/——— Nanoscale Integrated Circuits and Systems
N | J-— = (NICS) Laboratory

Nonzero Pattern Analysis and Memory
Access Optimization in GPU-based Sparse
LU Factorization for Circuit Simulation

Xiaoming Chen, Du Su, Yu Wang, Huazhong Yang
Department of Electronic Engineering,

Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, China

IA3-Workshop on Irregular Applications: Architectures & Algorithms 1

Outline

e Backgrounds & motivation

* Nonzero pattern & memory access analysis
* Blocked LU factorization on GPUs

e Results

e Conclusions

IA3-Workshop on Irregular Applications: Architectures & Algorithms

Backgrounds

|| D
e Simulation Program with Integrated Circuit

Emphasis (SPICE) for IC simulation

Create the matrix

v

Preprocessing

v

Model evaluation
. ~__ The most time-consuming step

v
(Solving Ax=b } Repeated for thousands of times

———

Newton-Raphson
iteration converged?

ransient simulation
finished?

Adjust time node

N |

IA3-Workshop on Irregular Applications: Architectures & Algorithms

Backgrounds

* Features of circuit matrices:
— Irregular: asymmetric, possibly not positive definite

e LU factorization is preferred
— Highly sparse: nonzeros per row < 10

— Fixed matrix structure during all iterations, only
nonzero values change

e Preprocessing steps (e.g. symbolic factorization) are
executed just once

 Numerical LU factorization is repeated for many times,
with fixed matrix structure

IA3-Workshop on Irregular Applications: Architectures & Algorithms

Backgrounds

e A GPU-applicable flow [Ren, DAC’12]

Create the matrix

v

Preprocessing

LU factorization with
pivoting
>
Y

Model evaluation

LU re-factorization

Calculate the structure of the LU factors,
the scheduling information for parallel LU
re-factorization is also obtained

Executed on the GPU, using the fixed

without pivoting

Newton-Raphson
iteration converged?

ransient simulation

matrix structure and scheduling
information

Adjust ti

me node

A

finished?

Finish

IA3-Workshop on Irregular Applications: Architectures & Algorithms 5

Backgrounds

e Work on GPU-based sparse LU factorization

reference method type/preci |average speedup/performance
sion

Christen, Supernodal | Unsym/S |about 2X vs. sequential PARDISO, 12Gflop/s
GPPGPU’07 |with CUBLAS
Krawezik, Multifrontal |Sym/D 2.9X vs. 2-threaded ANSYS
SAAHPC’09 |with BLAS3
Yu, PC’'11 Multifrontal |Unsym/D |about 2.5X vs. sequential UMFPACK

\Allth CIBLAS T ~ amem | 1o B amLN s sm o
George, Mt It ‘rontz! & rny'S TRV Sy e itial do it e- ire cisi on) V'S P
IPDPS’11 with CUBL, S 15X by 2 GPUs vs sequential (dc uble-precision) WSMP
Lucas, Tech.|Multifrontal |Sym/S 1.97X vs. sequential CPU code (their inhouse CPU code)
Rep. 2011 with CUBLAS
Lucas, Multifrontal | Sym/S 5.91X vs. sequential CPU code (their inhouse CPU code)
VECPAR’10 with CUBLAS 1.34X vs. 8-threaded CPU code
Ren, DAC'12 | Left-looking Ungym/D 6.5X vS. sequential CPU code (our wn solver)
(our previoyk | n -thig e
=For circyitproblems

10 Gflop/s

IA3-Workshop on Irregular Applications: Architectures & Algorithms

e BLAS-based methods are generally of lower
performance than non-BLAS-based methods for

circuit matrices [Davis, TOMS2010]
e Circuit matrices are too sparse to form big supernodes

e QOur previous work [Ren, DAC’12] targeting at
circuit problems does not use BLAS

e 10 Gflop/s (double-precision), achieving only 5% of the
theoretical performance. However, a dense LU
factorization achieves >80% of the theoretical
performance [Tomov, IPDPSW’10]

 There is still room for improvement

IA3-Workshop on Irregular Applications: Architectures & Algorithms

What we have done

e This work analyzed the nonzero patterns and
memory access patterns in sparse LU
factorization, to expose common features

* A blocked algorithm was studied to accelerate
sparse LU factorization for circuit matrices, to
accelerate circuit simulation

IA3-Workshop on Irregular Applications: Architectures & Algorithms

Nonzero pattern analysis

I
e Estimated density of nonzeros of the un-

factorized matrix step by step
2|E, |+n—k
(n—k)’

density(k):min{ ,1},k:0,1,---,n—1

Density of nonzeros of the un-factorized matrix

will be higher and higher during factorization,
finally it becomes a dense submatrix

0.001

0.0001 - T T T T
0 2000 mﬂep kﬁﬂﬂ] BO00 10000

0 10000 gﬂg}g 30000 40000

Figure 5: Trends of the density. |Vo| = n = 10000, |Es| = Figure 6: Trends of the density for factorizing onetonel
15000. (36057 x36057).

