
Asynchronous Runtime Systems for
Irregular Applications

Vivek Sarkar
E.D. Butcher Chair in Engineering

Professor of Computer Science
Rice University

vsarkar@rice.edu

2

Multicore Processors and Extreme Scale Systems
§  Characteristics of Extreme Scale systems in the next decade

§  Massively multi-core (~ 100’s of cores/chip)
§  Performance driven by parallelism, constrained by energy & data movement
§  Subject to frequent faults and failures

§  Many Classes of Extreme Scale Systems

Embedded, 100’s of Watts,
O(103) concurrency

Data Center
> 1 MW,

O(109) concurrency

Departmental,
100’s of KW,

O(106) concurrency Key Challenges
§  Concurrency
§  Energy efficiency
§  Locality
§  Resiliency

References:
•  DARPA Exascale Software study, Sep 2009
•  “Software Challenges in Extreme Scale Systems”. V. Sarkar,

W. Harrod, A.E. Snavely. SciDAC Review, January 2010.

Mobile, < 10 Watts,
O(101) concurrency

3

Performance Variability is on the rise

§  Concurrency --- increased performance variability with
increased parallelism

§  Energy efficiency --- increased performance variability with
increased non-uniformity and heterogeneity in processors

§  Locality --- increased performance variability with increased
memory hierarchy depths

§  Resiliency --- increased performance variability with fault
tolerance adaptation (migration, rollback, redundancy, …)
§  Brian Van Straalen: “All Fault-Tolerance will look like variable performance”

è Even regular applications will exhibit irregular performance

4

Irregular Parallelism is also on the rise

§  Science --- need for increased precision in models
§  Locality --- decreasing bytes/flops ratio is forcing increased

movement to sparse data structures and to revisit compute-
data trade-offs in irregular algorithms

§  Concurrency --- scope of parallelism has to extend to
irregular computations

§  Resiliency --- many fault-tolerant algorithms are irregular in
structure

§  Big Data --- many data analysis problems of interest are
based on sparse structures, such as graphs

5

Runtime Challenges

§  Extreme Scale computing is limited by concurrency, energy
efficiency, locality and resiliency

§  Inherent variability in extreme-scale system software and
hardware components calls for end-to-end asynchrony in
system design

§  Tight integration of homogeneous multicore,
heterogeneous multicore and communication runtime
systems has proven elusive thus far

§  Important to use right runtime primitives as enablers for
future languages, compilers, and tools

èThe runtime system will play a pivotal role in bridging the
Programmability and Performance Gaps

6

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming

Languages

Habanero Static
Compiler &

Parallel
Intermediate

Representation

Habanero
Runtime
System

Two-level programming model
Declarative Coordination

Language for Domain Experts:
CnC-HC, CnC-Java, CnC-Python,

CnC-Matlab, … +
Task-Parallel Languages for

Parallelism-aware Developers:
Habanero-C, Habanero-Java,

Habanero-Scala

Portable execution model
1) Lightweight asynchronous tasks and data
transfers
§ Creation: async tasks, future tasks, data-
driven tasks
§ Termination: finish, future get, await
§ Data Transfers: asyncPut, asyncGet,
asyncISend, asyncIRecv
2) Locality control for task and data
distribution
§ Task Distributions: hierarchical places
§ Data Distributions: hierarchical places,
global name space
3) Inter-task synchronization operations
§ Mutual exclusion: isolated, actors
§ Collective and point-to-point
synchronization: phasers

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

7

Target Platforms
Habanero programs have been executed on a wide range of
production and experimental systems
§  Multicore SMPs (IBM, Intel)
§  Discrete GPUs (AMD, NVIDIA)
§  Integrated GPUs (AMD, Intel)
§  FPGA (Convey, w/ GPU added)
§  HPC Clusters
§  Hadoop Clusters
§  IBM Cyclops
§  Intel SCC
§  . . .

