
Nonzero Pattern Analysis and Memory
Access Optimization in GPU-based Sparse

LU Factorization for Circuit Simulation

Xiaoming Chen, Du Su, Yu Wang, Huazhong Yang
Department of Electronic Engineering,

Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, China

Nanoscale Integrated Circuits and Systems
(NICS) Laboratory

1 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Outline
• Backgrounds & motivation
• Nonzero pattern & memory access analysis
• Blocked LU factorization on GPUs
• Results
• Conclusions

2 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Backgrounds
• Simulation Program with Integrated Circuit

Emphasis (SPICE) for IC simulation

IA3-Workshop on Irregular Applications: Architectures & Algorithms 3

Create the matrix

Preprocessing

Solving Ax=b

Newton-Raphson
iteration converged?

Transient simulation
finished?

Model evaluation

Adjust time node

Finish

N

Y

Y

N

The most time-consuming step
Repeated for thousands of times

Backgrounds
• Features of circuit matrices:

– Irregular: asymmetric, possibly not positive definite
• LU factorization is preferred

– Highly sparse: nonzeros per row < 10
– Fixed matrix structure during all iterations, only

nonzero values change
• Preprocessing steps (e.g. symbolic factorization) are

executed just once
• Numerical LU factorization is repeated for many times,

with fixed matrix structure

IA3-Workshop on Irregular Applications: Architectures & Algorithms 4

Backgrounds
• A GPU-applicable flow [Ren, DAC’12]

5 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Create the matrix

Preprocessing

LU re-factorization
without pivoting

Newton-Raphson
iteration converged?

Transient simulation
finished?

Model evaluation

Adjust time node

Finish

N

Y

Y

N

LU factorization with
pivoting

Calculate the structure of the LU factors,
the scheduling information for parallel LU
re-factorization is also obtained

Executed on the GPU, using the fixed
matrix structure and scheduling
information

Backgrounds
• Work on GPU-based sparse LU factorization

6

reference method type/preci
sion

average speedup/performance

Christen,
GPPGPU’07

Supernodal
with CUBLAS

Unsym/S about 2X vs. sequential PARDISO, 12Gflop/s

Krawezik,
SAAHPC’09

Multifrontal
with BLAS3

Sym/D 2.9X vs. 2-threaded ANSYS

Yu, PC’11 Multifrontal
with CUBLAS

Unsym/D about 2.5X vs. sequential UMFPACK

George,
IPDPS’11

Multifrontal
with CUBLAS

Sym/S 7X vs. sequential (double-precision) WSMP
15X by 2 GPUs vs. sequential (double-precision) WSMP

Lucas, Tech.
Rep. 2011

Multifrontal
with CUBLAS

Sym/S 1.97X vs. sequential CPU code (their inhouse CPU code)

Lucas,
VECPAR’10

Multifrontal
with CUBLAS

Sym/S 5.91X vs. sequential CPU code (their inhouse CPU code)
1.34X vs. 8-threaded CPU code

Ren, DAC’12
(our previous
work)

Left-looking
no BLAS

Unsym/D 6.5X vs. sequential CPU code (our own solver)
1.14X vs. 8-threaded CPU code
0.99X vs. 10-threaded CPU code
10 Gflop/s

IA3-Workshop on Irregular Applications: Architectures & Algorithms

For general purposes

For circuit problems

Motivation

7 IA3-Workshop on Irregular Applications: Architectures & Algorithms

• BLAS-based methods are generally of lower
performance than non-BLAS-based methods for
circuit matrices [Davis, TOMS2010]
• Circuit matrices are too sparse to form big supernodes

• Our previous work [Ren, DAC’12] targeting at
circuit problems does not use BLAS
• 10 Gflop/s (double-precision), achieving only 5% of the

theoretical performance. However, a dense LU
factorization achieves >80% of the theoretical
performance [Tomov, IPDPSW’10]

• There is still room for improvement

What we have done

IA3-Workshop on Irregular Applications: Architectures & Algorithms 8

• This work analyzed the nonzero patterns and
memory access patterns in sparse LU
factorization, to expose common features

