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Multicore Processors and Extreme Scale Systems 
§  Characteristics of Extreme Scale systems in the next decade  

§  Massively multi-core (~ 100’s of cores/chip) 
§  Performance driven by parallelism, constrained by energy & data movement 
§  Subject to frequent faults and failures 

§  Many Classes of Extreme Scale Systems 

 
 

 
 

Embedded, 100’s of Watts, 
O(103) concurrency 

Data Center 
> 1 MW, 

O(109) concurrency 

Departmental, 
100’s of KW, 

O(106) concurrency Key Challenges 
§  Concurrency 
§  Energy efficiency 
§  Locality 
§  Resiliency 

 
 

References: 
•  DARPA Exascale Software study, Sep 2009 
•  “Software Challenges in Extreme Scale Systems”.  V. Sarkar, 

W. Harrod, A.E. Snavely.  SciDAC Review, January 2010.  

Mobile, < 10 Watts, 
O(101) concurrency 
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Performance Variability is on the rise 

§  Concurrency --- increased performance variability with 
increased parallelism 

§  Energy efficiency --- increased performance variability with 
increased non-uniformity and heterogeneity in processors 

§  Locality --- increased performance variability with increased 
memory hierarchy depths 

§  Resiliency --- increased performance variability with fault 
tolerance adaptation (migration, rollback, redundancy, …) 
§  Brian Van Straalen: “All Fault-Tolerance will look like variable performance” 

è Even regular applications will exhibit irregular performance 
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Irregular Parallelism is also on the rise 

§  Science --- need for increased precision in models 
§  Locality --- decreasing bytes/flops ratio is forcing increased 

movement to sparse data structures and to revisit compute-
data trade-offs in irregular algorithms 

§  Concurrency --- scope of parallelism has to extend to 
irregular computations  

§  Resiliency --- many fault-tolerant algorithms are irregular in 
structure 

§  Big Data --- many data analysis problems of interest are 
based on sparse structures, such as graphs 
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Runtime Challenges 

§  Extreme Scale computing is limited by concurrency, energy 
efficiency, locality and resiliency 

§  Inherent variability in extreme-scale system software and 
hardware components calls for end-to-end asynchrony in 
system design 

§  Tight integration of homogeneous multicore, 
heterogeneous multicore and communication runtime 
systems has proven elusive thus far 

§  Important to use right runtime primitives as enablers for 
future languages, compilers, and tools 

èThe runtime system will play a pivotal role in bridging the 
Programmability and Performance Gaps 
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Rice Habanero Multicore Software Project: 
Enabling Technologies for Extreme Scale 

Habanero 
Programming 

Languages 

Habanero Static 
Compiler & 

Parallel 
Intermediate 

Representation 

Habanero 
Runtime 
System 

Two-level programming model 
Declarative Coordination 

Language for Domain Experts:  
CnC-HC, CnC-Java, CnC-Python, 

CnC-Matlab, …  +  
Task-Parallel Languages for 

Parallelism-aware Developers:  
Habanero-C, Habanero-Java,  

Habanero-Scala 

Portable execution model 
1) Lightweight asynchronous tasks and data 
transfers 
§ Creation: async tasks, future tasks, data-
driven tasks 
§ Termination: finish, future get, await 
§ Data Transfers: asyncPut, asyncGet, 
asyncISend, asyncIRecv 
2) Locality control for task and data 
distribution  
§ Task Distributions:  hierarchical places 
§ Data Distributions: hierarchical places, 
global name space 
3) Inter-task synchronization operations 
§ Mutual exclusion:  isolated, actors 
§ Collective and point-to-point 
synchronization: phasers 
 

http://habanero.rice.edu 

Extreme Scale Platforms 

Parallel Applications 
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Target Platforms 
Habanero programs have been executed on a wide range of 
production and experimental systems 
§  Multicore SMPs (IBM, Intel) 
§  Discrete GPUs (AMD, NVIDIA) 
§  Integrated GPUs (AMD, Intel) 
§  FPGA (Convey, w/ GPU added) 
§  HPC Clusters 
§  Hadoop Clusters  
§  IBM Cyclops 
§  Intel SCC 
§  . . . 
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Elements of Habanero Execution Model 
1)  Lightweight asynchronous tasks and data transfers 
§  Creation: async tasks, future tasks, data-driven tasks 
§  Termination: finish, future get, await 
§  Data Transfers: asyncPut, asyncGet, asyncISend, asyncIRecv 
2) Locality control for control and data distribution  
§  Lightweight data blocks: global name space 
§  Task Distributions:  hierarchical places 
§  Data Distributions: hierarchical places 
3) Inter-task synchronization operations 
§  Mutual exclusion:  global/object-based isolation, actors 
§  Collective and point-to-point synchronization: phasers 
Goal: unified model of parallelism that spans a wide range of 
extreme scale platforms 
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Properties of Habanero Execution Model 
§  Deadlock freedom guarantee for large subset of operations 

§  All operations except explicit wait in phasers and explicit await clause in async 
§  Data-race freedom guarantee for subset of data accesses 