IA3-Workshop on Irregular Applications: Architectures & Algorithms 9

Memory access analysis

T
* |rregular memory accesses come from the

Sparse matrix structure

Algorithm 2 Detailed code for factorizing row i

1: //copy row i of A into a dense vector x
2: for (j=A_pl[il; j<A_pli+1l; ++j)
3 g

x[A_i[j1] = A_x[j];

Indirect and strided memory accesses on the
uncompressed array x, leading to un-coalesced
memory accesses on GPUs

4:

5}

6: //numeric accumulation from dependent rows

T: for (j=L_p[il; j<L_pli+1]; ++j)

&:

9: id = L_i[j1;

10: xj = x[id];

11: for (k=U_p[id]; k<U_p[id+1]; ++k)
{

12:
E}{ [U_i[k]] -= xj*U_x[k];

15: } .
16: //storing factorization results U 1
17: xj = x[4]; _

18: x[i] = 0.;
19: 1diag[i] = xj;

20: for (j=L_pl[il; j<L_pli+1l; ++j)

21: { i

22: did = L_i[j];

23 L_x[j] = x[idl;

24: x[id] = 0.; 0 2 3

26: for (j=U_plil; j<U_pli+1]; ++j)

o |~ <«
Ol

@l NOp!

D |

28: did = v_ilj]; b
29 vu_x[j] = =x[id] / =j;
30: x[id] = 0.;

31: }

IA3-Workshop on Irregular Applications: Architectures & Algorithms 10

Memory access analysis

e Stride in memory accesses at each position

2
=
5
‘)
£
g2
5
gy

Average memory access stride
o —
= o h — h [av)

The right-bottom corner has near-zero stride, the
diagonal, the right border, and the bottom border
have big stride

1.’ PP Ll
L1

L

Analysis conclusions

e Observations

— Sparse LU factorization should be separated into two
parts to perform different optimization strategies

e The former part has larger stride in memory access
addresses, but fewer memory accesses
— Optimization: sort the nonzeros of the LU factors in each row
(proposed in [Ren, DAC’12], ~2X speedup)
e The latter part has smaller stride but more memory
daccesses
— There is a dense subblock at the right-bottom corner

— Optimization: blocked method combining sparse and dense
algorithms

IA3-Workshop on Irregular Applications: Architectures & Algorithms 12

Blocked LU factorization on GPUs

T
A mathematically equivalent method
A1 \\\\ Ul
— Ly \\\
A Az Lo L\Z\Z\J\zz
A =LU,

I—21 — A21U1(:’1: p)_l

S = A22 — |_21U1(:, p: n)—>sparse multiplication (SpMul)

S= L22U22

s partial factorization (ParFact)

> dense factorization (DenFact)
A method similar to [Tomov, IPDPSW’10]

> complement factorization (ComFact)

IA3-Workshop on Irregular Applications: Architectures & Algorithms

13

Blocked LU factorization on GPUs

* Choice of the partition point

12

11 & /f

10 & ?f

’ %0 &

8 < ‘o0

e

L & Led <
= 0»/:5
é 6
G s @7

4 ,/O’ <&

3 /<;/ 43

2 & o

1 /j/ ¢

o Lo o

1 10 100 1000 10000 100000
Miflop

Figure 11: Performance of sparse LU factorization on N-
VIDIA GTX580 (double-precision). Mflop=million floating-
point operations.

sparse_performance(flop) = 2.535 x log1o(M flop) — 1.468

120 -
100
80
5
260 -
© 40
20 -
0

—+—measured

-=--fitted

0 1000 2000 3000 4000 5000 6000 7000
Matrix dimension

Figure 12: Performance of dense LU factorization on NVIDI-
A GTX580 (double-precision).

k
dense_performance(k) = 31.93 x log2(k) — 138.93 243.92
predicted factorization time =
sparse_flop(p) + dense_flop(n—p)
sparse_performance(flop) dense_performance(n—p)
IA3-Workshop on Irregular Applications: Architectures & Algorithms 14

