
6MANUAL DE IDENTIDADE PUCRS

ELEMENTOS GRÁFICOS
LOGOTIPO

O logotipo da PUCRS é formado pelas iniciais

da assinatura completa da Universidade junto à

sigla do estado do Rio Grande do Sul, utilizando a

fonte Friz Quadrata (normal) maiúscula, conforme

representado abaixo.

7MANUAL DE IDENTIDADE PUCRS

ELEMENTOS GRÁFICOS
LOGOMARCA

A logomarca é formada pela combinação do

Brasão e do logotipo da Universidade, conforme

representado ao lado.

Laboratoire d’Informatique de Grenoble
UMR 5217 - CNRS, INPG, INRIA, UJF, UPMF

Téléphone : (+33) 4 76 61 20 89
Télécopie : (+33) 4 76 61 20 99

Adresse électronique : mailto :Daniel.de Angelis Cordeiro@imag.fr

Adresse : Antenne ENSIMAG
ZIRST
51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin
FRANCE

Objet : Demande de autorisation de rédaction du manuscrit de thèse en anglais.

Daniel de Angelis Cordeiro, Doctorant
Membre du projet MOAIS, Laboratoire LIG

Montbonnot, le 17 octobre 2011

En accord avec mon directeur de thèse, Denis Trystram, je voudrais vous demander de m’accorder une
dérogation pour que la rédaction de mon manuscrit de thèse soit fait en Anglais. Ce choix a été dicté par
trois considérations principales. Ma langue maternelle est le brésilien et, donc, je suis plus à l’aise pour
rédiger en Anglais qu’en Français. Ma thèse a été financée par une bourse internationale du Programme
Al—an de la Commission Européenne. Par ailleurs, disposer d’un document en Anglais me permettra de
mieux le valoriser au Brésil.

Bien cordialement,

Denis Trystram Daniel de Angelis Cordeiro

6MANUAL DE IDENTIDADE PUCRS

ELEMENTOS GRÁFICOS
LOGOTIPO

O logotipo da PUCRS é formado pelas iniciais

da assinatura completa da Universidade junto à

sigla do estado do Rio Grande do Sul, utilizando a

fonte Friz Quadrata (normal) maiúscula, conforme

representado abaixo.

7MANUAL DE IDENTIDADE PUCRS

ELEMENTOS GRÁFICOS
LOGOMARCA

A logomarca é formada pela combinação do

Brasão e do logotipo da Universidade, conforme

representado ao lado.

Laboratoire d’Informatique de Grenoble
UMR 5217 - CNRS, INPG, INRIA, UJF, UPMF

Téléphone : (+33) 4 76 61 20 89
Télécopie : (+33) 4 76 61 20 99

Adresse électronique : mailto :Daniel.de Angelis Cordeiro@imag.fr

Adresse : Antenne ENSIMAG
ZIRST
51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin
FRANCE

Objet : Demande de autorisation de rédaction du manuscrit de thèse en anglais.

Daniel de Angelis Cordeiro, Doctorant
Membre du projet MOAIS, Laboratoire LIG

Montbonnot, le 17 octobre 2011

En accord avec mon directeur de thèse, Denis Trystram, je voudrais vous demander de m’accorder une
dérogation pour que la rédaction de mon manuscrit de thèse soit fait en Anglais. Ce choix a été dicté par
trois considérations principales. Ma langue maternelle est le brésilien et, donc, je suis plus à l’aise pour
rédiger en Anglais qu’en Français. Ma thèse a été financée par une bourse internationale du Programme
Al—an de la Commission Européenne. Par ailleurs, disposer d’un document en Anglais me permettra de
mieux le valoriser au Brésil.

Bien cordialement,

Denis Trystram Daniel de Angelis Cordeiro

Analysis of Computing and Energy Performance of
Multicore, NUMA, and Manycore Platforms for an
Irregular Application

Márcio Castro1, Emilio Francesquini2,3, Thomas Messi Nguélé4

and Jean-François Mehaut2,5

1 Federal University of Rio Grande do Sul
2 University of Grenoble
3 University of São Paulo
4 University of Yaoundé
5 CEA - DRT

IA3 Workshop - SC’13

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

0/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

0/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Demand for higher processor performance

� Increase of clock frequency

� Turning point: power consumption changed the course of
development of new processors

Trend in parallel computing

� The number of cores per die continues to increase

� Hundreds or even thousands of cores

Different execution models

� Light-weight manycore processors: autonomous cores,
POSIX threads, data and task parallelism

� GPUs: SIMD model, CUDA and OpenCL

1/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Demand for higher processor performance

� Increase of clock frequency

� Turning point: power consumption changed the course of
development of new processors

Trend in parallel computing

� The number of cores per die continues to increase

� Hundreds or even thousands of cores

Different execution models

� Light-weight manycore processors: autonomous cores,
POSIX threads, data and task parallelism

� GPUs: SIMD model, CUDA and OpenCL

1/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Demand for higher processor performance

� Increase of clock frequency

� Turning point: power consumption changed the course of
development of new processors

Trend in parallel computing

� The number of cores per die continues to increase

� Hundreds or even thousands of cores

Different execution models

� Light-weight manycore processors: autonomous cores,
POSIX threads, data and task parallelism

� GPUs: SIMD model, CUDA and OpenCL

1/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Energy efficiency is already a primary concern

� Mont-Blanc project1: develop a full energy-efficient HPC
system using low-power commercially available embedded
processors

What we’ve been seeing

� Performance and energy efficiency of numerical kernels on
multicores

What is missing?

1 Few works on embedded and manycore processors

2 What about irregular applications?

1http://montblanc-project.eu
2/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Energy efficiency is already a primary concern

� Mont-Blanc project1: develop a full energy-efficient HPC
system using low-power commercially available embedded
processors

What we’ve been seeing

� Performance and energy efficiency of numerical kernels on
multicores

What is missing?

1 Few works on embedded and manycore processors

2 What about irregular applications?

1http://montblanc-project.eu
2/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Energy efficiency is already a primary concern

� Mont-Blanc project1: develop a full energy-efficient HPC
system using low-power commercially available embedded
processors

What we’ve been seeing

� Performance and energy efficiency of numerical kernels on
multicores

What is missing?

1 Few works on embedded and manycore processors

2 What about irregular applications?

1http://montblanc-project.eu
2/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Introduction

Introduction

Our goals

� Analyze the computing and energy performance of multicore
and manycore processors

� Consider an irregular application as a case study:
Traveling-Salesman Problem (TSP)

� Consider a new manycore chip (MPPA-256) and other
general-purpose (Intel Sandy Bridge) and embedded (ARM)
multicore processors

3/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

3/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

General-purpose processors

Platforms

We considered 4 platforms in this study
� General-purpose and embedded processors

General-purpose processors
� Xeon E5: Intel Xeon E5-4640 Sandy Bridge-EP processor

chip, which has 8 CPU cores (16 threads with Hyper-Threading
support enabled) running at 2.40GHz

� Altix UV 2000: NUMA platform composed of 24 Xeon E5
processors interconnected by NUMA-link6

instance, its solution can be parallelized to make use of an
arbitrary number of threads assuring the complete use of the
chosen platforms. While this problem is highly paralleliz-
able, it also displays important issues related to imbalance
and irregularity. The behavior of an execution for the same
instance of the problem can drastically change depending on
the order and the number tasks.

