
Parallel Sparse FFT

Cheng Wang∗, Mauricio Araya-Polo†, Sunita Chandrasekaran∗,
Amik St-Cyr∗, Barbara Chapman∗ and Detlef Hohl†

∗HPCTools Group, Department of Computer Science,
University of Houston, Houston, TX, 77004, USA

†Shell International E&P Inc., Houston, TX, 77082, USA

IA3 Workshop on Irregular Applications: Architectures & Algorithms,
in conjunction with SC’13, Denver, Colorado

November 17, 2013

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Image courtesy of xkcd comics, http://xkcd.com/26/

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 2 / 20

http://xkcd.com/26/

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is the Fourier Transform so important?

1 Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij (1)

2 Fundamental tool
• Signal processing
• Compression (audio, image, video)
• Data analysis
• ...

3 FFT: O(nlogn) time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 3 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is the Fourier Transform so important?

1 Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij (1)

2 Fundamental tool
• Signal processing
• Compression (audio, image, video)
• Data analysis
• ...

3 FFT: O(nlogn) time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 3 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is the Fourier Transform so important?

1 Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij (1)

2 Fundamental tool
• Signal processing
• Compression (audio, image, video)
• Data analysis
• ...

3 FFT: O(nlogn) time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 3 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 4 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 4 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 4 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 4 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 4 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Sparsity is everywhere

Figure: Seismic data

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 5 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Sparsity is everywhere

Figure: Biomedical images

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 5 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Sparsity is everywhere

Figure: Social graph data

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 5 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

MIT Sparse FFT (sFFT)

100000

1e+06

1e+07

1e+08

1e+09

1e+10

18 20 22 24 26 28

T
h

e
o
re

ti
c
a

l
O

()

Input data size (N, power of 2)

FFT,

sFFT, k=50

sFFT, k=1000

sFFT, k=5000

sFFT, k=10000

sFFT, k=50000

• Compute the k-sparse Fourier transform with complexity:
O(logn

√
nklogn)

• The algorithm is faster than full FFT for k up to O(n/logn)

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 6 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

MIT Sparse FFT (sFFT)

100000

1e+06

1e+07

1e+08

1e+09

1e+10

18 20 22 24 26 28

T
h

e
o
re

ti
c
a

l
O

()

Input data size (N, power of 2)

FFT,

sFFT, k=50

sFFT, k=1000

sFFT, k=5000

sFFT, k=10000

sFFT, k=50000

• Compute the k-sparse Fourier transform with complexity:
O(logn

√
nklogn)

• The algorithm is faster than full FFT for k up to O(n/logn)

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 6 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

sFFT: From theory to practice

Our major contributions:

1 Reimplemented the sFFT and doubled the performance

2 Proposed a parallel sFFT (PsFFT) algorithm for multicore
CPUs

3 Compared the PsFFT with other parallel full-sized FFT
libraries and obtained promising performance improvements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 7 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

sFFT: From theory to practice

Our major contributions:

1 Reimplemented the sFFT and doubled the performance

2 Proposed a parallel sFFT (PsFFT) algorithm for multicore
CPUs

3 Compared the PsFFT with other parallel full-sized FFT
libraries and obtained promising performance improvements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 7 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

sFFT: From theory to practice

Our major contributions:

1 Reimplemented the sFFT and doubled the performance

2 Proposed a parallel sFFT (PsFFT) algorithm for multicore
CPUs

3 Compared the PsFFT with other parallel full-sized FFT
libraries and obtained promising performance improvements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 7 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

sFFT: From theory to practice

Our major contributions:

1 Reimplemented the sFFT and doubled the performance

2 Proposed a parallel sFFT (PsFFT) algorithm for multicore
CPUs

3 Compared the PsFFT with other parallel full-sized FFT
libraries and obtained promising performance improvements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 7 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels
• Parallel optimizations: Eliminated loop-carried dependence

and non-thread-safe functions
• Data structure optimizations: Replaced the advanced and

nested data structures with flat data types
• Locality optimizations: Cache blocking, TLB blocking,

Register blocking

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 8 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels

• Parallel optimizations: Eliminated loop-carried dependence
and non-thread-safe functions

• Data structure optimizations: Replaced the advanced and
nested data structures with flat data types

• Locality optimizations: Cache blocking, TLB blocking,
Register blocking

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 8 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels
• Parallel optimizations: Eliminated loop-carried dependence

and non-thread-safe functions

• Data structure optimizations: Replaced the advanced and
nested data structures with flat data types

• Locality optimizations: Cache blocking, TLB blocking,
Register blocking

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 8 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels
• Parallel optimizations: Eliminated loop-carried dependence

and non-thread-safe functions
• Data structure optimizations: Replaced the advanced and

nested data structures with flat data types

• Locality optimizations: Cache blocking, TLB blocking,
Register blocking

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 8 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels
• Parallel optimizations: Eliminated loop-carried dependence

and non-thread-safe functions
• Data structure optimizations: Replaced the advanced and

nested data structures with flat data types
• Locality optimizations: Cache blocking, TLB blocking,

