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Ensemble Atmospheric Prediction

O(100 million) gridded
variables.

Highly optimized.
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Ensemble Atmospheric Prediction

O(100 million)
observations per day.
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Ensemble Atmospheric Prediction

O(100) Forecasts;
(an ensemble).

Observations
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Ensemble Atmospheric Prediction

O(100) Forecasts;
(an ensemble).

Observations
Initial
Conditions
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Ensemble Atmospheric Prediction

O(100) Forecasts;
(an ensemble).

Observations
Initial
Conditions

Repeated every few hours as
new observations become
available.
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Observations Irregular in Time & Space

upper_air_airs1

latitude

longitude

Satellite: Controlled by orbit.

Radar: Only where precipitating.
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The Data Assimilation Research Testbed (DART)

» General purpose ensemble DA tools.
» Must work with any model.
» Must work with any observations.

» Must run efficiently on O(10,000) cores.
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Sequential Ensemble Filter

1. Use model to advance ensemble (3 members for illustration) to time at which
next observations becomes available.

Ensemble state estimate after

using previous observations Ensemble state at ime

(analysis) of next observations
> (prior)
tk/
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K — /
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Sequential Ensemble Filter

2. Get prior ensemble sample of independent subset of observations by applying
forward operator h to each ensemble member for each observation.

tk+1

— P 4
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Sequential Ensemble Filter

3. Get observed values and observational error distributions from observing
system.

— /
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Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble.
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Sequential Ensemble Filter

5. Use ensemble samples to linearly regress observation increments onto state
variable increments.

— P 4
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Sequential Ensemble Filter

6. Repeat this for each subset of independent observations.

tk
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Sequential Ensemble Filter

7. Advance model to time of next observations.
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Irregular Observations -> Load Balance Challenges

Simulate performance for idealized observation set (2% of obs shown).

Uniform: 127,000 obs. Radar: 25,000 obs.
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Irregular Observations -> Load Balance Challenges

Simulate performance for idealized observation set (2% of obs shown).

Observations that are more than 0.05 apart are independent.
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Parallel Observation Processing

» Find minimum number of subsets of independent
observations.

» Mutual exclusion scheduling problem.
» Use greedy algorithm:
Decreasing Greedy Mutual Exclusion (DGME).

~
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Irregular Observations -> Load Balance Challenges

Red shows observations in a given subset.

91 Observations in subset 665
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Irregular Observations -> Load Balance Challenges

Last subsets only have a few observations each.
These are in regions where satellite and radar overlapped.
May be significant load balance issue.
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Sequential Ensemble Filter

For each subset, can do following independently in parallel:

Compute forward operators, h Compute observation increments

-+ } } : }
h
ti Must compute all increments
* “——— for model state variables
3\ before starting next subset.
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Updating State Variables with a Subset’s Observations

» Regress observation increments onto state ensemble.

» Distribution of state variables onto processes controls
performance:
Load balance, slowest process controls speed,
Number of messages sent per observation.
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Distribution of State Variables on P=2N Processes

» 1000x1000 grid of state variables.

» 3 possible distributions:

1. Random: Each process gets random 1/P of state
variables.

2. Uniform: Divide domain into P squares of same size.

3. Balanced: Total work for all observations
approximately equal.
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Balanced Rectangular Partitions for 1000x1000 grid points

Partition each rectangle so sum of total work on each side is
nearly equal.
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Load Balance for Different State Variable Distributions

Random always best.
Uniform better than Balanced for early observation subsets.
Balanced better than Uniform for later observation subsets.
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Communication Cost for Different State Variable Distributions

Total Number of Messages for Each Observation

Communication per Observation

- - -Balanced Maximum| _
— Balanced Average
- = =Uniform Maximum
—— Uniform Average

—— Random
10° - - - - -
4 6 8 10 12 14
Log2 Number of Tasks
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Balanced slightly more
than Uniform.

Random requires a message to
EVERY process for each
observation! Very costly.




Making Effective Use of Coprocessors

» Many fast, cheap processors available for each process:

GPUs,
Intel Phi.

» Communication to coprocessors (even from local
memory) is slow.

Getting a message from off-processor can be really slow.
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Making Effective Use of Coprocessors

For efficient use, need lots of computation per communication.

Look at number of state variable updates per received observation

increment.
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Balanced, Uniform similar.
Scales well to many processes.

Optimistic about making efficient
use of coprocessors.

Random has much less work per

communication, probably won’t
work.
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Conclusions

» Trade-offs between computation and communication efficiency.
» Careful assighment of state variables to processes crucial.
» May be able to use coprocessors, even for large process counts.

» We are interested in collaborations on tools or techniques.

Learn more about DART at:
http://www.image.ucar.edu/DAReS/DART
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Computing Forward Operators

» Forward operator h is an arbitrary function of state variables
» Often ‘local’ function of state (interpolation)

» Can be complex and non-local (radio occultation ray tracing)

tk

* tk+1
*
*

_— _/

h NCAR 3@; IAAA: SC13: 17 Nov. 2013 31




Computing Forward Operators

» We use MPI-2 non-blocking remote memory direct access
» One process computes h for all ensemble members
» Grabs any required state variables from other processes

» Number of messages minimized if adjacent state is on same
process

» Communication volume minimized if local state is on
process computing h
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What Matters when Selecting State
Variable Distribution?

» Relative cost of computation versus communication (machine dependent)
» Relative density of state variables and observations
» Observation density (number of observations close to given observation)

» Amount of observation spatial heterogeneity

» DART will implement all three distributions discussed here
Also tools for implementing arbitrary distributions

» More focused efforts can probably pick one
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Other Optimizations we are exploring

1. More state variable partitions than processes
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For balanced partition, make kP partitions where
P is number of processes, k is a small integer

A process gets partitions with both large and
small numbers of observations

Large partitions have more work for early colors
Small partitions have more work for late colors
Mix can have better load balance thru time




Other Optimizations (ll)

2. Pre-compute observations for more than one color

= Theory allows computing h for any number of obs at one time
= Observations from later colors are updated just like state variables
= (Can ‘smooth’ out load for state increments

= Extra computation for observations (may be small)
=  Current DART computes ALL observations at once

3. Divide observations into pieces, separate state variable
partition for each
= Do uniform observations first, then satellite, etc.

" |ncreased communication to move state variables for different
partitions
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