We consider two important aspects in this study. The first
aspect concerns the programming issues and challenges en-
countered when adapting the TSP for MPPA-256. The use
of Network-on-Chip (NoC) for communication and the ab-
sence of cache coherence protocols are among the important
factors that make the development of parallel applications
on this processor not trivial. The lessons learned give some
insights on what can be faced when adapting parallel appli-
cations to manycores. The second aspect concerns the per-
formance and energy consumption of multicores and many-
cores. Our tests were carried out on four di↵erent hardware
platforms: Intel Xeon E5, SGI Altix UV 2000, Nvidia Tegra
3, and Kalray MPPA-256. The first two are composed of
regular x86 processors, while the others are based on low-
power processors. We compare the chip-to-chip performance
of these architectures as well as their power e�ciency and
show that the energy-to-solution for the same instance of the
problem can vary from 2.7kJ (MPPA-256) up to 35.4kJ (Xeon
E5) while the time-to-solution varies from 325s (MPPA-256)
to 4, 495s (Tegra 3). Next, we compare the Altix UV 2000
and the MPPA-256 platforms. Although very di↵erent from
each other, these platforms share some similarities that give
us the opportunity to evaluate important aspects of their
scalability. We concluded that both architectures scale well
for the chosen problem and MPPA-256 may consume up to
12x less energy than Altix UV 2000 to solve the same instance
of the problem.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the evaluated platforms. A high-level de-
scription of the TSP as well as its algorithms are detailed
in Section 3. Next, Section 4 discusses the challenges en-
countered when passing from multicores to the MPPA-256
manycore processor. Then, Section 5 presents performance
and energy e�ciency evaluations. Finally, we discuss related
works in Section 6 and conclude in Section 7.

2. PLATFORMS
In this section we describe the multicore and manycore

platforms used in this study. We first discuss the two plat-
forms based on general-purpose processors and then we present
the two platforms based on low-power processors.

2.1 General-Purpose Processors
Xeon E5. The Intel Xeon E5 is a 64-bit x86-64 processor.

In this study, we used a Xeon E5-4640 Sandy Bridge-EP pro-
cessor chip, which has 8 CPU cores (16 threads with Hyper-
Threading support enabled) running at 2.40GHz. Each core
has 32KB instruction and 32KB data L1 caches and 256KB
of L2 cache. All the 8 cores share a 20MB L3 cache and the
platform has 32GB of DDR3 memory.

Altix UV 2000. The SGI Altix UV 2000 (Figure 1) is a
Non-Uniform Memory Access (NUMA) platform designed
by SGI. The platform is composed of 24 NUMA nodes.
Each node has a Xeon E5-4640 Sandy Bridge-EP proces-
sor (with the same specifications of the Xeon E5 platform)
and 32GB of DDR3 memory. This memory is shared in
a ccNUMA fashion through the SGI’s proprietary NUMA-
link6 (bidirectional). This high-speed interconnection pro-

Node 0

Node 1

Node 2

Node 23

SGI UV 2000

Main Memory (32GB)

L2 L2
L3

L2 L2 L2 L2L2 L2

Intel Xeon E5
NUMA Node

C0
t0 t1

C7
t14t15

C6
t12 t13

C5
t10 t11

C1
t2 t3

C2
t4 t5

C3
t6 t7

C4
t8 t9

Figure 1: A simplified view of Altix UV 2000.

vides a point-to-point bandwidth of 6.7 GB/s per direction.
Overall, this platform has 192 CPU cores (384 threads with
Hyper-Threading support enabled).

2.2 Embedded Processors
Carma. The Carma DevKit from SECO features a Nvidia

Tegra 3 running at up to 1.3GHz, a Nvidia Quadro 1000M
GPU with 96 CUDA cores and 2GB of LP-DDR2 memory.
Tegra 3 is an embedded processor extensively used in mobile
devices such as smartphones and tablets. It implements a
Variable Symmetric Multiprocessing (vSMP) technology: it
integrates a quad-core processor along with a 5th low-power
companion core, built using a special low power silicon pro-
cess that executes tasks at low frequency for active standby
mode. All five CPU cores are identical ARM Cortex A9
CPUs, and are individually enabled and disabled (via ag-
gressive power gating) based on the workload.

MPPA-256. The MPPA-256 is a single-chip manycore pro-
cessor developed by Kalray that integrates 256 user cores
and 32 system cores in 28nm CMOS technology running at
400MHz. These cores are distributed across 16 compute
clusters and 4 I/O subsystems that communicate through
data and control Networks-on-Chip (NoCs). This processor
targets parallel applications whose programming models fall
within the following classes: Kahn Process Networks (KPN),
as motivated by media processing; Single Program Multiple
Data (SPMD), traditionally used for numerical kernels; and
time-triggered control systems [1, 3].

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15

Sh
ar

ed
 M

em
or

y

D-NoC C-NoC

RM RM RMRM

RM
RM

RM
RM

RM RM RMRM

RM
RM

RM
RM

Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

Figure 2: A simplified view of the MPPA-256.

Figure 2 shows the architecture overview of the MPPA-256.
It features two types of cores: Processing Elements (PE)
and Resource Managers (RM). Although RMs and PEs im-
plement the same Very Long Instruction Word (VLIW) ar-
chitecture, they have di↵erent purposes: PEs are dedicated
to run user threads (one thread per PE) in non-interruptible
and non-preemptible mode whereas RMs execute kernel rou-

4/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Platforms

We considered 4 platforms in this study

� General-purpose and embedded processors

Embedded processors

� Carma: a development kit from SECO
that features a quad-core Nvidia Tegra 3
running at 1.3GHz

� MPPA-256: a single-chip manycore
processor developed by Kalray that
integrates 256 user cores and 32 system
cores running at 400MHz

2010-2012 – Kalray SA All Rights Reserved September 2012 - Confidential Information 5

MPPA® Roadmap

MPPA®-256

256 Cores

Q1

2013

Application
Specific

Processors

MPPA®-512

512 Cores

MPPA®-1024

1024 Cores

Q4

2013

Q4

2014

Follow Moore Law and processing scalability

5/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM

RM
RM

RM
RM

RM RM RMRM

RM
RM

RM
RM

Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

2010-2012 – Kalray SA All Rights Reserved September 2012 - Confidential Information 5