§  Future values, accumulator values 
§  Read-write permission regions 
§  Isolated accesses, actors 

§  Determinacy guarantee for subset of programs 
§  Data-race freedom implies determinacy for all programs that do not use mutual 

exclusion constructs (isolated, actors) 
§  Amenable to efficient asynchronous and portable implementations 

§  Locality-aware work-stealing 
§  Hierarchical places with support for heterogeneous processors 
§  Integration with cluster-level communication runtime systems 
§  Scalable synchronization with phasers and delegated isolation 
§  Compiler optimizations for structured parallelism 
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Semantic Classification of 
Habanero Parallel Programs 

§  Legend 
§  DLF = DeadLock-Free 
§  DRF = Data-Race-Free 
§  DET = Determinate 
§  DRFèDET = DRF implies DET 
§  SER = Serializable 

§   If a Habanero program only uses 
async, finish, and future constructs (no 
mutual exclusion), then it is guaranteed 
to belong to the DLF + DRFDET + 
SER class 
§  Adding phasers yields programs in 
the DLF + DRFDET class 
§  Adding async await yields programs in 
the DRFDET class 
§  Restricting shared data accesses to 
futures, isolated, actors yields programs 
in the DRF-ALL class 

7) ALL 

6) DET 
5) DRF-ALL 

4) DLF-DRF-ALL 

1) DLF- 
DRF-DET-SER 

3) DRF-DET 

2) DLF- 
DRF-DET 

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako, 
Vivek Sarkar  PPPJ 2011.  
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Lightweight Asynchronous Tasks 

//A0(Parent) 

finish {   //Begin finish 

  async { 

    STMT1; //A1(Child) 

  } 

  STMT2;   //A0 

}          //End finish 

STMT2 

async 

STMT1 

terminate 
wait 

A1 A0 

async  S  
§  Creates a new child task that executes 

statement S 
§  Like OpenMP’s task pragma  

§  Parent task moves on to statement 
following the async 

§  Can be used to implement higher level 
constructs like forall loops 

finish S   
§  Execute S, but wait until all 

(transitively) spawned asyncs in 
S‘s scope have terminated 
§  Like OpenMP’s taskwait  

§  Implicit finish between start and 
end of main program 

§  Use of finish cannot create a 
deadlock cycle 

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.  



12 

Irregular Example #1: Parallel Spanning Tree Algorithm 

DFS 

compute 

compute 

compute 
compute 

1.  class V  {!
2.    V [] neighbors; // Input adjacency list!
3.    V parent; // Output spanning tree!
4.    . . .!
5.    boolean tryLabeling(V n) {!
6.      boolean retVal = false;!
7.      isolated(this) // Object-based isolation!
8.         if (parent == null) {!
9.          parent = n; retVal = true; }!
10.     return retVal;!
11.   } // tryLabeling!
12.   void compute() {!
13.     for (int i=0; i<neighbors.length; i++) { !
14.       V child = neighbors[i];  !
15.       if (child.tryLabeling(this))!
16.            async child.compute(); //escaping async!
17.      } !
18.   } // compute!
19.  } // class V!
20.  root.parent = root; //Use self−cycle to identify root !
21.   finish root.compute();!

Async edge 

Finish edge 
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Runtime Schedulers for Async-Finish Task Parallelism 

 Work-Sharing (Java ThreadPoolExecutor, OpenMP, …) 
§  Busy worker pushes task at one end of global deque 
§  Access to global deque needs to be synchronized 
 

 Work-Stealing (Cilk, TBB, Java ForkJoin, …) 
§  One deque per worker (better scalability) 
§  Idle worker steals tasks from busy workers 
§  Two scheduling policies of interest 

§  Work-first policy: worker executes child task 
eagerly and leaves continuation to be stolen 

§  Help-first policy: worker pushes child task to be 
stolen (asks for help) and executes continuation 

§  Adaptive algorithm dynamically selects best policy for 
each async instance 
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§  “Work-First and Help-First Scheduling Policies for Terminally Strict Parallel Programs”, Y.Guo, R.Barik, R.Raman, V.Sarkar, IPDPS 2009. 
§  “SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems”, Y.Guo, J.Zhao, V.Cave, V.Sarkar, IPDPS 2010. 
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Parallel Spanning Tree on a Torus Graph with 4M vertices  
(Habanero-Java implementation) 
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Work-first policy is unable to complete due to stack overflow 
Adaptive (adp) policy performs better than help-first policy 
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HCMPI: Integrating Communication with Lightweight Tasks 

Communication treated as Tasks 
 
 
 
 
 
 
 
Easily ported from MPI 

Message-Driven Task Parallelism 
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finish{ 
    async foo(); 
    HCMPI_Isend(…); 
    HCMPI_Irecv(…); 
} 
baz(); 
... 