• A blocked algorithm was studied to accelerate
sparse LU factorization for circuit matrices, to
accelerate circuit simulation

Nonzero pattern analysis
• Estimated density of nonzeros of the un-

factorized matrix step by step
2

2 | |() min ,1 , 0,1, , 1
()

kE n kdensity k k n
n k

 + −
= = − − 



2 3 2 2 2
1 1 1

3 2

4 | | [2 2 (1)] | | [() (3 1)()] | || |
()(1) ()(1) ()(1)

k k k
k

E n k E n k n k EE
n k n k n k n k n k n k

α α α α α− − −− + − + − − − − −
= + +

− − + − − + − − +

9 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Density of nonzeros of the un-factorized matrix
will be higher and higher during factorization,

finally it becomes a dense submatrix

• Irregular memory accesses come from the
sparse matrix structure

Memory access analysis

10

Indirect and strided memory accesses on the
uncompressed array x, leading to un-coalesced
memory accesses on GPUs

4

a b c d e

6 0

0 1 2 3 4 5 6 7
x

U_i

IA3-Workshop on Irregular Applications: Architectures & Algorithms

Memory access analysis
• Stride in memory accesses at each position

11 IA3-Workshop on Irregular Applications: Architectures & Algorithms

The right-bottom corner has near-zero stride, the
diagonal, the right border, and the bottom border

have big stride

Analysis conclusions
• Observations

– Sparse LU factorization should be separated into two
parts to perform different optimization strategies

• The former part has larger stride in memory access
addresses, but fewer memory accesses

– Optimization: sort the nonzeros of the LU factors in each row
(proposed in [Ren, DAC’12], ~2X speedup)

• The latter part has smaller stride but more memory
accesses

– There is a dense subblock at the right-bottom corner
– Optimization: blocked method combining sparse and dense

algorithms

12 IA3-Workshop on Irregular Applications: Architectures & Algorithms

• A mathematically equivalent method

Blocked LU factorization on GPUs

13

A21

L1

U1

A22

A1

L21 L22

U22

=

1 1 1
1

21 21 1

22 21 1

22 22

(:,1:)
(:, :)

p
p n

−

=
=

= −
=

A L U
L A U
S A L U
S L U

partial factorization (ParFact)

complement factorization (ComFact)

sparse multiplication (SpMul)

dense factorization (DenFact)

IA3-Workshop on Irregular Applications: Architectures & Algorithms

A method similar to [Tomov, IPDPSW’10]

Blocked LU factorization on GPUs
• Choice of the partition point

14 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Experimental environment
• GPU: NVIDIA GeForce GTX580

– Compute capability: ~200 Gflop/s (double-precision)
– Off-chip bandwidth: 192.4 GB/s

• CPU: i7-3770K
– 4 cores

• The blocked method is compared with the
unblocked method and MKL PARDISO (4 threads)

• Benchmarks: from University of Florida Sparse
Matrix Collection

15 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Results

16 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Results
• Performance and achieved bandwidth

17 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Conclusions
• Irregular matrix structure leads to irregular

memory access patterns in sparse LU factorization
• We have proved that for circuit matrices which are

highly sparse, a pure non-BLAS based method is
not the best choice on GPUs

• A hybrid method combining sparse and dense
algorithms is studied, achieving on average 68%
improvement compared with the original method

• Our method is not conflict with BLAS-based
methods
• The sparse part can also use BLAS to achieve

performance improvement for BLAS-based methods

18 IA3-Workshop on Irregular Applications: Architectures & Algorithms

Thanks for your attention

19 IA3-Workshop on Irregular Applications: Architectures & Algorithms

	Nonzero Pattern Analysis and Memory Access Optimization in GPU-based Sparse LU Factorization for Circuit Simulation
	Outline
	Backgrounds
	Backgrounds
	Backgrounds
	Backgrounds
	Motivation
	What we have done
	Nonzero pattern analysis
	Memory access analysis
	Memory access analysis
	Analysis conclusions
	Blocked LU factorization on GPUs
	Blocked LU factorization on GPUs
	Experimental environment
	Results
	Results
	Conclusions
	Thanks for your attention