MPPA® Roadmap

MPPA®-256

256 Cores

Q1

2013

Application
Specific

Processors

MPPA®-512

512 Cores

MPPA®-1024

1024 Cores

Q4

2013

Q4

2014

Follow Moore Law and processing scalability

Inside the chip:
� 256 cores (400MHz): 16 clusters – 16 PEs per cluster
� PEs share 2MB of memory
� Absence of cache coherence protocol inside clusters
� Communication between clusters: Network-on-Chip (NoC)
� 4 I/O subsystems: 2 of them connected to external memory

6/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM
RM

RM
RM

RM

RM RM RMRM
RM

RM
RM

RM
Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM
RM

RM
RM

RM

RM RM RMRM
RM

RM
RM

RM
Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

Master

� A master process runs on an RM of an I/O subsystem

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM
RM

RM
RM

RM

RM RM RMRM
RM

RM
RM

RM
Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM
Slave

Slave

Master

� The master process spawns slave processes

� 1 slave process per cluster

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM
RM

RM
RM

RM

RM RM RMRM
RM

RM
RM

RM
Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

Slave

Slave

Slave

Master

� The slave process runs on PE0 and may create up to 15
threads one for each PE

� Threads share 2MB of memory within the cluster

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Platforms

Embedded processors

Kalray MPPA-256

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15Sh
ar

ed
 M

em
or

y
(2

M
B)

D-NoC C-NoC

RM RM RMRM
RM

RM
RM

RM

RM RM RMRM
RM

RM
RM

RM
Compute Cluster

I/O Subsystem

I/O
 S

ub
sy

st
em

I/O Subsystem

I/O
 S

ub
sy

st
em

PCIe, DDR, ...

PCIe, DDR, ...

MPPA-256

RM

write!

Slave

Slave

Slave

Master

� Communications: remote writes

� Data travel through the NoC

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

7/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Overview

Case study: Travelling salesman problem (TSP)

Definition
� It consists of finding a shortest possible path that passes

through n cities, visiting each city only once, and returns to
the city of origin.

Representation
� Complete undirected graph
� Nodes: cities
� Edges: distances (costs)

Example: n = 4
Possible paths from 1:
1-2-3-4-1, 1-2-4-3-1,
1-3-2-4-1, 1-3-4-2-1, ...

22
92

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

8/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

tines and services of NoC interfaces. Operations executed by
RMs vary from task and communication management to I/O
data exchanges between either external buses (e.g. PCIe) or
SDRAM. For this reason, RMs have privileged connections
to NoC interfaces. Both PEs and RMs feature private 2-way
associative instruction and data caches.

PEs and RMs are grouped within compute clusters and
I/O subsystems. Each compute cluster features 16 PEs, 1
RM and a local shared memory of 2MB, which enables a high
bandwidth and throughput between PEs. Each I/O subsys-
tem relies on 4 RMs with a shared D-cache, static memory
and external DDR access. Contrary to the RMs available on
compute clusters, the RMs of I/O subsystems also run user
code. An important di↵erence of the MPPA-256 architecture
is that it does not support cache coherence between PEs,
even among those in the same compute cluster.

Parallel applications running on MPPA-256 usually follow
the master/worker pattern. The master process runs on an
RM of the I/O subsystem and it is responsible for spawn-
ing worker processes. These processes are then executed
on compute clusters and each process may create up to 16
POSIX threads, one for each PE. In other words, the mas-
ter process running on the I/O subsystem must spawn 16
worker processes and each process must create 16 threads
in order to make full use of the 256 cores.

Compute clusters and I/O subsystems are connected by
two parallel NoCs with bi-directional links, one for data (D-
NoC) and another for control (C-NoC). There is one NoC
node per compute cluster, which is controlled by the RM.
Di↵erently, I/O subsystems have 4 NoC nodes, each one
associated with a D-NoC router and a C-NoC router. The
D-NoC is dedicated to high bandwidth data transfers. The
C-NoC is dedicated to peripheral D-NoC flow control, power
management and application messages.

3. CASE STUDY: THE TSP
The Traveling-Salesman Problem (TSP) consists of solv-

ing the routing problem of a hypothetical traveling-salesman.
Such a route must pass through n cities, only once per city,
return to the city of origin and have the shortest possible
length. It is a very well studied NP-complete problem. More
formally, the problem could be represented as a complete
undirected graph G = (V, E), |V | = n where each edge
(i, j) 2 E has an associated cost c(i, j) � 0 representing the
distance from the city i to j (Figure 3a). The goal is to find
a hamiltonian cycle with minimum cost that visits each city
only once and finishes at the city of departure.

1

2

3
4

10

25

15

23

12

17

1

2 3 4

3 4 2 4 2 3

4 2 3 2

12 23 10

25 17 25 15 17 15

25 251715

52 44 55 52 50

3

15

4

17

65

(a) (b)

Figure 3: Example of TSP with 4 cities.

There are several di↵erent approaches for the resolution
of this problem [7]. These solutions normally employ brute
force, simple or complex heuristics, approximation algorithms
or a mix of them. We are not going to detail the di↵er-
ent available approaches since here we want to evaluate and

compare the performance of an embarrassingly parallel non-
numerical application across di↵erent architectures. There-
fore, we use a brute force exact algorithm based on a simple
heuristic. We first explain the sequential version of our al-
gorithm, then we explain how we extended it to work with
multiple threads. Finally, we present its distributed version.

3.1 Sequential Algorithm
The sequential version of the algorithm is based on the

branch and bound method using brute force. Figure 4 out-
lines this solution. It takes as input the number of cities,
and a cost matrix, and outputs the minimum path length.

global min path
procedure tsp solve(last city, current cost, cities)
if cities = ;
then return (current cost)

for each i 2 cities
do8

><
>:

new cost current cost + costs[last city, i]
if new cost < min path

then

⇢
new min tsp solve(i, new cost, cities\{i})
atomic update if less(min path, new min)

main
min path 1
tsp solve(1, 0, {2, 3, ..., n cities})
output (min path)

Figure 4: Sequential version of TSP.

This algorithm does a depth-first search looking for the
shortest path and has complexity O(n!). It does not explore
paths that are already known to be longer than the best
path found so far, therefore discarding fruitless branches.
Figure 3b shows this behavior. The shaded edges are those
that the algorithm does not follow, since a possible solution
that includes them would be more costly than the one it
has already found. This simple pruning technique greatly
improves the performance of the algorithm. However, it also
introduces irregularities into the search space. The search
depth needed to discard one of the branches depends on the
order in which the branches were searched.