Register blocking

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 8 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1

2

3

4

5

6

7

8

9

10

11

1000 2000 3000 4000 5000 6000 7000 8000

R
u
n
ti
m

e
 (

s
e
c
)

k (N=2
25

)

Intel Xeon E5-2670 (Sandy Bridge)

Original Implementation
Optimized Implementation

FFTW

• 2x performance improvement
• Stretched the upper bound of the sparsity k from 4000 to 7000 to

beat FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 9 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1

2

3

4

5

6

7

8

9

10

11

1000 2000 3000 4000 5000 6000 7000 8000

R
u
n
ti
m

e
 (

s
e
c
)

k (N=2
25

)

Intel Xeon E5-2670 (Sandy Bridge)

Original Implementation
Optimized Implementation

FFTW

• 2x performance improvement

• Stretched the upper bound of the sparsity k from 4000 to 7000 to
beat FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 9 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Improvements over the sequential version

1

2

3

4

5

6

7

8

9

10

11

1000 2000 3000 4000 5000 6000 7000 8000

R
u
n
ti
m

e
 (

s
e
c
)

k (N=2
25

)

Intel Xeon E5-2670 (Sandy Bridge)

Original Implementation
Optimized Implementation

FFTW

• 2x performance improvement
• Stretched the upper bound of the sparsity k from 4000 to 7000 to

beat FFTW
Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 9 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

How does sFFT work?

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Input

Signal

Input

Signal

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Input

Signal

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Input

Signal

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Permute Filter
Subsampled

FFT
Cuto

Reverse Hash

Function
Permute Filter

Subsampled

FFT
Cuto

Reverse Hash

Function

Input

Signal

Input

Signal

.

Keep the

coordinates

that occured

in at least half

of the location

loops

Estimate

the values of

the coe cients

Most time demanding parts

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 10 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

• Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

B buckets

• Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

B buckets

T0 T1 T2 T3 T4 • Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

B buckets

T0 T1 T2 T3 T4

Race conditions !!

• Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering (cont’)

n coordinates

B buckets

T0 T1 T2

• Our solution: partition the buckets

• No race conditions

• number of buckets B ≈
√
nk, still

sufficient data parallelism

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 12 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering (cont’)

n coordinates

B buckets

T0 T1 T2

• Our solution: partition the buckets

• No race conditions

• number of buckets B ≈
√
nk, still

sufficient data parallelism

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 12 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering (cont’)

n coordinates

B buckets

T0 T1 T2

• Our solution: partition the buckets

• No race conditions

• number of buckets B ≈
√
nk, still

sufficient data parallelism

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 12 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 2: Subsampled FFT

B buckets

(time)

B buckets

(frequency)

FFT

• Subsampled B-dimensional FFT

• Use parallel FFTW to fulfill this
function

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 13 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 2: Subsampled FFT

B buckets

(time)

B buckets

(frequency)

FFT

• Subsampled B-dimensional FFT

• Use parallel FFTW to fulfill this
function

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 13 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 3: Select the k-largest Fourier coefficients

B buckets

(frequency)

K largest

frequencies

• Since signal spectrum is sparse,
most of the buckets are very small

• Select the top k largest
coefficients from the B sized
buckets

• Use heap sort, achieved in O(B)
time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 14 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 3: Select the k-largest Fourier coefficients

B buckets

(frequency)

K largest

frequencies

• Since signal spectrum is sparse,
most of the buckets are very small

• Select the top k largest
coefficients from the B sized
buckets

• Use heap sort, achieved in O(B)
time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 14 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 3: Select the k-largest Fourier coefficients

B buckets

(frequency)

K largest

frequencies

• Since signal spectrum is sparse,
most of the buckets are very small

• Select the top k largest
coefficients from the B sized
buckets

• Use heap sort, achieved in O(B)
time

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 14 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 4: Reverse hash function for location recovery
Step 5: Magnitude recovery

Permuted

Locations

Real

Locations

Reverse

Hash Function

Magnitude

Estimate

Magnitude

• Find the locations of the large
coefficients

• Recover the magnitudes of the
coefficients found

• Each thread processes k/nthreads
elements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 15 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 4: Reverse hash function for location recovery
Step 5: Magnitude recovery

Permuted

Locations

Real

Locations

Reverse

Hash Function

Magnitude

Estimate

Magnitude

T0 T1 T2 T3

• Find the locations of the large
coefficients

• Recover the magnitudes of the
coefficients found

• Each thread processes k/nthreads
elements

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 15 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 16 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 16 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 16 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 16 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 16 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance evaluation

0.001

0.01

0.1

1

10

100

18 20 22 24 26 28

E
la

p
s
e
 t
im

e
 [
s
]

