On the GPU performance of cell-centered
finite volume method over unstructured
tetrahedral meshes

Johannes Langguth

Simula Research Laboratory, Oslo, Norway
joint work with Xing Cai, Nan Wu and Jun Chai

November 17, 2013

simula - by thinking constantly about it

Finite volume method on irregular tetrahedral mesh

Input
» 4 neighbors per cell

» sparse ELLPACK
representation

» given by value and index
» vector x

simula - by thinking constantly about it

Finite volume PDE kernel

Computing tetrahedron i:

x[i] = valuej1x[index; 1] — x[i]+
value; o x[index; 2] — x[i]+
value; sx[index; 3] — x[i]+
value; 4 x[index; 4] — x[i]

simula - by thinking constantly about it

Bandwidth requirements

v

Performs 11 FLOPS per tetrahedron

Transfer at least 64 bytes per tetrahedron
About 5% of GPU optimal FLOPS per byte ratio
Computation is severely data access bound

v

v

v

v

Limited by main memory bandwidth

simula - by thinking constantly about it

Data access bound computation

v

80% of accesses to x are (potentially) irregular

v

Performance limited by main memory latency
Performance dependent on caching
Cache blocking helps here

v

v

simula - by thinking constantly about it

Block size determines irregularity

Use METIS, PaToH, etc... to obtain block structure.

.research laboratory |

Data access bound computation

Goal:
Measure the effect of irregularity on performance

v

Generate “ideal” matrix with fixed block size

v

No nonzeroes outside blocks

v

Plot the block size/performance graph

v

Compare to partitioned real-world instances
Use 2 different kernels

v

simula - by thinking constantly about it

Performance on NVIDIA K20m Kepler

Mesh and constructed block instances

N

00000S
00000¢C
000S¢CT

01T

T T T T T T T
< ﬁ
©o o0

o0

T
~
o0

T
o
N

35

(sd014D) @d2uewI0Iad

0

Blocksize

==Kernel 2, Mesh

=Kernel 1, Mesh

~=Kernel 1, constructed block instances==Kernel 2, constructed block instances

=
i~
S
o
Q
S
&
S
©
&
“
<
)
)
o
S

L2 Cache Accesses

L2 cache profiling results, Kernel 1

(sd0149) @2uewI0ad

o n
o o~

o n
o~ —

o

wn

o

SN~

W

—

|~
™~~~

- 000005
- 999991
- 000001
- 8TYTL
- 0000S
- T8YYE
- 608€C
- 62191
- 68601
:1174

- 8TIS

- 96vE

- T6EC

- €€91

- YTTT

- 19L

- 9Ly

- 0gC

- 01T
a3
x4

-

S

~ o
uoupay

[T} <

™

o~

i

eJ39)} Jad suoneiado g1

o

Blocksize

~—Performance ==L2 writes

==L2 misses

==L2 read accesses

=
=
3
o
Q
©
&
<
©
g
“
<
o
o
o
<
x
s
L~
S
>
Q
.

L2 Access per Tetrahedron

Minimum
» value: 32 byte in 4 doubles
» index: 16 byte in 4 integers
» x: 8 byte in 1 double
» 32 byte cache line size
» 1.75 accesses per tetrahedron amortized

Maximum
» 1.75 accesses as above
» 4 random accesses to x: 4 cache lines

» 5.75 accesses in total

simula - by thinking constantly about it

Required L2 Bandwidth

Minimum L2 Bandwidth

[00000S
- 0000s¢
[999991
[000SCT

=} o

; Emw. Yy

C €S
CLE
[=Y4
CLT
rqs
£8
rs
8 8

& N

pimpueg g1 paiinbay

400
100

Blocksize

—Kernel 1, 170 GB/s

-
S
IS

Q
©

=
IS
©

I
“
<
S
o
)
<

x
=

L~

=

Memory/L2 bottleneck break-even point

11BW, 11BW, 2BW,
L2 Mo g L2

32a 64 BWy

FLOPS x BW;> FLOPS x BWy PR Required_data x BW, o
ax Cachlinesize ~ Required_data ~ Cachlinesize x BWy,

simula - by thinking constantly about it

Conclusions

v

Blocksize is a measure of irregularity

v

High irregularity requires high cache/memory bandwidth ratio
K20m ratio: =~ 2
Sandy Bridge CPU ratio: =~ 5 on L3 cache

v

v

simula - by thinking constantly about it

	Introduction