3.2 Multi-threaded Algorithm
The multi-threaded version of the algorithm works by cre-

ating a queue of tasks from which each thread takes the
jobs to be executed. A task is nothing more than one of
the branches of the search tree. The generation of the tasks
is done sequentially since the time needed to do it is neg-
ligible. As soon as one thread runs out of work, it takes a
new task from the queue. The number of tasks to be gen-
erated is a function of the number of threads and is defined
by the max hops parameter. This is the minimum number
of levels of the search tree that must be descended so that
there is a minimum (parameterizable) number of tasks per
thread. The total number of tasks as a function of levels l
and cities n can be determined by the following recurrence
relation (Equation 1) which is defined for 0  l < n.

t(l, n) =

⇢
1 l = 0

t(l � 1, n) ⇤ (n � l) otherwise
(1)

Figure 5 shows the algorithm for this approach. This al-
gorithm also receives as a parameter the number of threads
n threads to be used.

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

0
inf

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

12
inf

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

77
inf

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

82
inf

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

92
92

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

22
92

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

27
92

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

35
35

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

8
35

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

73
35

2

65

X
73

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

13
35

4

5

2

65

X
73

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

23
35

2

10

4

5

2

65

X
73

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

35
35

1

12

X
35

2

10

4

5

2

65

X
73

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Sequential algorithm

TSP: Sequential algorithm

� Recursive method

� Depth-first traversal

� Branch and bound:
doesn’t explore paths
that are longer than the
current shortest one

-
35

4

10

2 3

3 2

10 5

65 65

XX
85 80

1

12

X
35

2

10

4

5

2

65

X
73

3

8

1

8

35

3

5

4

10

1

10

92

4

5

3

65

2

12

current_cost =
min_path =

1

2

3
4

10

65

5

8

12

10

1

Irregular behavior

Pruning approach introduces irregularities into the search space!

9/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Multithreaded algorithm

TSP: Multithreaded algorithm

� Generates tasks sequentially
at the beggining

� Enqueues tasks in a
centralized queue of tasks

� Threads atomically dequeue
tasks and call TSP SOLVE ()

global queue, min path
procedure generate tasks(n hops, last city,

current cost, cities)
if n hops = max hops

then

⇢
task (last city, current cost, cities)
enqueue task(queue, task)

else

8
>>>>>><
>>>>>>:

for each i 2 cities

do

8
>>>><
>>>>:

if last city = none
then last cost 0
else last cost costs[last city, i]

new cost curr cost + last cost
generate tasks(n hops + 1, i,

new cost, cities\{i})

procedure do work()
while queue 6= ;

do

(
(last city, current cost, cities)

atomic dequeue(queue)
tsp solve(last city, current cost, cities)

main
min path 1
generate tasks(0, none, 0, {1, 2, ..., n cities})
for i 1 to n threads
do spawn thread(do work())

wait every child thread()
output (min path)

Figure 5: Multi-threaded version of TSP.

3.3 Distributed Algorithm
The distributed algorithm is similar to the multi-threaded

version. It receives as an additional parameter the number
of distributed peers to be used. The number of peers and
the number of threads define the total number of lines of
execution. For each peer, n threads will be created, thus
totaling n threads ⇤ n peers threads. Inside each peer, the
execution is nearly identical to that of the multi-threaded
case. The only di↵erence is that when the min path is up-
dated, this update is broadcasted to every other peer so they
can also use it to optimize their execution. At the end of
the execution, one of the peers (typically the 0-th) prints
the solution. The final solution might have been discovered
by any one of the peers, however all of them are aware of it
due to the broadcasts of each discovered min path.

To avoid two peers working on the same subproblem, each
peer peer id only works on the tasks which were assigned to
it. To do so, we specify the desired number of partitions per
peer. We also specify the percentage of the tasks that will be
distributed in the beginning of the execution. Afterwards,
as the peers run out of work, they will ask a master peer for
more partitions. To reduce communication, the master peer
sends sets of partitions of decreasing size at each request [9].
The rationale behind it is that, as the task sizes are irregular,
distributing a smaller number of partitions during the end
of the execution might decrease the imbalance between the
peers. In this case, for each request the master peer sends
a set of partitions S and the peer peer id will work on the
tasks such that task index mod n partitions 2 S. Since
the task generation is done locally, the amount of transferred
data can be minimized.

As an implementation improvement, only one thread per
peer becomes responsible for asking more partitions when
the peer runs out of work. Once this thread receives a new
partition from the master peer, it generates and populates
the peer’s task queue with new tasks. During the generation
of these tasks, the remaining n threads� 1 threads can be-
gin to process tasks as soon as they are enqueued, without
the need to wait for the end of the task generation. This
behavior is further discussed in Section 5.3.3.

4. ADAPTING THE TSP FOR MANYCORES
We presented in Section 3 insights into the algorithms for

the resolution of the TSP. However, e�ciently passing from
multicores to manycores might be a nontrivial task. There
are several reasons for that, being the most evident the natu-
ral architectural di↵erences between these platforms. These
di↵erences usually force us to make adaptations to the code.
In this section, we discuss these architectural aspects and
adaptations as well as the rationale behind them.

POSIX threads are supported by the four tested plat-
forms, thus the multi-threaded code for Xeon E5, Altix UV
2000, and Carma is exactly the same. In this version of the
code, the global variable min path defined by the algorithm
depicted in Figure 4 is implemented using a simple shared
variable that is accessed by every thread. The atomic func-
tion atomic update if less(current value, new value) is
implemented using a regular POSIX lock.

Unfortunately, this common solution is not appropriate
to the MPPA-256 platform since it does not possess coher-
ent caches. Despite the fact that the update of min path
works as it should (on the MPPA-256 platform the POSIX
lock implementation invalidates the whole cache) and the
final path length is correct, each one of the worker threads
might be using a stale value of the min path variable for a
long time (in the worst case until the end of its execution)
and wasting time on fruitless branches of the search tree.
This means that, although correct, the execution might be
severely slowed down. To correct it, we have used platform
specific instructions that allow us direct access to the local
memory of the cluster, bypassing the cache (__builtin_k1_
lwu and __builtin_k1_swu to load/store data from/to the
local memory, respectively). The cost to read the variable in
this manner is clearly more expensive than using the value
stored in the caches (reading from memory takes 8 cycles
whereas reading from cache takes at most 2 cycles). Yet,
the performance improvement due to the better pruning of
the search tree largely outweighs the additional cost.

In order to exploit the MPPA-256 platform, we needed to
use every cluster of the chip. These clusters do not have a
global memory space hence the need for the distributed ver-
sion of the algorithm. Conversely, Altix UV 2000 platform has
a global memory space, however, as the communications be-
tween the NUMA nodes are done through the NUMAlink6
interconnection, we can make a better use of this system by
keeping the memory near the threads that use it and avoid
using the link to perform anything but global synchroniza-
tions and min path propagation.

