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Backgrounds

* Features of circuit matrices:
— Irregular: asymmetric, possibly not positive definite

e LU factorization is preferred
— Highly sparse: nonzeros per row < 10

— Fixed matrix structure during all iterations, only
nonzero values change

e Preprocessing steps (e.g. symbolic factorization) are
executed just once

 Numerical LU factorization is repeated for many times,
with fixed matrix structure
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e A GPU-applicable flow [Ren, DAC’12]
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Backgrounds

e Work on GPU-based sparse LU factorization

reference method type/preci |average speedup/performance
sion

Christen, Supernodal | Unsym/S |about 2X vs. sequential PARDISO, 12Gflop/s
GPPGPU’07 |with CUBLAS
Krawezik, Multifrontal |Sym/D 2.9X vs. 2-threaded ANSYS
SAAHPC’09 |with BLAS3
Yu, PC’'11 Multifrontal |Unsym/D |about 2.5X vs. sequential UMFPACK

\Allth CIBLAS T ~ amem | 1o B amLN s sm o
George, Mt It ‘rontz! & rny'S TRV Sy e itial do it e- ire cisi on) V'S P
IPDPS’11 with CUBL, S 15X by 2 GPUs vs sequential (dc uble-precision) WSMP
Lucas, Tech.|Multifrontal |Sym/S 1.97X vs. sequential CPU code (their inhouse CPU code)
Rep. 2011 with CUBLAS
Lucas, Multifrontal | Sym/S 5.91X vs. sequential CPU code (their inhouse CPU code)
VECPAR’10 with CUBLAS 1.34X vs. 8-threaded CPU code
Ren, DAC'12 | Left-looking Ungym/D 6.5X vS. sequential CPU code (our wn solver)
(our previoyk | n -thig e
=For circyitproblems

10 Gflop/s
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e BLAS-based methods are generally of lower
performance than non-BLAS-based methods for

circuit matrices [Davis, TOMS2010]
e Circuit matrices are too sparse to form big supernodes

e QOur previous work [Ren, DAC’12] targeting at
circuit problems does not use BLAS

e 10 Gflop/s (double-precision), achieving only 5% of the
theoretical performance. However, a dense LU
factorization achieves >80% of the theoretical
performance [Tomov, IPDPSW’10]

 There is still room for improvement
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What we have done

e This work analyzed the nonzero patterns and
memory access patterns in sparse LU
factorization, to expose common features

* A blocked algorithm was studied to accelerate
sparse LU factorization for circuit matrices, to
accelerate circuit simulation
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Nonzero pattern analysis

I
e Estimated density of nonzeros of the un-

factorized matrix step by step
2|E, |+n—k
(n—k)’

density(k):min{ ,1},k:0,1,---,n—1

Density of nonzeros of the un-factorized matrix

will be higher and higher during factorization,
finally it becomes a dense submatrix
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Figure 5: Trends of the density. |Vo| = n = 10000, |Es| = Figure 6: Trends of the density for factorizing onetonel
15000. (36057 x36057).
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Memory access analysis

T
* |rregular memory accesses come from the

Sparse matrix structure

Algorithm 2 Detailed code for factorizing row i

1: //copy row i of A into a dense vector x
2: for (j=A_pl[il; j<A_pli+1l; ++j)
3 g

x[A_i[j1] = A_x[j];

Indirect and strided memory accesses on the
uncompressed array x, leading to un-coalesced
memory accesses on GPUs

4:

5}

6: //numeric accumulation from dependent rows

T: for (j=L_p[il; j<L_pli+1]; ++j)

&:

9:  id = L_i[j1;

10:  xj = x[id];

11:  for (k=U_p[id]; k<U_p[id+1]; ++k)
{

12:
E}{ [U_i[k]] -= xj*U_x[k];

15: } .
16: //storing factorization results U 1
17: xj = x[4]; _

18: x[i] = 0.;
19: 1diag[i] = xj;

20: for (j=L_pl[il; j<L_pli+1l; ++j)

21: { i

22:  did = L_i[j];

23 L_x[j] = x[idl;

24:  x[id] = 0.; 0 2 3

26: for (j=U_plil; j<U_pli+1]; ++j)

o |~ <«
Ol

@l NOp!

