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FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Why is the Fourier Transform so important?

1 Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij (1)

2 Fundamental tool
• Signal processing
• Compression (audio, image, video)
• Data analysis
• ...

3 FFT: O(nlogn) time
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Why is FFT sometimes inefficient?

1 Often the Fourier transform is dominated by a small number
of “peaks”

2 FFT performs n input data only to lead to small number of
large coefficients
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Sparsity is everywhere

Figure: Seismic data
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Sparsity is everywhere

Figure: Social graph data
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MIT Sparse FFT (sFFT)
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• Compute the k-sparse Fourier transform with complexity:
O(logn

√
nklogn)

• The algorithm is faster than full FFT for k up to O(n/logn)
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sFFT: From theory to practice

Our major contributions:

1 Reimplemented the sFFT and doubled the performance

2 Proposed a parallel sFFT (PsFFT) algorithm for multicore
CPUs

3 Compared the PsFFT with other parallel full-sized FFT
libraries and obtained promising performance improvements
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Improvements over the sequential version

1 Reimplementation from C++ to C
• More friendly for accelerators and low-power embedded

systems

2 Optimizations on multiple levels
• Parallel optimizations: Eliminated loop-carried dependence

and non-thread-safe functions
• Data structure optimizations: Replaced the advanced and

nested data structures with flat data types
• Locality optimizations: Cache blocking, TLB blocking,

Register blocking
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Improvements over the sequential version
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• 2x performance improvement
• Stretched the upper bound of the sparsity k from 4000 to 7000 to
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How does sFFT work?
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Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

• Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20



FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

B buckets

• Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20



FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering

n coordinates

B buckets

T0 T1 T2 T3 T4 • Randomly permutes the signal
spectrum and bins into a smaller
number of buckets

• Simply partitioning the signal
spectrum for each thread does not
work

• Multiple signal points are binned
into the same bucket

• Potential race conditions

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 11 / 20



FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Parallel Sparse FFT (PsFFT)
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Parallel Sparse FFT (PsFFT)

Step 1: Random spectrum permutation and filtering (cont’)

n coordinates

B buckets

T0 T1 T2

• Our solution: partition the buckets

• No race conditions

• number of buckets B ≈
√
nk, still

sufficient data parallelism
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Parallel Sparse FFT (PsFFT)

Step 2: Subsampled FFT

B buckets 

(time)

B buckets 

(frequency)

FFT

• Subsampled B-dimensional FFT

• Use parallel FFTW to fulfill this
function
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Parallel Sparse FFT (PsFFT)

Step 3: Select the k-largest Fourier coefficients

B buckets 

(frequency)

K largest 

frequencies

• Since signal spectrum is sparse,
most of the buckets are very small

• Select the top k largest
coefficients from the B sized
buckets

• Use heap sort, achieved in O(B)
time
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Parallel Sparse FFT (PsFFT)

Step 4: Reverse hash function for location recovery
Step 5: Magnitude recovery

Permuted 

Locations

Real 

Locations

Reverse 

Hash Function

Magnitude

Estimate 

Magnitude

• Find the locations of the large
coefficients

• Recover the magnitudes of the
coefficients found

• Each thread processes k/nthreads
elements
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Performance optimizations: Challenges & solution

n coordinates

B buckets

Irregular data 

reference pattern

1 Irregular memory access pattern

• Poor spatial locality

2 Solution: multi-level blocking
techniques

• Keeping data in cache and registers

• Reducing memory bandwidth pressure
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Performance evaluation
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Figure: Elapsed time: sequential v.s. parallel sFFT

• Implemented PsFFT using OpenMP

• Pink area selects the representative ranges of sparsity k

• Most of the area is shifted down to the curve of the parallel FFTW

• Over 5x faster than parallel FFTW
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Scalability
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• Evaluated the scalability on a 8-core Intel Sandy Bridge architecture

• Achieved over 5x for most of the cases
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Work in progress

• Develop a high-performance and portable parallel sparse FFT library

• Parallel sparse FFT for GPUs and accelerators

• sFFT is an interesting irregular algorithm

• Eliminating the dynamic irregular data reference pattern is still an
open research question

Presented by Cheng Wang November 17, 2013 cwang35@uh.edu 19 / 20



FFT Sparse FFT Parallel Sparse FFT Evaluation Work in progress Q&A

Q & A

Thank You For Your Attention
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