In general, the distributed algorithm used by MPPA-256
and Altix UV 2000 is the same. Peers in the MPPA-256 plat-
form take the form of compute clusters while in the Altix UV
2000 platform each peer is represented by a NUMA node.
The di↵erence is how they implement the min path broad-
cast and the task distribution. On the Altix UV 2000 plat-
form, the implementation is based on shared memory using
locks and condition variables. On the other hand, the im-
plementation for the MPPA-256 platform is more complex.
Since there is no shared memory between clusters, we em-
ploy asynchronous message exchanges. These message ex-
changes take the form of remote memory write operations.
This can be done using proprietary MPPA-256 low-level sys-
tem calls that allow a thread in a cluster to write to the
memory of any other cluster on the chip. In both cases, the
local value of the min path variable is updated atomically.
However, due to the time needed to broadcast a new value,
some threads might use a stale value for a short time until
the broadcast is completed.

10/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Case study: the TSP problem

Distributed algorithm

TSP: Distributed algorithm

� Peers: run the multithreaded algorithm
� Master peer: enqueues partitions in peers’ local task queues
� Partitions: a set of tasks
� Peers broadcast new shortest paths when found
� The master peer sends partitions of decreasing size at each

request to decrease the imbalance between the peers at the
end of the execution

Master Peer

Peer 1 Peer 2 Peer n

Multithreaded
Algorithm

send partition

get partition

...
new min_path

11/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Adapting the TSP for manycores

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

11/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Adapting the TSP for manycores

Adapting the TSP for manycores

Xeon E5 and Carma

� Multithreaded algorithm

� Shared variable min path stores the shortest path and can be
updated by all threads (locks needed)

Altix UV 2000

� Distributed algorithm

� Broadcast no explicit communication (locks and condition
variables needed)

� Thread and data affinity to reduce NUMA penalties

12/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Adapting the TSP for manycores

Adapting the TSP for manycores

MPPA-256

� Distributed algorithm

� Communications between the master/peers remote writes

� Absence of cache coherence: worker threads inside peers
might use a stale value of the min path performance loss

� We used platform specific instructions to bypass the cache
when reading/writing from/to min path

13/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Computing and energy performance results

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

13/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Computing and energy performance results

Measurement methodology

Measurement methodology

Metrics

� Time-to-solution: time to reach a solution for a given problem

� Energy-to-solution: amount of energy to reach a solution for
a given problem

Power and energy measurements

� Xeon E5 and Altix UV 2000: energy sensors (hw. counters)

� MPPA-256: energy sensors

� Carma (Tegra 3): power consumption specification

Altix
Xeon E5 UV 2000 Carma MPPA-256

Power (W) 68.6 1,418.4 5.88 8.26

14/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Computing and energy performance results

Chip-to-chip comparison

Chip-to-chip comparison: performance and energy

5. EXPERIMENTAL RESULTS
In this section, we present a performance and energy e�-

ciency evaluation of the platforms when running the parallel
and distributed versions of the TSP. We start by presenting
our measurement methodology along with the metrics used
to analyze the results on all platforms. Then, we compare
the energy and computing performance of each multicore/
manycore processor (Section 5.2). Finally, in Section 5.3,
we do a more thorough comparison between MPPA-256 and
Altix UV 2000 when varying the number of processing units.

5.1 Measurement Methodology
We use two important metrics to compare the energy and

computing performance of di↵erent multicore and manycore
platforms: time-to-solution and energy-to-solution. Time-
to-solution is the time spent to reach a solution for a given
problem. In our case, this is the overall execution time of the
parallel/distributed TSP. Energy-to-solution is the amount
of energy spent to reach a solution for a problem. It can be
computed by multiplying the average power consumed while
running the application by the time-to-solution.

Table 1: Power consumption of the 4 processors.

Altix
Xeon E5 UV 2000 Carma MPPA-256

Power (W) 68.6 1,418.4 5.88 8.26
Method Sensors Sensors Spec Sensors

Table 1 shows the overview of the power consumed by each
one of the platforms used in our experiments during the ex-
ecution of the parallel and distributed versions of the TSP.
Even though the Altix UV 2000 features 24 Xeon E5 proces-
sors, it consumes less than 24 times the power observed on
Xeon E5. This is an expected phenomenon because Xeon E5
runs a multi-threaded version of TSP whereas Altix UV 2000
runs its distributed counterpart. The distributed version
experiences periods of low processor usage as, for example,
those during the task request/response cycle and those re-
lated to load imbalance (we discuss it further in Section 5.3).

The power consumed by each processor was obtained us-
ing two di↵erent approaches. Both Xeon E5 and Altix UV
2000 feature Intel Sandy Bridge microarchitecture, which has
Running Average Power Limit (RAPL) energy sensors. This
allows us to measure the power consumption of CPU-level
components through Machine-Specific Registers (MSRs). We
used this approach to obtain the energy consumption of
the whole CPU package including cores and cache memory
(named RAPL PKG domain). Power measurements using
this approach are very accurate as shown in [13, 5]. Simi-
larly, MPPA-256 also features sensors to measure the power
consumption of the entire chip, i.e., 16 compute clusters
and 4 I/O subsystems. Finally, we used the power con-
sumption specification for Carma, since it does not feature
any hardware sensor. In this case, we excluded the energy
consumption of the GPU and the LP-DDR2 to make a fair
comparison with other platforms.

Concerning the software stack, we compiled the TSP with
the same major revision of GCC (4.7) on all platforms along
with the optimization flag -O3. However, MPPA-256 features
a modified version of GCC to build binaries to its specific
platform. All platforms except MPPA-256 run Linux v3.0.
MPPA-256 runs two di↵erent operating systems. The Real

Time Executive for Multiprocessor System (RTEMS)1 runs
on the I/O subsystems whereas the NodeOS (a proprietary
operating system developed by Kalray) runs on the RM of
each computing cluster.

We also defined three input problem sizes for the TSP:
small (16 cities), medium (18 cities) and large (20 cities).
We used a small problem size when running the TSP with
low thread counts in order to obtain the results in a rea-
sonable time2. In all experiments, we have used the same
instance of the problem to guarantee the same execution
path among di↵erent runs. Each experiment was repeated
at least 20 times to guarantee a confidence level of 95%.

5.2 Chip-to-Chip Comparison
Figure 6 compares both time-to-solution (right y-axis) and

energy-to-solution (left y-axis) metrics on all processors (re-
sults obtained on Altix UV 2000 are shown in Section 5.3).
In these experiments, we executed the TSP with a large
problem size and we used every core from each processor.
Di↵erently from the tests executed on the other processors,
we used two times more threads than the number of physical
cores on the Xeon E5 platform. Although this processor has
8 physical cores, it features Hyper-Threading (HT) which
doubles the number of logical cores, allowing the execution
of 16 threads concurrently. HT was beneficial in our case,
improving the performance of the multi-threaded TSP.

