
Maximizing performance of irregular
applications on multithreaded, NUMA

systems

Guojing Cong and Sophia Wen
IBM TJ Watson Research Center

IA 3, Nov 17, 2013, Denver

Introduction

◮ Available resources and communication latency for a group
of logical processors are determined by their relative
position in the hierarchy of chips, cores, and hardware
threads

◮ For applications designed under a flat programming model
(UPC, MPI, OpenMP, pthreads), we want to deploy
(map/optimize) them to the hierarchy of target architecture
for best performance

Summary

◮ Choose a mapping that balances communication latency
and available resources for an application

◮ As much as 5.4 times difference in performance is observed
◮ Default mapping is the worst mapping for irregular

applications
◮ A metric to detect the mapping problem

◮ Optimizations
◮ Techniques for optimizing geographical locality
◮ Unified approach

Target system

IBM P755, 4 POWER7 chips, and each chip has 8 cores; Each
core capable of four-way simultaneous multithreading (SMT)
12 execution units including 2 fixed-point units and 2 load/store
units per core
Each core has a 32KB private L1 and a 256KB private L2. The
on-chip shared 32MB L3 is comprised of 4MB local L3 regions
from the eight cores
The POWER7 core switches among ST (single thread), SMT2,
and SMT4 dynamically

Impact on resource contention

One thread pinned to logical cpu 0, the other changes from 1 to
127. They run the same loop of multiply-add instructions.

 2

 2.5

 3

 3.5

 4

 4.5

 1 4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

T
im

e
(s

ec
on

ds
)

CPU

thread1
thread2

 2

 2.5

 3

 3.5

 4

 4.5

 1 4 8

thread1
thread2

Impact on communication

The two threads act as producer/consumer using flags.

 0

 5

 10

 15

 20

 25

 30

 1 4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

T
im

e
(s

ec
on

ds
)

CPU

pingpong

Mapping strategies

◮
c!

(c−t)! possible mappings for t software threads with c
(t ≤ c) logical CPUs

◮ on P755 128 threads, 4× 8× 4 grid
◮ we consider three modes

◮ chipfirst: saturate first the chip dimension, then the core
dimension, and finally the thread dimension

◮ threadfirst: saturate first the thread dimension, then the
core dimension, and finally the chip dimension

◮ corefirst: saturate first the core dimension, then the chip
dimension, and finally the thread dimension

Performance under three mappings

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

EP (CLASS B)

thread
chip
core

default

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

BT (CLASS B)

thread
chip
core

default

 1

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

FT (CLASS B)

thread
chip
core

default

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

LU (CLASS B)

thread
chip
core

default

Performance under three mappings

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

SP (CLASS B)

thread
chip
core

default

 1

 10

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

MG (CLASS B)

thread
chip
core

default

 10

 100

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

CG (CLASS B)

thread
chip
core

default

 0.1

 1

 10

 1 2 4 8 16 32 64 128

T
im

e
(s

ec
on

ds
)

#threads

IS (CLASS B)

thread
chip
core

default

Remoteness for NAS and SPEC benchmarks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

wup
wise

sw
im

m
gr

id
ap

plu
eq

ua
ke

fm
a3

d

am
m

p

ga
lge

l

ar
t

ft m
g

sp lu bt ep cg cc

m
et

ric

application

Remoteness

Solution: use thread first binding for applications with large r

Optimizing geographical locality

◮ bring data close to processing by matching data
distribution with data accesses

◮ Replication: replicate shared data that are not frequently
updated

◮ Simple) data (re)-distribution – either statically or
dynamically

◮ Mostly work for regular codes, serious limitations for
irregular codes on large data

◮ replication does not scale
◮ static distribution oftentimes does not work for complex

access pattern
◮ dynamic redistribution involves a profiling run

Optimizing geographical locality

◮ bring data close to processing
◮ match data distribution with data access pattern

◮ bipartite graph partitioning to find the best distribution
◮ access permutation to find the best access scheduling

◮ Locality optimization

Bipartite graph partitioning

Y = {y1, y2, · · · , yk}: set of shared data
X = {x1, x2, · · · , xl}: set of program structures that access Y
Let V = X ∪ Y
(xi , yj) ∈ E , 1 ≤ i ≤ k , 1 ≤ j ≤ l , if xi accesses yj

w(xi , yj) is the number of times xi accesses yj

Partition both X and Y into p equal-sized blocks X1,X2, · · · ,Xp

and Y1,Y2, · · · ,Yp, respectively, so that the cut among
V1 = X1 ∪ Y1, V2 = X2 ∪ Y2, · · · , Vp = Xp ∪ Yp

∑

1≤s<t≤p

∑

u∈Vs,v∈Vt

w(u, v)

is minimized.

