On the GPU performance of cell-centered
finite volume method over unstructured
tetrahedral meshes

Johannes Langguth

Simula Research Laboratory, Oslo, Norway
joint work with Xing Cai, Nan Wu and Jun Chai

November 17, 2013

simula - by thinking constantly about it



Finite volume method on irregular tetrahedral mesh

Input
» 4 neighbors per cell

» sparse ELLPACK
representation

» given by value and index
» vector x
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Finite volume PDE kernel

Computing tetrahedron i:

x[i] = valuej1x[index; 1] — x[i]+
value; o x[index; 2] — x[i]+
value; sx[index; 3] — x[i]+
value; 4 x[index; 4] — x[i]
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Bandwidth requirements

v

Performs 11 FLOPS per tetrahedron

Transfer at least 64 bytes per tetrahedron
About 5% of GPU optimal FLOPS per byte ratio
Computation is severely data access bound

v

v

v

v

Limited by main memory bandwidth
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Data access bound computation

v

80% of accesses to x are (potentially) irregular

v

Performance limited by main memory latency
Performance dependent on caching
Cache blocking helps here

v

v
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Block size determines irregularity

Use METIS, PaToH, etc... to obtain block structure.
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Data access bound computation

Goal:
Measure the effect of irregularity on performance

v

Generate “ideal” matrix with fixed block size

v

No nonzeroes outside blocks

v

Plot the block size/performance graph

v

Compare to partitioned real-world instances
Use 2 different kernels

v
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Performance on NVIDIA K20m Kepler

Mesh and constructed block instances
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L2 Cache Accesses

L2 cache profiling results, Kernel 1
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L2 Access per Tetrahedron

Minimum
» value: 32 byte in 4 doubles
» index: 16 byte in 4 integers
» x: 8 byte in 1 double
» 32 byte cache line size
» 1.75 accesses per tetrahedron amortized

Maximum
» 1.75 accesses as above
» 4 random accesses to x: 4 cache lines

» 5.75 accesses in total
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Required L2 Bandwidth

Minimum L2 Bandwidth
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Memory/L2 bottleneck break-even point

11BW, 11BW, 2BW,
L2 Mo g L2

32a 64 BWy

FLOPS x BW;>  FLOPS x BWy PR Required_data x BW, o
ax Cachlinesize ~ Required_data ~ Cachlinesize x BWy,
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Conclusions

v

Blocksize is a measure of irregularity

v

High irregularity requires high cache/memory bandwidth ratio
K20m ratio: =~ 2
Sandy Bridge CPU ratio: =~ 5 on L3 cache

v

v
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