35.4

2.7

26.4

521

325

4495

0

625

1250

1875

2500

3125

3750

4375

5000

0

5

10

15

20

25

30

35

40

Xeon E5
(8 cores + HT)

MPPA-256
(256 cores)

Carma
(4 cores)

Ti
m

e-
to

-S
ol

ut
io

n
(s

)

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Large

35,4

3,5

26,4

521
325

4495

0

2500

5000

7500

10000

12500

15000

17500

20000

0

5

10

15

20

25

30

35

40

Xeon E5
(8 cores + HT)

MPPA-256
(256 cores)

Carma
(4 cores)

Ti
m

e-
to

-S
ol

ut
io

n
(s

)

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Large

Energy Time

Figure 6: Time and energy-to-solution comparison
between multicore and manycore processors.

Time-to-Solution. As expected, the TSP on Carma pre-
sented the highest execution times among all processors, be-
ing 8.6x slower than Xeon E5. The reason for that is three-
fold: (i) it has considerably lower clock frequency than Xeon
E5; (ii) Xeon E5 is a performance-centric processor that is
tuned far more for speed than for low power consumption;
and (iii) Xeon E5 profits from its higher parallelism, since
our parallel TSP scales considerably well as we increase the
number of threads. Surprisingly, MPPA-256 presented the
best execution time among all processors, executing the TSP
1.6x faster than than Xeon E5. Even though the clock fre-
quency of MPPA-256 PEs is lower than that of the Xeon E5
cores, this embedded processor achieved better performance.
Once again, this is due to the inherent characteristic of our
TSP implementation. As we previously discussed in Sec-
tion 3, there are few message exchanges between peers in

1RTEMS is available at http://www.rtems.org
2The large problem size along with very low thread counts
takes several hours on embedded processors due to their low
clock frequency.

20 cities

Results on MPPA-256:
� Performance ∼1.6x faster than Xeon E5

� Energy ∼10x less energy than Carma (Tegra 3)

15/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Computing and energy performance results

Energy-to-solution: MPPA-256 vs. Altix UV 2000

MPPA-256 single cluster vs. Altix UV 2000 single node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

Figure 7: Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

the distributed algorithm. The broadcast communication
between clusters was implemented using asynchronous mes-
sages throughout the D-NoC, allowing compute clusters to
overlap communication and computation.

Energy-to-Solution. Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low de-
gree of parallelism available on the ARM processor was a
clear disadvantage for Carma. Even though this processor
consumes less power than the others, it ends up executing
the TSP during a longer period of time. In our experiments,
Carma consumed 25.2% less energy than Xeon E5. Among all
processors used in our experiments, MPPA-256 showed the
best energy-to-solution, reducing the energy consumption of
Xeon E5 by approximately 92%.

5.3 MPPA-256 vs. Altix UV 2000
In the previous section, we showed that MPPA-256 pre-

sented the best results for both energy-to-solution and time-
to-solution metrics. The main reason for that comes from
the fact that MPPA-256 o↵ers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of sev-
eral multicore processors.

Although both platforms di↵er in several aspects, they
have a similar conceptual hierarchy. As we previously ex-
plained in Section 2, the Altix UV 2000 has 24 Intel Xeon E5
processors, each one with 16 logical cores with HT enabled.
On the other hand, MPPA-256 has 16 compute clusters, each
with 16 PEs. Taking this architectural similarity in mind, we
proceeded as follows to compare their energy performances.
First, we compare the energy-to-solution of both platforms
when varying the number of threads from 1 to 16. In this
case, we compare the performance of a single processor of
Altix UV 2000 against a single compute cluster of MPPA-256,
since we associate one thread per logical core/PE. For these
tests, we used a small problem size due to time constraints.
Then, we compare the energy-to-solution of both platforms
when varying the number of peers (i.e., processors on Altix
UV 2000 and computing clusters on MPPA-256), while fixing
the number of threads per processor/cluster to 16. We used
a medium problem size to compare the energy-to-solution
from 2 to 12 peers and a large problem size for more than
12 peers. Note that the MPPA-256 architecture is limited to
16 peers, therefore we only show the results for more than
16 peers on Altix UV 2000 platform. Figure 7 compares their
energy-to-solution measurement results.

5.3.1 Varying the Number of Threads
The energy performance of both Altix UV 2000 and MPPA-

256 may significantly vary depending on the number of threads
used (Figure 7a). When comparing the energy e�ciency of
a single Altix UV 2000 processor against a single MPPA-256
cluster, we noticed that Altix UV 2000 outperformed MPPA-
256 on low thread counts (it consumed 42% and 34% less
energy with one and two cores/PEs, respectively). For more
than 6 threads, however, the MPPA-256 cluster outperformed
the Altix UV 2000 processor, consuming up to ⇠48% less en-
ergy with 16 threads. After a deeper analysis, we concluded
that this comes from the fact that the power consumed by
a single Altix UV 2000 processor considerably increased as
we increased the number of used cores whereas the power
consumed by a single MPPA-256 cluster remained practically
unchanged. More precisely, we noticed that the power con-
sumption of a single Altix UV 2000 processor increased from
27W (single thread) up to 68.6W (16 threads) whereas it
varied from 3.73W (single thread) up to 3.98W (16 threads)
on the MPPA-256 cluster. This means that parallel applica-
tions running on MPPA-256 should exploit the full potential
of PEs in order to achieve better energy performance than
state-of-the-art Intel processors.

5.3.2 Varying the Number of Peers
The gap between the energy consumed by Altix UV 2000

and MPPA-256 became more important as we increased the
number of peers. From 2 to 12 peers (Figure 7b), MPPA-256
consumed ⇠8.3x less energy than Altix UV 2000 on average
(medium problem size). This gap was even larger from 13 to
16 peers with a large problem size (Figure 7c): in this case,
MPPA-256 consumed on average ⇠11.3x less energy than Al-
tix UV 2000. Once again, the rationale behind that comes
from the high energy cost associated to the Altix UV 2000
processors: adding one Xeon E5 processor usually increases
the overall power consumption of Altix UV 2000 by approxi-
mately 60W whereas adding one MPPA-256 cluster increases
the overall power consumption of MPPA-256 by 0.29W. This
means that MPPA-256 has a better tradeo↵ between comput-
ing/power performance for a fairly parallelizable application
such as the TSP.

So far, we have only compared the energy-to-solution of
MPPA-256 and Altix UV 2000, showing that the former con-
sumed far less energy than latter to solve the same prob-
lem. Figure 8 illustrates the time-to-solution gap between
them for a medium problem size when considering an equal
number of resources (peers). Overall, our distributed ver-
sion of TSP scaled considerably well and execution times
showed similar trends on both platforms. However, Altix UV
2000 was approximately 9x faster than MPPA-256. This re-
sult was expected, since peers mean processors running at
full speed (2.4GHz) on Altix UV 2000 whereas they represent

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

16 cities 18 cities 20 cities

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

Single node/cluster power consumption

� Altix: from 27W (1 thread) up to 68.6W (16 threads)

� MPPA-256: from 3.7W (1 thread) up to 4W (16 threads)

16/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Computing and energy performance results

Varying the number of clusters/nodes in MPPA-256 and Altix UV 2000

Energy-to-solution: MPPA-256 vs. Altix UV 2000
Varying the number of clusters/nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

Figure 7: Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

the distributed algorithm. The broadcast communication
between clusters was implemented using asynchronous mes-
sages throughout the D-NoC, allowing compute clusters to
overlap communication and computation.

