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Backgrounds 
• Simulation Program with Integrated Circuit 

Emphasis (SPICE) for IC simulation 

IA3-Workshop on Irregular Applications: Architectures & Algorithms 3 

Create the matrix

Preprocessing

Solving Ax=b

Newton-Raphson
iteration converged?

Transient simulation 
finished?

Model evaluation

Adjust time node

Finish

N

Y

Y

N

The most time-consuming step  
Repeated for thousands of times 



Backgrounds 
• Features of circuit matrices: 

– Irregular: asymmetric, possibly not positive definite 
• LU factorization is preferred 

– Highly sparse: nonzeros per row < 10 
– Fixed matrix structure during all iterations, only 

nonzero values change 
• Preprocessing steps (e.g. symbolic factorization) are 

executed just once 
• Numerical LU factorization is repeated for many times, 

with fixed matrix structure 
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Backgrounds 
• A GPU-applicable flow [Ren, DAC’12]  
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Create the matrix

Preprocessing

LU re-factorization 
without pivoting
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iteration converged?
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LU factorization with 
pivoting

Calculate the structure of the LU factors, 
the scheduling information for parallel LU 
re-factorization is also obtained 

Executed on the GPU, using the fixed 
matrix structure and scheduling 
information 



Backgrounds 
• Work on GPU-based sparse LU factorization 
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reference method type/preci
sion 

average speedup/performance 

Christen, 
GPPGPU’07 

Supernodal 
with CUBLAS 

Unsym/S about 2X vs. sequential PARDISO, 12Gflop/s 

Krawezik, 
SAAHPC’09 

Multifrontal  
with BLAS3 

Sym/D 2.9X vs. 2-threaded ANSYS 

Yu, PC’11 Multifrontal 
with CUBLAS 

Unsym/D about 2.5X vs. sequential UMFPACK 

George, 
IPDPS’11 

Multifrontal  
with CUBLAS 

Sym/S 7X vs. sequential (double-precision) WSMP 
15X by 2 GPUs vs. sequential (double-precision) WSMP 

Lucas, Tech. 
Rep. 2011 

Multifrontal  
with CUBLAS 

Sym/S 1.97X vs. sequential CPU code (their inhouse CPU code) 

Lucas, 
VECPAR’10 

Multifrontal  
with CUBLAS 

Sym/S 5.91X vs. sequential CPU code (their inhouse CPU code) 
1.34X vs. 8-threaded CPU code 

Ren, DAC’12 
(our previous 
work) 

Left-looking 
no BLAS 

Unsym/D 6.5X vs. sequential CPU code (our own solver) 
1.14X vs. 8-threaded CPU code 
0.99X vs. 10-threaded CPU code 
10 Gflop/s 
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For general purposes 

For circuit problems 



Motivation 
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• BLAS-based methods are generally of lower 
performance than non-BLAS-based methods for 
circuit matrices [Davis, TOMS2010] 
• Circuit matrices are too sparse to form big supernodes 

• Our previous work [Ren, DAC’12] targeting at 
circuit problems does not use BLAS 
• 10 Gflop/s (double-precision), achieving only 5% of the 

theoretical performance. However, a dense LU 
factorization achieves >80% of the theoretical 
performance [Tomov, IPDPSW’10] 

• There is still room for improvement 

 



What we have done 
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• This work analyzed the nonzero patterns and 
memory access patterns in sparse LU 
factorization, to expose common features 

• A blocked algorithm was studied to accelerate 
sparse LU factorization for circuit matrices, to 
accelerate circuit simulation 
 



Nonzero pattern analysis 
• Estimated density of nonzeros of the un-

factorized matrix step by step 
2
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Density of nonzeros of the un-factorized matrix 
will be higher and higher during factorization, 

finally it becomes a dense submatrix 



• Irregular memory accesses come from the 
sparse matrix structure 

Memory access analysis 
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Indirect and strided memory accesses on the 
uncompressed array x, leading to un-coalesced 
memory accesses on GPUs 
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Memory access analysis 
• Stride in memory accesses at each position 
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The right-bottom corner has near-zero stride, the 
diagonal, the right border, and the bottom border 

have big stride 



Analysis conclusions 
• Observations 

– Sparse LU factorization should be separated into two 
parts to perform different optimization strategies 

• The former part has larger stride in memory access 
addresses, but fewer memory accesses 

– Optimization: sort the nonzeros of the LU factors in each row 
(proposed in [Ren, DAC’12], ~2X speedup) 

• The latter part has smaller stride but more memory 
accesses 

– There is a dense subblock at the right-bottom corner 
– Optimization: blocked method combining sparse and dense 

algorithms 
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• A mathematically equivalent method 

Blocked LU factorization on GPUs 
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partial factorization (ParFact) 

complement factorization (ComFact) 

sparse multiplication (SpMul) 

dense factorization (DenFact) 

IA3-Workshop on Irregular Applications: Architectures & Algorithms 

A method similar to [Tomov, IPDPSW’10] 



Blocked LU factorization on GPUs 
• Choice of the partition point 
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Experimental environment 
• GPU: NVIDIA GeForce GTX580 

– Compute capability: ~200 Gflop/s (double-precision) 
– Off-chip bandwidth: 192.4 GB/s 

• CPU: i7-3770K 
– 4 cores 

• The blocked method is compared with the 
unblocked method and MKL PARDISO (4 threads) 

• Benchmarks: from University of Florida Sparse 
Matrix Collection 
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Results 
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Results 
• Performance and achieved bandwidth 
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Conclusions 
• Irregular matrix structure leads to irregular 

memory access patterns in sparse LU factorization 
• We have proved that for circuit matrices which are 

highly sparse, a pure non-BLAS based method is 
not the best choice on GPUs 

• A hybrid method combining sparse and dense 
algorithms is studied, achieving on average 68% 
improvement compared with the original method 

• Our method is not conflict with BLAS-based 
methods 
• The sparse part can also use BLAS to achieve 

performance improvement for BLAS-based methods 
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Thanks for your attention 
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