HCMPI_Request *req; 
HCMPI_Irecv(buf, …, &req); 
 
async await (req) {  

 HCMPI_Status * s; 
 HCMPI_GET_STATUS(req, &status); 
 … 

} 

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent 
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar.  IPDPS 2013. 
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Integrating Inter-node Communication with Intra-node 
Task Scheduling in a Unified Runtime System 

Ratio of computation to 
communication workers can be 

tuned for different platforms 
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Irregular Example #2: Unbalanced Tree Search (UTS) 

Root 

Process 0 Process 1 

Process 2 Process 3 

steal 

steal 
steal 

Root 

§   Reference MPI implementation uses inter-process work-stealing 
§  N * C processes used, where, N = #nodes, C = #cores/node 

§   HCMPI implementation adds intra-process work-stealing 
§   HCMPI uses N * (C – 1) cores for computation 
§   HCMPI reserves 1 core per node for communication 
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UTS Performance on T1XXL 

•  Jaguar Supercomputer at ORNL 
•  18688 nodes with Gemini Interconnect 
•  16 core AMD Opteron nodes with 32 GB memory 
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Failed steals lead to scalability bottleneck in MPI 
•  At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M 
•  At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M 

UTS Scaling on T1XXL 
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Mutual exclusion --- Habanero isolated statement  
isolated <body> 
§  Like a critical section --- two tasks executing isolated statements must 

perform the isolated statements in mutual exclusion 
è Weak atomicity guarantee: mutual exclusion only applies to 

(isolated, isolated) pairs of statement instances, not to    
(isolated,non-isolated) pairs 

§  Isolated statements may be nested, and may contain async and finish 
statements 

§  In case of an exception, all updates performed by <body> before 
throwing the exception will be observable after exiting <body> 
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Object-based isolation in HJ  

isolated(<object-list>) <body>!

§  In this case, programmer specifies list of objects for which isolation is 
required 

§  Mutual exclusion is only guaranteed for instances of isolated statements 
that have a non-empty intersection in their object lists  
§  Standard isolated is equivalent to isolated(*) by default i.e., isolation 

across all objects 
§  Implementation can choose to distinguish between read/write accesses 

for further parallelism 
§  Current Habanero implementation supports object-based isolation, 

but does not exploit read/write distinction 
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Scalable Isolation?  
§  Challenge: scalable implementation of isolated without using a 

single global lock 
§  Transactional memory approaches still incur too much 

overhead? 
§  Our approach: 

§  Focus on “async isolated” case 
§  Task dynamically acquires ownership of each object accessed in 

isolated block (optimistic parallelism) 
§  On conflict, task A transfers all ownerships to conflicting task B and 

delegates execution of isolated block to B 
§  Deadlock-freedom and livelock-freedom guarantees 
§  Open question: use of recent hardware TM capabilities 
 

§  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011 
§  “Isolation for Nested Task Parallelism”, J. Zhao, R. Lublinerman, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013. 
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Irregular Example #3: Delauney 
Mesh Refinement in Habanero-Java 
and Galois-Java 
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Performance: DMR benchmark on 16-core Xeon SMP 
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)  

DSTM2 performance: 
962s w/ 1 thread    
177s w/ 16 threads  
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Habanero Team Pictures (http://habanero.rice.edu) 

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested  
in a PhD, postdoc or research scientist position  

in the Habanero project, or in visiting or collaborating with us! 
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Motivation for Open Community 
Runtime (OCR) 

•  A runtime framework that …  
–  is representative of execution models expected in future extreme scale 

systems 
–  can support regular and irregular applications 
–  can be targeted by multiple high-level programming systems 
–  can be effectively mapped on to multiple extreme scale platforms 
–  can be extended and customized for specific programming and platform 

needs 
–  can be used to obtain early results to validate new ideas 
–  is available as an open-source testbed 

•   Approach:  
– Address revolutionary challenges collaboratively 
– Reduce duplication of infrastructure effort 

•  Current participants: Intel, Rice, Reservoir Labs, ET International 
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OCR High-level Design 

•  Application/algorithm 
decomposition exposes greater 
parallelism than current thread/
barrier models 

 
•  Event-Driven Runtime manages 

tasks and data blocks to adapt to 
changes in platform behavior 
(resilience, machine configuration 
changes), while obeying all control 
and data dependences 

•  For more information come 
to the SC13 OCR BOF at 
12:15pm on Wednesday in 
rooms 405/406/407 
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Conclusions 
 
 §  Increasing trends in irregularity and performance variability in future 

applications and systems 
§  Holistic redesign of software stack is needed to address concurrency, 

energy, and resiliency challenges of extreme scale systems 
§  Urgent need for execution models that span multiple scales of parallelism 

and heterogeneity – multicore, accelerators, multi-node, HPC cluster, data 
center cluster 

§  Well-designed runtime primitives can provide foundation for new execution 
models, with synergistic innovation in languages and compilers 

§  This talk summarized recent experiences with asynchronous runtime 
systems in the Rice Habanero Multicore Software Research project 

§  Open Community Runtime (OCR) is a collaborative effort to carry these 
and other runtime ideas forward in an open source project 