D |

28:  did = v_ilj]; b
29 vu_x[j] = =x[id] / =j;
30:  x[id] = 0.;

31: }
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Memory access analysis

e Stride in memory accesses at each position
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Analysis conclusions

e Observations

— Sparse LU factorization should be separated into two
parts to perform different optimization strategies

e The former part has larger stride in memory access
addresses, but fewer memory accesses
— Optimization: sort the nonzeros of the LU factors in each row
(proposed in [Ren, DAC’12], ~2X speedup)
e The latter part has smaller stride but more memory
daccesses
— There is a dense subblock at the right-bottom corner

— Optimization: blocked method combining sparse and dense
algorithms
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Blocked LU factorization on GPUs

T
A mathematically equivalent method
A1 \\\\ Ul
— Ly \\\
A Az Lo L\Z\Z\J\zz
A =LU,

I—21 — A21U1(:’1: p)_l

S = A22 — |_21U1(:, p: n)—>sparse multiplication (SpMul)

S= L22U22

s partial factorization (ParFact)

> dense factorization (DenFact)
A method similar to [Tomov, IPDPSW’10]

> complement factorization (ComFact)
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Blocked LU factorization on GPUs

* Choice of the partition point
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Figure 11: Performance of sparse LU factorization on N-
VIDIA GTX580 (double-precision). Mflop=million floating-
point operations.

sparse_performance( flop) = 2.535 x log1o(M flop) — 1.468
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Figure 12: Performance of dense LU factorization on NVIDI-
A GTX580 (double-precision).

k
dense_performance(k) = 31.93 x log2(k) — 138.93 243.92
predicted factorization time =
sparse_flop(p) + dense_flop(n—p)
sparse_performance(flop) dense_performance(n—p)
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Experimental environment

e GPU: NVIDIA GeForce GTX580

— Compute capability: ~200 Gflop/s (double-precision)
— Off-chip bandwidth: 192.4 GB/s

e CPU:i7-3770K

— 4 cores

 The blocked method is compared with the
unblocked method and MKL PARDISO (4 threads)

e Benchmarks: from University of Florida Sparse
Matrix Collection
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Results

|| D
Table 1: Comparison between unblocked and blocked LU factorization.
Matrix factorization time Gflop/s bandwidth (GB/ sj speedup |speedup vs. [Hense block | padding %"
unblocked | blocked [unblocked | blocked | unblocked [ blocke PARDISO (| dimension
circuit matrices
asic_100k 0.273 0.235 4.07 4.73 a7.2 G6.4 1.16 0.79 1250 23.5
asic_100ks 0.166 0.094 5.38 14.86 117.6 208.6 1.77 1.01 1280 28.0
asic_320ks 0.1638 0.162 5.13 8.13 114.2 114.2 1.00 3.501 256 98.9
asic_680ks (0.150 0.079 G.11 11.65 25.9 163.7 1.91 G9.50 1408 38.3
ckt11752_dec_1 0.0538 0.052 5.26 5.85 74.1 22.4 1.11 1.00 TGE 39.9
g2_circuit 1.094 0.778 9.17 12.89 128.6 180.8 1.41 0.47 2304 32.7
onetonel 0.163 0.065 8.24 20.54 115.6 288.1 2.49 2.22 1664 35.8
onetone 0.045 0.026 4.42 7.49 6G2.3 105.4 1.69 2.02 1250 63.2
twotone 0.9583 0.383 11.05 28.35 154.8 397.3 2.57 2.89 3584 40.3
average 1.68 2.20"°
non-circuit matrices
zhaol 0.420 0.232 5.68 15.72 121.9 220.8 1.81 0.38 2048 36.9
smeddc 1.403 1.107 7.92 10.03 111.2 140.9 1.27 .39 2048 29.8
xenonl 2.034 1.561 10.38 13.53 145.7 1589.8 1.30 0.21 2944 37.0
denormal (0.501 0.396 10.01 12.67 140.8 178.3 1.27 0.52 2048 39.5
thermomech_dm 0.260 0.257 7.29 7.37 103.3 104.4 1.01 0.72 296 45.1
thermomech_dk 0.970 0.850 7.88 8.99 111.0 126.6 1.14 0.34 1792 44.5
thermomech_tc 0.157 0.14% 6.01 G.33 &25.1 90.4 1.06 0.66 296 45.1
helm2d03 3.704 2.650 7.56 10.56 106.1 148.3 1.40 0.18 2432 15.8
average 1.28 0.42
# percentage of the explicit zeros filled in the right-bottom dense block
b this value is the geometric mean, other average values are the arithmetic mean.
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Results

[
e Performance and achieved bandwidth
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Figure 13: Gflop/s and bandwidth of each step in blocked
LU factorization, for onetonel.
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Irregular matrix structure leads to irregular
memory access patterns in sparse LU factorization

We have proved that for circuit matrices which are
highly sparse, a pure non-BLAS based method is
not the best choice on GPUs

A hybrid method combining sparse and dense
algorithms is studied, achieving on average 68%
improvement compared with the original method

Our method is not conflict with BLAS-based
methods

 The sparse part can also use BLAS to achieve
performance improvement for BLAS-based methods
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Thanks for your attention
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