
A Novel Finite Element Method Assembler for
Co-processors and Accelerators

Nina Hanzlikova 1 Eduardo Rocha Rodrigues 2

1Dublin City University,
Dublin, Ireland

nina.hanzlikova2@mail.dcu.ie

2IBM Research,
Rio de Janeiro, Brazil
edrodri@br.ibm.com

17th November 2013

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 1 / 27

Overview

1 Introduction
Motivation
Mathematical Formulation

2 Parallel Assembler
Hardware
Algorithm Strategy

3 Performance
Parallel Scaling Xeon Phi
Parallel Scaling Sandy Bridge CPU
Data Scaling Xeon Phi
Discussion

4 Conclusions

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 2 / 27

Introduction Motivation

Introduction to Finite element method (FEM)

A popular approach to solving boundary value problems in physics
and engineering [1][2].

Handles complex geometries:

(i) divide the domain into simple elements,
(ii) develop the equations for each element individually,
(iii) assemble the element contributions to the global system of equations,
(iv) solve the system of equation,
(v) post-processing of results.

With ongoing improvements in sparse matrix methods [3][4][5], the
assembly of the system becomes the bottleneck [6].

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 3 / 27

Introduction Mathematical Formulation

Test Equation - Strong Formulation

Classical elastostatic equation [1]:

∂σij

∂j
+ fi = 0 in Ω (equilibrium equation) (1)

ui = gi on Γgi (prescribed displacement) (2)

σijnj = hi on Γhi
(prescribed forces) (3)

where σi is the stress, given by cijklεkl , fi is the body force and nj is the
unit normal outward vector to Γhi

. εkl is related to function u as

εij = u(i ,j) =
1

2

(∂ui

∂j
+
∂uj

∂i

)
(4)

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 4 / 27

Introduction Mathematical Formulation

Weak Formulation

To obtain the weak formulation:

Multiply Equation (1) by the weighting function wi .

Integrate over Ω using integration by parts and Green’s theorem. wi

needs to be the homogeneous counterpart of the Dirichlet boundary
condition (i.e. wi = 0 at Dirichlet boundary).

∫
Ω
w(i ,j)σi ,jdΩ =

∫
Ω
wi fidΩ +

nsd∑
i=1

(∫
Γhi

wihidΓ
)

(5)

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 5 / 27

Introduction Mathematical Formulation

Galerkin Approximation

The discretised (Galerkin) approximation:

Construct ui as a linear combination of the homogeneous solution and
the boundary condition.

uh = vh + gh

∫
Γ
wh

(i ,j)cijklv
h
(k,l)dΩ =

∫
wh

i fidΩ+

nsd∑
i=1

(∫
Γhi

wh
i hidΓ

)
−
∫

Ω
wh

(i ,j)cijklg
h
(i ,j) (6)

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 6 / 27

Introduction Mathematical Formulation

Shape Functions

To solve the discrete system:
(a) decouple the element
calculations from each other,
and (b) map the irregular
element shapes onto well
defined reference solutions.

We define a set of reference
shape functions NA that go
to zero outside the
neighbourhood of their
associated node and are
equal to one at this node,
i.e.

NA(node B) = δAB (7)

where δAB is the Kronecker delta.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 7 / 27

Introduction Mathematical Formulation

Linear System

Shape functions NA are linearly independent.

vh, wh and gh are their linear combinations:

vh
i =

∑
A∈η−ηgi

NAdiA wh
i =

∑
A∈η−ηgi

NAciA gh
i =

∑
A∈ηgi

NAgiA

(8)

Substituting into discretised Equation 6 gives a sparse system:

Kd = F (9)

Which is element decoupled due to choice of NA.

K =
ne∑

e=1

ke F =
ne∑

e=1

fe (10)

Allowing incremental summation.

KA,B ← KA,B + ke
a,b FA ← FA + f e

a (11)

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 8 / 27

Parallel Assembler Hardware

Xeon Phi Architecture

Sophisticated architecture
processor with relatively
large memory cache.

On-chip availability of fast
vector registers optimised for
fused multiply and add
operation.

Vectors implement the single
instruction, multiple data
processing model with great
efficiency, allowing 16 single
precision or 8 double
precision lanes to be
processed simultaneously [7].

