Vrvilo

Undergraduate Students
= Emma Breen, Bing Xue, Yunming Zhang, Rho Zou
Other collaborators at Rice

= Rich Baraniuk, Corky Cartwright, Swarat Chaudhuri, Keith Cooper, Alan Cox, Chris Jermaine,
John Mellor-Crummey, Scott Rixner, Dan Wallach, Scott Warren, Edwin Westbrook, Lin Zhong

25

Habanero Team Pictures (http://habanero.rice.edu)

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested :
in a PhD, postdoc or research scientist position
in the Habanero project, or in visiting or collaborating with us!

Motivation for Open Community cﬁmg;
Runtime (OCR)

= A runtime framework that ...

— |s representative of execution models expected in future extreme scale
systems

— can support reqular and irregular applications
— can be targeted by multiple high-level programming systems
— can be effectively mapped on to multiple extreme scale platforms

— can be extended and customized for specific programming and platform
needs

— can be used to obtain early results to validate new ideas
— Is available as an open-source testbed

= Approach:
— Address revolutionary challenges collaboratively
— Reduce duplication of infrastructure effort
= Current participants: Intel, Rice, Reservoir Labs, ET International
27

OCR High-level Design

= Application/algorithm
decomposition exposes greater
parallelism than current thread/
barrier models

Event-Driven Runtime manages
tasks and data blocks to adapt to
changes in platform behavior
(resilience, machine configuration
changes), while obeying all control
and data dependences

For more information come
to the SC13 OCR BOF at
12:15pm on Wednesday in

rooms 405/406/407
28

c,;”amrn:gx

Programming
Environment

(translation, optimization, profiling)

CnC HTA RStream

-

AR

Pile of Work

Event-Driven Runtime

2

Control/Data Pile of Data Observatlon and

(EDTs) Dependencies (data blocks) Adaptation

Extreme Scale Hardware

Conclusions

Increasing trends in irregularity and performance variability in future
applications and systems

Holistic redesign of software stack is needed to address concurrency,
energy, and resiliency challenges of extreme scale systems

Urgent need for execution models that span multiple scales of parallelism
and heterogeneity — multicore, accelerators, multi-node, HPC cluster, data
center cluster

Well-designed runtime primitives can provide foundation for new execution
models, with synergistic innovation in languages and compilers

This talk summarized recent experiences with asynchronous runtime
systems in the Rice Habanero Multicore Software Research project

Open Community Runtime (OCR) is a collaborative effort to carry these
and other runtime ideas forward in an open source project

x 6