Energy-to-Solution. Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low de-
gree of parallelism available on the ARM processor was a
clear disadvantage for Carma. Even though this processor
consumes less power than the others, it ends up executing
the TSP during a longer period of time. In our experiments,
Carma consumed 25.2% less energy than Xeon E5. Among all
processors used in our experiments, MPPA-256 showed the
best energy-to-solution, reducing the energy consumption of
Xeon E5 by approximately 92%.

5.3 MPPA-256 vs. Altix UV 2000
In the previous section, we showed that MPPA-256 pre-

sented the best results for both energy-to-solution and time-
to-solution metrics. The main reason for that comes from
the fact that MPPA-256 o↵ers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of sev-
eral multicore processors.

Although both platforms di↵er in several aspects, they
have a similar conceptual hierarchy. As we previously ex-
plained in Section 2, the Altix UV 2000 has 24 Intel Xeon E5
processors, each one with 16 logical cores with HT enabled.
On the other hand, MPPA-256 has 16 compute clusters, each
with 16 PEs. Taking this architectural similarity in mind, we
proceeded as follows to compare their energy performances.
First, we compare the energy-to-solution of both platforms
when varying the number of threads from 1 to 16. In this
case, we compare the performance of a single processor of
Altix UV 2000 against a single compute cluster of MPPA-256,
since we associate one thread per logical core/PE. For these
tests, we used a small problem size due to time constraints.
Then, we compare the energy-to-solution of both platforms
when varying the number of peers (i.e., processors on Altix
UV 2000 and computing clusters on MPPA-256), while fixing
the number of threads per processor/cluster to 16. We used
a medium problem size to compare the energy-to-solution
from 2 to 12 peers and a large problem size for more than
12 peers. Note that the MPPA-256 architecture is limited to
16 peers, therefore we only show the results for more than
16 peers on Altix UV 2000 platform. Figure 7 compares their
energy-to-solution measurement results.

5.3.1 Varying the Number of Threads
The energy performance of both Altix UV 2000 and MPPA-

256 may significantly vary depending on the number of threads
used (Figure 7a). When comparing the energy e�ciency of
a single Altix UV 2000 processor against a single MPPA-256
cluster, we noticed that Altix UV 2000 outperformed MPPA-
256 on low thread counts (it consumed 42% and 34% less
energy with one and two cores/PEs, respectively). For more
than 6 threads, however, the MPPA-256 cluster outperformed
the Altix UV 2000 processor, consuming up to ⇠48% less en-
ergy with 16 threads. After a deeper analysis, we concluded
that this comes from the fact that the power consumed by
a single Altix UV 2000 processor considerably increased as
we increased the number of used cores whereas the power
consumed by a single MPPA-256 cluster remained practically
unchanged. More precisely, we noticed that the power con-
sumption of a single Altix UV 2000 processor increased from
27W (single thread) up to 68.6W (16 threads) whereas it
varied from 3.73W (single thread) up to 3.98W (16 threads)
on the MPPA-256 cluster. This means that parallel applica-
tions running on MPPA-256 should exploit the full potential
of PEs in order to achieve better energy performance than
state-of-the-art Intel processors.

5.3.2 Varying the Number of Peers
The gap between the energy consumed by Altix UV 2000

and MPPA-256 became more important as we increased the
number of peers. From 2 to 12 peers (Figure 7b), MPPA-256
consumed ⇠8.3x less energy than Altix UV 2000 on average
(medium problem size). This gap was even larger from 13 to
16 peers with a large problem size (Figure 7c): in this case,
MPPA-256 consumed on average ⇠11.3x less energy than Al-
tix UV 2000. Once again, the rationale behind that comes
from the high energy cost associated to the Altix UV 2000
processors: adding one Xeon E5 processor usually increases
the overall power consumption of Altix UV 2000 by approxi-
mately 60W whereas adding one MPPA-256 cluster increases
the overall power consumption of MPPA-256 by 0.29W. This
means that MPPA-256 has a better tradeo↵ between comput-
ing/power performance for a fairly parallelizable application
such as the TSP.

So far, we have only compared the energy-to-solution of
MPPA-256 and Altix UV 2000, showing that the former con-
sumed far less energy than latter to solve the same prob-
lem. Figure 8 illustrates the time-to-solution gap between
them for a medium problem size when considering an equal
number of resources (peers). Overall, our distributed ver-
sion of TSP scaled considerably well and execution times
showed similar trends on both platforms. However, Altix UV
2000 was approximately 9x faster than MPPA-256. This re-
sult was expected, since peers mean processors running at
full speed (2.4GHz) on Altix UV 2000 whereas they represent

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

16 cities 18 cities 20 cities

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of clusters

Medium

Altix UV 2000

MPPA-256

Legend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(b) Medium

Altix UV 2000

MPPA-256

0

5

10

15

20

25

30

35

40

45

13 14 15 16 17 18 19 20 21 22 23 24

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of peers

(c) Large

Altix UV 2000

MPPA-256

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y-

to
-S

ol
ut

io
n

(k
J)

Number of threads

(a) Small

Altix UV 2000

MPPA-256

Figure 7. Energy-to-solution comparison between Altix UV 2000 and MPPA-256 with three problem sizes.

Xeon E5 profits from its higher parallelism, since our parallel
TSP scales considerably well as we increase the number of
threads. Surprisingly, MPPA-256 presented the best execution
time among all processors, executing the TSP 1.6x faster than
than Xeon E5. Even though the clock frequency of MPPA-256
PEs is lower than that of the Xeon E5 cores, this embedded
processor achieved better performance. Once again, this is due
to the inherent characteristic of our TSP implementation. As
we previously discussed in Section III, there are few message
exchanges between peers in the distributed algorithm. The
broadcast communication between clusters was implemented
using asynchronous messages throughout the NoC, which
results in almost no contention.

2) Energy-to-Solution: Both embedded processors pre-
sented better energy-to-solution than Xeon E5. The low degree
of parallelism available on the ARM processor was a clear
disadvantage for Carma. Even though this processor consumes
less power than the others, it ends up executing the TSP during
a longer period of time. In our experiments, Carma consumed
25.2% less energy than Xeon E5. Among all processors used
in our experiments, MPPA-256 showed the best energy-to-
solution, reducing the energy consumption of Xeon E5 by
approximately 90%.

C. MPPA-256 vs. Altix UV 2000

In the previous section, we showed that MPPA-256 pre-
sented the best results for both energy-to-solution and time-to-
solution metrics. The main reason for that comes from the
fact that MPPA-256 offers a much higher parallelism than
other processors and yet has a low power consumption. In
this section, we intend to extend the previous analysis by
comparing the energy performance of MPPA-256 to another
platform which also features the same level of parallelism,
the Altix UV 2000. In other words, we intend to compare a
manycore processor to a NUMA platform composed of several
multicore processors.