8

Elements of Habanero Execution Model
1) Lightweight asynchronous tasks and data transfers
§  Creation: async tasks, future tasks, data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet, asyncISend, asyncIRecv
2) Locality control for control and data distribution
§  Lightweight data blocks: global name space
§  Task Distributions: hierarchical places
§  Data Distributions: hierarchical places
3) Inter-task synchronization operations
§  Mutual exclusion: global/object-based isolation, actors
§  Collective and point-to-point synchronization: phasers
Goal: unified model of parallelism that spans a wide range of
extreme scale platforms

9

Properties of Habanero Execution Model
§  Deadlock freedom guarantee for large subset of operations

§  All operations except explicit wait in phasers and explicit await clause in async
§  Data-race freedom guarantee for subset of data accesses

§  Future values, accumulator values
§  Read-write permission regions
§  Isolated accesses, actors

§  Determinacy guarantee for subset of programs
§  Data-race freedom implies determinacy for all programs that do not use mutual

exclusion constructs (isolated, actors)
§  Amenable to efficient asynchronous and portable implementations

§  Locality-aware work-stealing
§  Hierarchical places with support for heterogeneous processors
§  Integration with cluster-level communication runtime systems
§  Scalable synchronization with phasers and delegated isolation
§  Compiler optimizations for structured parallelism

10

Semantic Classification of
Habanero Parallel Programs

§  Legend
§  DLF = DeadLock-Free
§  DRF = Data-Race-Free
§  DET = Determinate
§  DRFèDET = DRF implies DET
§  SER = Serializable

§  If a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRFDET +
SER class
§  Adding phasers yields programs in
the DLF + DRFDET class
§  Adding async await yields programs in
the DRFDET class
§  Restricting shared data accesses to
futures, isolated, actors yields programs
in the DRF-ALL class

7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako,
Vivek Sarkar PPPJ 2011.

11

Lightweight Asynchronous Tasks

//A0(Parent)

finish { //Begin finish

 async {

 STMT1; //A1(Child)

 }

 STMT2; //A0

} //End finish

STMT2

async

STMT1

terminate
wait

A1 A0

async S
§  Creates a new child task that executes

statement S
§  Like OpenMP’s task pragma

§  Parent task moves on to statement
following the async

§  Can be used to implement higher level
constructs like forall loops

finish S
§  Execute S, but wait until all

(transitively) spawned asyncs in
S‘s scope have terminated
§  Like OpenMP’s taskwait

§  Implicit finish between start and
end of main program

§  Use of finish cannot create a
deadlock cycle

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

12

Irregular Example #1: Parallel Spanning Tree Algorithm

DFS

compute

compute

compute
compute

1.  class V {!
2.  V [] neighbors; // Input adjacency list!
3.  V parent; // Output spanning tree!
4.  . . .!
5.  boolean tryLabeling(V n) {!
6.  boolean retVal = false;!
7.  isolated(this) // Object-based isolation!
8.   if (parent == null) {!
9.  parent = n; retVal = true; }!
10.  return retVal;!
11.  } // tryLabeling!
12.  void compute() {!
13.  for (int i=0; i<neighbors.length; i++) { !
14.  V child = neighbors[i]; !
15.  if (child.tryLabeling(this))!
16.   async child.compute(); //escaping async!
17.  } !
18.  } // compute!
19.  } // class V!
20.  root.parent = root; //Use self−cycle to identify root !
21.   finish root.compute();!

Async edge

Finish edge

13

Runtime Schedulers for Async-Finish Task Parallelism

 Work-Sharing (Java ThreadPoolExecutor, OpenMP, …)
§  Busy worker pushes task at one end of global deque
§  Access to global deque needs to be synchronized

 Work-Stealing (Cilk, TBB, Java ForkJoin, …)
§  One deque per worker (better scalability)
§  Idle worker steals tasks from busy workers
§  Two scheduling policies of interest

§  Work-first policy: worker executes child task
eagerly and leaves continuation to be stolen

§  Help-first policy: worker pushes child task to be
stolen (asks for help) and executes continuation

§  Adaptive algorithm dynamically selects best policy for
each async instance

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § …

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § … T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § …

§  “Work-First and Help-First Scheduling Policies for Terminally Strict Parallel Programs”, Y.Guo, R.Barik, R.Raman, V.Sarkar, IPDPS 2009.
§  “SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems”, Y.Guo, J.Zhao, V.Cave, V.Sarkar, IPDPS 2010.