Example:match accesses to distribution

CC(El , D): El input edge list, D[i] is the current component
vertex i belongs to
for 1 ≤ i ≤ m in parallel do

if D[El[i].u] < D[El[i].v] then
D[D[El[i].v]]← D[El[i].u]

end if
end for
for 1 ≤ i ≤ n in parallel do

while D[i] 6= D[D[i]] do
D[i]← D[D[i]]

end while
end for

Permuting for CC

u and v determine whether D[u] and D[v] are remote
Instead of redistributing D, permute accesses to D; that is,
permute the edges in El to reduce remote accesses to D.
It is impossible to make both D[u] and D[v] local for all
(u, v) ∈ E
Sort El with El[i].u/(n/q) as key, 1 ≤ i ≤ m, and q is the
number of chips
After sorting, the D[u]s are mostly local.

Results: geographical optimizations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32 64 128

pe
rf

or
m

an
ce

threads

chiporig
coreorig
chipopt
coreopt

Data duplication – CG

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 4 8 16 32 64 128

no
rm

al
iz

ed
 ti

m
e

threads

chiporig
coreorig
chipopt

Data permutation – CC

Unified approach

◮ From the perspective of a single thread data from remote
caches or memory are not much different from those in the
local memory hierarchy except for longer access latency

◮ even with perfect geographical locality irregular
applications still have poor cache performance

r =
#remote accesses to shared memory

#shared-memory accesses
> threshold

r =
#cache misses

#memory accesses
> threshold

Shared memory: par_access(C, D, R, p, n, m)

if n ≤ z then
return C[i] ← D[R[i]], 1 ≤ i ≤ m

end if
{partition}
divide R and D into p blocks, R1, · · · , Rp , and
D1, · · · , Dp , of size s = m/p and w = n/p,
respectively
for 1 ≤ k ≤ p in parallel do

count sort Rk with key
Rk [j]

s and keep original location

of the j th element in Pk [j], 1 ≤ j ≤ s

partition Rk into p blocks R j
k , 1 ≤ j ≤ p, such that

∀r ∈ R j
k ,

r
s = j

end for
for 1 ≤ j ≤ p in parallel do

R′

j ← ⊕
p
k=1R j

k
end for
{access}
for 1 ≤ k ≤ p in parallel do

par_access(Sk , Dk , R′

k ,p, n/p, |R′

k |)
end for

{permute}
for 1 ≤ k ≤ p in parallel do

partition Sk into p consecutive blocks Sj
k , 1 ≤ j ≤ p,

such that |Sj
k | = |R

j
k |

end for
for 1 ≤ k ≤ p in parallel do

S′

k ← ⊕
p
j=1Sk

j , 1 ≤ k ≤ p

end for
for 1 ≤ k ≤ p in parallel do

if s ≤ z then
for 1 ≤ j ≤ s do

Ck [Pk [j]] ← S′

k [j]
end for

else
divide S′

k and Pk into s/z blocks, each of size z;
for 1 ≤ j ≤ s/z in parallel do

sort S′

k by corresponding Pk value
end for
z-way merge sort blocks of S′

k into S′′

k
for 1 ≤ j ≤ s do

Ck [j]← S′′

k [j]
end for

end if
end for
return C ← ⊕p

k=1Ck

Analysis

b: memory bandwidth; l: memory latency;
before:

TM = m
(

l +
1

b

)

after:

TM = f (n, m) =



























z(l + 1/b) n ≤ z

3pl + 3p2 l + p2

b

+m(5
b +

logz
m
p

b) + pl logz
m
p

+
∑p

i=1 f (n/p,mi) n > z

Solving the recurrence yields

f (n, m) ≤ g(n) = ((p + 1)α + β) logp n + z(l + 1/b)

with z ≥ 2
√

n, α = 3pl + 3p2 l + p2

b , β = m(5
b +

logz
m
p

b + pl logz
m
p), In order that f (n,m) < m(l + 1/b) we

require at least

(3p + 6p2 l + 3p3
+ p logz

m

p
)l logp n + zl < ml

Roughly the network has to satisfy

lb >
4

3

(

5 + logz
m

p

)

logp n

Illustration

Partition

Group

R

Group

Data

thread_1 thread_2 thread_3

Recursion

Results

Power 6 – impact of virtual threads
Power 7, in log-log scale

More than 2× speedup

Results

Power 6 – impact of virtual threads
Power 7, in log-log scale

More than 2× speedup

Conclusions

◮ Deploying a multithreaded program onto current NUMA
systems has significant performance impact

◮ NUMA specific optimizations oftentimes have serious
limitations for irregular applications

◮ Our unified approach improve both cache and
communication performance simultaneously