Experimental environment

e GPU: NVIDIA GeForce GTX580

— Compute capability: ~200 Gflop/s (double-precision)
— Off-chip bandwidth: 192.4 GB/s

e CPU:i7-3770K

— 4 cores

 The blocked method is compared with the
unblocked method and MKL PARDISO (4 threads)

e Benchmarks: from University of Florida Sparse
Matrix Collection

IA3-Workshop on Irregular Applications: Architectures & Algorithms 15

Results

|| D
Table 1: Comparison between unblocked and blocked LU factorization.
Matrix factorization time Gflop/s bandwidth (GB/ sj speedup |speedup vs. [Hense block | padding %"
unblocked | blocked [unblocked | blocked | unblocked [blocke PARDISO (| dimension
circuit matrices
asic_100k 0.273 0.235 4.07 4.73 a7.2 G6.4 1.16 0.79 1250 23.5
asic_100ks 0.166 0.094 5.38 14.86 117.6 208.6 1.77 1.01 1280 28.0
asic_320ks 0.1638 0.162 5.13 8.13 114.2 114.2 1.00 3.501 256 98.9
asic_680ks (0.150 0.079 G.11 11.65 25.9 163.7 1.91 G9.50 1408 38.3
ckt11752_dec_1 0.0538 0.052 5.26 5.85 74.1 22.4 1.11 1.00 TGE 39.9
g2_circuit 1.094 0.778 9.17 12.89 128.6 180.8 1.41 0.47 2304 32.7
onetonel 0.163 0.065 8.24 20.54 115.6 288.1 2.49 2.22 1664 35.8
onetone 0.045 0.026 4.42 7.49 6G2.3 105.4 1.69 2.02 1250 63.2
twotone 0.9583 0.383 11.05 28.35 154.8 397.3 2.57 2.89 3584 40.3
average 1.68 2.20"°
non-circuit matrices
zhaol 0.420 0.232 5.68 15.72 121.9 220.8 1.81 0.38 2048 36.9
smeddc 1.403 1.107 7.92 10.03 111.2 140.9 1.27 .39 2048 29.8
xenonl 2.034 1.561 10.38 13.53 145.7 1589.8 1.30 0.21 2944 37.0
denormal (0.501 0.396 10.01 12.67 140.8 178.3 1.27 0.52 2048 39.5
thermomech_dm 0.260 0.257 7.29 7.37 103.3 104.4 1.01 0.72 296 45.1
thermomech_dk 0.970 0.850 7.88 8.99 111.0 126.6 1.14 0.34 1792 44.5
thermomech_tc 0.157 0.14% 6.01 G.33 &25.1 90.4 1.06 0.66 296 45.1
helm2d03 3.704 2.650 7.56 10.56 106.1 148.3 1.40 0.18 2432 15.8
average 1.28 0.42
percentage of the explicit zeros filled in the right-bottom dense block
b this value is the geometric mean, other average values are the arithmetic mean.
IA3-Workshop on Irregular Applications: Architectures & Algorithms 16

Results

[
e Performance and achieved bandwidth

100 1200
1000

®00
600
400
200
e mm R ﬂ---

ParFact ComFact SpMul DenFact ParFact ComFact SpMul DenFact

(a) Gflop/s. (b) Bandwidth (GB/s).

80
60
40
20

0

Figure 13: Gflop/s and bandwidth of each step in blocked
LU factorization, for onetonel.

IA3-Workshop on Irregular Applications: Architectures & Algorithms 17

Irregular matrix structure leads to irregular
memory access patterns in sparse LU factorization

We have proved that for circuit matrices which are
highly sparse, a pure non-BLAS based method is
not the best choice on GPUs

A hybrid method combining sparse and dense
algorithms is studied, achieving on average 68%
improvement compared with the original method

Our method is not conflict with BLAS-based
methods

 The sparse part can also use BLAS to achieve
performance improvement for BLAS-based methods

IA3-Workshop on Irregular Applications: Architectures & Algorithms 18

Thanks for your attention

IA3-Workshop on Irregular Applications: Architectures & Algorithms

19

	Nonzero Pattern Analysis and Memory Access Optimization in GPU-based Sparse LU Factorization for Circuit Simulation
	Outline
	Backgrounds
	Backgrounds
	Backgrounds
	Backgrounds
	Motivation
	What we have done
	Nonzero pattern analysis
	Memory access analysis
	Memory access analysis
	Analysis conclusions
	Blocked LU factorization on GPUs
	Blocked LU factorization on GPUs
	Experimental environment
	Results
	Results
	Conclusions
	Thanks for your attention