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T2..p

W1

T1 T3..p

W2

T2

Wp

Tp …

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T2..p

W1

T1 T3..p

W2

T2

Wp

Tp … T2..p

W1

T1 T3..p

W2

T2

Wp

Tp …

w1
work-stealing

pop tasks push
tasks

w2 w3 w4

steal tasks
deque

tail

head

w1 w2 w3 w4

get tasks

work-sharing

put
tasks

global queue

tail head

14

Parallel Spanning Tree on a Torus Graph with 4M vertices
(Habanero-Java implementation)

0
10
20
30
40
50
60
70
80
90

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

eg
aE

dg
es

/S
ec

)

Number of Workers

PDFS – Niagara 2
hf adp

Work-first policy is unable to complete due to stack overflow
Adaptive (adp) policy performs better than help-first policy

15

HCMPI: Integrating Communication with Lightweight Tasks

Communication treated as Tasks

Easily ported from MPI

Message-Driven Task Parallelism

15

finish{
 async foo();
 HCMPI_Isend(…);
 HCMPI_Irecv(…);
}
baz();
...

HCMPI_Request *req;
HCMPI_Irecv(buf, …, &req);

async await (req) {

 HCMPI_Status * s;
 HCMPI_GET_STATUS(req, &status);
 …

}

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

16

Integrating Inter-node Communication with Intra-node
Task Scheduling in a Unified Runtime System

Ratio of computation to
communication workers can be

tuned for different platforms

17

Irregular Example #2: Unbalanced Tree Search (UTS)

Root

Process 0 Process 1

Process 2 Process 3

steal

steal
steal

Root

§  Reference MPI implementation uses inter-process work-stealing
§  N * C processes used, where, N = #nodes, C = #cores/node

§  HCMPI implementation adds intra-process work-stealing
§  HCMPI uses N * (C – 1) cores for computation
§  HCMPI reserves 1 core per node for communication

18

UTS Performance on T1XXL

•  Jaguar Supercomputer at ORNL
•  18688 nodes with Gemini Interconnect
•  16 core AMD Opteron nodes with 32 GB memory

4" 8" 16" 32" 64" 128" 256" 512" 1024"

2""cores/node" 0.67" 0.67" 0.67" 0.67" 0.67" 0.68" 0.68" 0.69" 0.73"
4"cores/node" 1.00" 1.00" 1.00" 1.00" 1.00" 1.01" 1.03" 1.10" 1.33"
8"cores/node" 1.17" 1.17" 1.17" 1.17" 1.17" 1.20" 1.29" 1.66" 4.50"
16"cores/node" 1.26" 1.26" 1.26" 1.26" 1.33" 1.51" 1.98" 5.76" 22.31"

22.31"

0.40"

4.00"

40.00"

Sp
ee
du

p"
"

(M
PI
"T
im

e"
/"H

CM
PI
"T
im

e)
"

Nodes"

2""cores/node" 4"cores/node"

8"cores/node" 16"cores/node"

19

Failed steals lead to scalability bottleneck in MPI
•  At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M
•  At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M

UTS Scaling on T1XXL

20

Mutual exclusion --- Habanero isolated statement
isolated <body>
§  Like a critical section --- two tasks executing isolated statements must

perform the isolated statements in mutual exclusion
è Weak atomicity guarantee: mutual exclusion only applies to

(isolated, isolated) pairs of statement instances, not to
(isolated,non-isolated) pairs

§  Isolated statements may be nested, and may contain async and finish
statements

§  In case of an exception, all updates performed by <body> before
throwing the exception will be observable after exiting <body>

21

Object-based isolation in HJ

isolated(<object-list>) <body>!