Although both platforms differ in several aspects, they have
a similar conceptual hierarchy. As we previously explained in
Section II, the Altix UV 2000 has 24 Intel Xeon E5 processors,
each one with 16 logical cores with HT enabled. On the other
hand, MPPA-256 has 16 compute clusters, each with 16 PEs.
Taking this architectural similarity in mind, we proceeded
as follows to compare their energy performances. First, we
compare the energy-to-solution of both platforms when varying
the number of threads from 1 to 16. In this case, we compare
the performance of a single processor of Altix UV 2000 against
a single compute cluster of MPPA-256, since we associate one
thread per logical core/PE. For these tests, we used a small

problem size due to time constraints. Then, we compare the
energy-to-solution of both platforms when varying the number
of peers (i.e., processors on Altix UV 2000 and computing
clusters on MPPA-256), while fixing the number of threads
per processor/cluster to 16. We used a medium problem size
to compare the energy-to-solution from 2 to 12 peers and
a large problem size for more than 12 peers. Note that the
MPPA-256 architecture is limited to 16 peers, therefore we
only show the results for more than 16 peers on Altix UV
2000 platform. Figure 7 compares their energy-to-solution
measurement results.

1) Varying the Number of Threads: The energy perfor-
mance of both Altix UV 2000 and MPPA-256 may significantly
vary depending on the number of threads used (Figure 7a).
When comparing the energy efficiency of a single Altix UV
2000 processor against a single MPPA-256 cluster, we noticed
that Altix UV 2000 outperformed MPPA-256 on low thread
counts (it consumed 90% and 11% less energy with one
and two cores/PEs, respectively). For more than 8 threads,
however, the MPPA-256 cluster outperformed the Altix UV 2000
processor, consuming up to ⇠40% less energy with 16 threads.
After a deeper analysis, we concluded that this comes from
the fact that the power consumed by a single Altix UV 2000
processor considerably increased as we increased the number
of used cores whereas the power consumed by a single MPPA-
256 cluster remained practically unchanged. More precisely,
we noticed that the power consumption of a single Altix
UV 2000 processor increased from 27W (single thread) up
to 68.6W (16 threads) whereas it varied from 4.1W (single
thread) up to 4.6W (16 threads) on the MPPA-256 cluster. This
means that parallel applications running on MPPA-256 should
exploit the full potential of PEs in order to achieve better
energy performance than state-of-the-art Intel processors.

2) Varying the Number of Peers: The gap between the
energy consumed by Altix UV 2000 and MPPA-256 became
more important as we increased the number of peers. From 2
to 12 peers (Figure 7b), MPPA-256 consumed 6x less energy
than Altix UV 2000 on average (medium problem size). This
gap was event larger from 13 to 16 peers with a large problem
size (Figure 7c): in this case, MPPA-256 consumed 8.6x less
energy than Altix UV 2000. Once again, the rationale behind
that comes from the high energy cost associated to the Altix
UV 2000 processors: adding one Xeon E5 processor usually
increases the overall power consumption of Altix UV 2000 by
approximately 60W whereas adding one MPPA-256 cluster
increases the overall power consumption of MPPA-256 by
0.4W. This means that MPPA-256 has a better tradeoff between
computing/power performance for a fairly parallelizable appli-

� Peers: NUMA nodes (Altix UV 2000); clusters (MPPA-256)

MPPA-256 achieved much better energy-to-solution

� From 2 to 12 peers: 8.3x less energy

� From 13 to 16 peers: 11.3x less energy

17/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

1 Introduction

2 Platforms

3 Case study: the TSP problem

4 Adapting the TSP for manycores

5 Computing and energy performance results

6 Conclusions

17/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Conclusions

For a fairly parallelizable application, such as the TSP

� MPPA-256 can be very competitive

� Better performance than Xeon E5 (∼1.6x)

� Better energy efficiency than Tegra 3 (∼9.8x)

However...

� It demands non-trivial source code adaptations, so that
applications can efficiently use the whole chip

� Absence of a coherent cache considerably increases the
implementation complexity

18/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Conclusions

For a fairly parallelizable application, such as the TSP

� MPPA-256 can be very competitive

� Better performance than Xeon E5 (∼1.6x)

� Better energy efficiency than Tegra 3 (∼9.8x)

However...

� It demands non-trivial source code adaptations, so that
applications can efficiently use the whole chip

� Absence of a coherent cache considerably increases the
implementation complexity

18/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Future works

Assess how well the performance of this processor fares on
applications with heavier communication patterns

� Work in progress: we are adapting a seismic wave propagation
simulator developed by BRGM (France) to MPPA-256

� OpenMP, MPI and GPU versions already available

Compare the computing and energy performance of
MPPA-256 with other low-power processors

� Mobile versions of Intel’s Sandy Bridge processors

� Investigate other manycores such as Tilera’s TILE-Gx

Frameworks for heterogeneous platforms

� Work in progress: support for OpenCL on MPPA-256

19/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Future works

Assess how well the performance of this processor fares on
applications with heavier communication patterns

� Work in progress: we are adapting a seismic wave propagation
simulator developed by BRGM (France) to MPPA-256

� OpenMP, MPI and GPU versions already available

Compare the computing and energy performance of
MPPA-256 with other low-power processors

� Mobile versions of Intel’s Sandy Bridge processors

� Investigate other manycores such as Tilera’s TILE-Gx

Frameworks for heterogeneous platforms

� Work in progress: support for OpenCL on MPPA-256

19/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Future works

Assess how well the performance of this processor fares on
applications with heavier communication patterns

� Work in progress: we are adapting a seismic wave propagation
simulator developed by BRGM (France) to MPPA-256

� OpenMP, MPI and GPU versions already available

Compare the computing and energy performance of
MPPA-256 with other low-power processors

� Mobile versions of Intel’s Sandy Bridge processors

� Investigate other manycores such as Tilera’s TILE-Gx

Frameworks for heterogeneous platforms

� Work in progress: support for OpenCL on MPPA-256

19/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Final remarks

Acknowledgments

� Nanosim research group (Grenoble): funding, travel expenses

� Green-Grid project (FAPERGS): travel expenses

� Kalray: technical support

You can visit KALRAY @ SC’13

� Booth #738

20/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Final remarks

Acknowledgments

� Nanosim research group (Grenoble): funding, travel expenses

� Green-Grid project (FAPERGS): travel expenses

� Kalray: technical support

You can visit KALRAY @ SC’13

� Booth #738

20/20

Analysis of Computing and Energy Performance of Multicore, NUMA, and Manycore Platforms for an Irregular Application

Conclusions

Questions?

20/20