Input data size (N, power of 2)

FFTW,

sFFT, k=50

sFFT, k=5000

sFFT, k=10000

0.001

0.01

0.1

1

10

18 20 22 24 26 28

E
la

ps
e

tim
e

[s
]

Input data size (N, power of 2)

FFTW, OMP=8
PsFFT, k=50, OMP=8

PsFFT, k=5000, OMP=8
PsFFT, k=10000, OMP=8

Figure: Elapsed time: sequential v.s. parallel sFFT

• Implemented PsFFT using OpenMP

• Pink area selects the representative ranges of sparsity k

• Most of the area is shifted down to the curve of the parallel FFTW

• Over 5x faster than parallel FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 17 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance evaluation

0.001

0.01

0.1

1

10

100

18 20 22 24 26 28

E
la

p
s
e
 t
im

e
 [
s
]

Input data size (N, power of 2)

FFTW,

sFFT, k=50

sFFT, k=5000

sFFT, k=10000

0.001

0.01

0.1

1

10

18 20 22 24 26 28

E
la

ps
e

tim
e

[s
]

Input data size (N, power of 2)

FFTW, OMP=8
PsFFT, k=50, OMP=8

PsFFT, k=5000, OMP=8
PsFFT, k=10000, OMP=8

Figure: Elapsed time: sequential v.s. parallel sFFT

• Implemented PsFFT using OpenMP

• Pink area selects the representative ranges of sparsity k

• Most of the area is shifted down to the curve of the parallel FFTW

• Over 5x faster than parallel FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 17 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance evaluation

0.001

0.01

0.1

1

10

100

18 20 22 24 26 28

E
la

p
s
e
 t
im

e
 [
s
]

Input data size (N, power of 2)

FFTW,

sFFT, k=50

sFFT, k=5000

sFFT, k=10000

0.001

0.01

0.1

1

10

18 20 22 24 26 28

E
la

ps
e

tim
e

[s
]

Input data size (N, power of 2)

FFTW, OMP=8
PsFFT, k=50, OMP=8

PsFFT, k=5000, OMP=8
PsFFT, k=10000, OMP=8

Figure: Elapsed time: sequential v.s. parallel sFFT

• Implemented PsFFT using OpenMP

• Pink area selects the representative ranges of sparsity k

• Most of the area is shifted down to the curve of the parallel FFTW

• Over 5x faster than parallel FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 17 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Performance evaluation

0.001

0.01

0.1

1

10

100

18 20 22 24 26 28

E
la

p
s
e
 t
im

e
 [
s
]

Input data size (N, power of 2)

FFTW,

sFFT, k=50

sFFT, k=5000

sFFT, k=10000

0.001

0.01

0.1

1

10

18 20 22 24 26 28

E
la

ps
e

tim
e

[s
]

Input data size (N, power of 2)

FFTW, OMP=8
PsFFT, k=50, OMP=8

PsFFT, k=5000, OMP=8
PsFFT, k=10000, OMP=8

Figure: Elapsed time: sequential v.s. parallel sFFT

• Implemented PsFFT using OpenMP

• Pink area selects the representative ranges of sparsity k

• Most of the area is shifted down to the curve of the parallel FFTW

• Over 5x faster than parallel FFTW

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 17 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Scalability

2
18

2
20

2
22

2
23

2
24

2
25

2
28

50 500 1000 2500 5000 7500 10000

S
iz

e
 o

f
p

a
ra

m
e

te
r

N

Size of parameter k

’scala_summary_07242013.full_b1024.r294_matrix.dat’ matrix

 0

 1

 2

 3

 4

 5

 6

 7

 8

S
c
a

la
b

ili
ty

 (
8

 t
h

re
a

d
s
)

• Evaluated the scalability on a 8-core Intel Sandy Bridge architecture

• Achieved over 5x for most of the cases

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 18 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Scalability

2
18

2
20

2
22

2
23

2
24

2
25

2
28

50 500 1000 2500 5000 7500 10000

S
iz

e
 o

f
p

a
ra

m
e

te
r

N

Size of parameter k

’scala_summary_07242013.full_b1024.r294_matrix.dat’ matrix

 0

 1

 2

 3

 4

 5

 6

 7

 8

S
c
a

la
b

ili
ty

 (
8

 t
h

re
a

d
s
)

• Evaluated the scalability on a 8-core Intel Sandy Bridge architecture

• Achieved over 5x for most of the cases

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 18 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Work in progress

• Develop a high-performance and portable parallel sparse FFT library

• Parallel sparse FFT for GPUs and accelerators

• sFFT is an interesting irregular algorithm

• Eliminating the dynamic irregular data reference pattern is still an
open research question

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 19 / 20

FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Q & A

Thank You For Your Attention

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 20 / 20

	FFT
	Sparse FFT
	Parallel Sparse FFT
	Evaluation
	Work in progress
	Q&A