§  In this case, programmer specifies list of objects for which isolation is
required

§  Mutual exclusion is only guaranteed for instances of isolated statements
that have a non-empty intersection in their object lists
§  Standard isolated is equivalent to isolated(*) by default i.e., isolation

across all objects
§  Implementation can choose to distinguish between read/write accesses

for further parallelism
§  Current Habanero implementation supports object-based isolation,

but does not exploit read/write distinction

22

Scalable Isolation?
§  Challenge: scalable implementation of isolated without using a

single global lock
§  Transactional memory approaches still incur too much

overhead?
§  Our approach:

§  Focus on “async isolated” case
§  Task dynamically acquires ownership of each object accessed in

isolated block (optimistic parallelism)
§  On conflict, task A transfers all ownerships to conflicting task B and

delegates execution of isolated block to B
§  Deadlock-freedom and livelock-freedom guarantees
§  Open question: use of recent hardware TM capabilities

§  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011
§  “Isolation for Nested Task Parallelism”, J. Zhao, R. Lublinerman, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013.

23

Irregular Example #3: Delauney
Mesh Refinement in Habanero-Java
and Galois-Java

24

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

DSTM2 performance:
962s w/ 1 thread
177s w/ 16 threads

25

Acknowledgments --- Habanero Team
§  Faculty

§  Vivek Sarkar
§  Senior Research Scientist

§  Michael Burke
§  Research Scientists

§  Zoran Budimlić, Philippe Charles, Jun Shirako, Jisheng Zhao
§  Research Programmer

§  Vincent Cavé
§  Postdoctoral Researchers

§  Akihiro Hayashi
§  PhD Students

§  Kumud Bhandari, Sanjay Chatterjee, Max Grossman, Shams Imam, Deepak Majeti, Alina
Sbîrlea, Dragoș Sbîrlea, Kamal Sharma, Rishi Surendran, Sağnak Taşırlar, Nick Vrvilo

§  Undergraduate Students
§  Emma Breen, Bing Xue, Yunming Zhang, Rho Zou

§  Other collaborators at Rice
§  Rich Baraniuk, Corky Cartwright, Swarat Chaudhuri, Keith Cooper, Alan Cox, Chris Jermaine,

John Mellor-Crummey, Scott Rixner, Dan Wallach, Scott Warren, Edwin Westbrook, Lin Zhong

26

Habanero Team Pictures (http://habanero.rice.edu)

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
in a PhD, postdoc or research scientist position

in the Habanero project, or in visiting or collaborating with us!

27

Motivation for Open Community
Runtime (OCR)

•  A runtime framework that …
–  is representative of execution models expected in future extreme scale

systems
–  can support regular and irregular applications
–  can be targeted by multiple high-level programming systems
–  can be effectively mapped on to multiple extreme scale platforms
–  can be extended and customized for specific programming and platform

needs
–  can be used to obtain early results to validate new ideas
–  is available as an open-source testbed

•  Approach:
– Address revolutionary challenges collaboratively
– Reduce duplication of infrastructure effort

•  Current participants: Intel, Rice, Reservoir Labs, ET International

28

OCR High-level Design

•  Application/algorithm
decomposition exposes greater
parallelism than current thread/
barrier models

•  Event-Driven Runtime manages

tasks and data blocks to adapt to
changes in platform behavior
(resilience, machine configuration
changes), while obeying all control
and data dependences

•  For more information come
to the SC13 OCR BOF at
12:15pm on Wednesday in
rooms 405/406/407

29

Conclusions

 §  Increasing trends in irregularity and performance variability in future

applications and systems
§  Holistic redesign of software stack is needed to address concurrency,

energy, and resiliency challenges of extreme scale systems
§  Urgent need for execution models that span multiple scales of parallelism

and heterogeneity – multicore, accelerators, multi-node, HPC cluster, data
center cluster

§  Well-designed runtime primitives can provide foundation for new execution
models, with synergistic innovation in languages and compilers

§  This talk summarized recent experiences with asynchronous runtime
systems in the Rice Habanero Multicore Software Research project

§  Open Community Runtime (OCR) is a collaborative effort to carry these
and other runtime ideas forward in an open source project