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 9 / 27

Parallel Assembler Hardware

GPU vs. Xeon Phi I

Both devices utilise massive parallelism and prioritise numerical
performance.

GPUs require manual declaration/handling/copying of different
memory types while Xeon Phi caches are handled in an analogous
fashion to standard multi-core processor.

(i) GPU allows for greater explicit memory control. However this requires
greater familiarity with GPU programming and generates more code.

(ii) Xeon Phi memory can be mostly effectively controlled through implicit
layout/access and smart use of compiler.

Xeon Phi parallelisation utilises existing parallelism APIs/libraries,
GPU has a number of specific libraries, languages and extensions to
achieve execution.

(i) Xeon Phi predominantly uses OpenMP or MPI for parallelism. These
are well developed frameworks with very good tutorials/documentation
available. They are moderately user friendly.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 10 / 27

Parallel Assembler Hardware

GPU vs. Xeon Phi II

(ii) GPU mostly offers CUDA C/C++ and OpenCL. Both have a moderate
to steep learning curve and GPU specific features. GPU specific
debugging/profiling tools are usually necessary. A lot of extra set up
code is required.

(iii) GPU also offers thrust library, which provides a small set of vector-like
reduction operations and OpenACC, which is showing some promise of
bridging this large usability gap.

Both devices have limited memory available on device. For FEM
solvers this limits the mesh dimensions compared to CPU solvers. A
potential solution is processing meshes in chunks, thanks to their easy
decoupling.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 11 / 27

Parallel Assembler Algorithm Strategy

Approach Overview

We want a massively parallel, scalable assembler without data race
conditions.

To avoid data race conditions 2+ threads cannot write to the same
output.

FEM assembly broadly consists of 2 parts with different output arrays:

(i) calculate ke and fe , the mesh element contribution to K and F.
(ii) sum over all mesh element contributions to the K and F matrix/vector

elements.

Solution: decouple the mesh element computation procedure and the
K and F summation procedure.

Needs maintaining an intermediate memory state.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 12 / 27

Parallel Assembler Algorithm Strategy

Data structure

Element computation
outputs data for summation.

We want each summation
thread to read sequential
data in memory.

We begin each summation
specifying the number of
elements to be summed.
This allows vectorised
reduction. We terminate each summation

with the global index in K or F.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 13 / 27

Parallel Assembler Algorithm Strategy

Mapping Set-Up

Each local system needs write destination for its data in the output
array above.

This needs to be set up on per mesh connectivity basis:

(i) Each element ’grabs’ a unique rank index in the summation. This is
the offset from the line shaded entry of its summation in array above.

(ii) The highest rank per summation gives the total number of summation
entries.

(iii) Summations are arranged into threads, either based on Largest
Processing Time load balancing [8] or specifying an average cut-off line
size, creating the data structure above.

(iv) As they are being arranged the offset of each summation is determined.
This added to element rank gives global index in data structure above.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 14 / 27

Parallel Assembler Algorithm Strategy

Architecture Comparison to Cecka et al. [6][9]

Cecka’s globalNZ [6] and our assembler both break up the procedure
into mesh element computation and assembly summation.

The globalNZ assembler outputs all ke and fe elements to an array
using coalesced writes.

It maintains a map the assembler queries to find the entries in the full
output array to sum over.

An advantage of this approach is the easy coalesced write of the
element computation.

On the other hand the reading for summation is scattered in memory
and more prone to cache misses.

Additionally full compute output is stored without discarding data
corresponding to boundary condition nodes.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 15 / 27

Performance Parallel Scaling Xeon Phi

Strong and Weak Scaling - Xeon Phi

Figure: Strong scaling on Intel R©
Xeon Phi co-processor for data set
containing 4871 nodes and 9840
elements.

Figure: Weak scaling on Intel R© Xeon
Phi co-processor for constant number of
element local linear systems calculated
and equations assembled.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 16 / 27

Performance Parallel Scaling Xeon Phi

Strong Scaling Close Up - Xeon Phi

Figure: Close up on Type 2 (globalNZ) and Type 3 (our rank-based) assemblers
strong scaling on Intel R© Xeon Phi co-processor for data set containing 4871
nodes and 9840 elements.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 17 / 27

Performance Parallel Scaling Xeon Phi

Weak Scaling Close Up - Xeon Phi

Figure: Weak scaling of local linear
system computation subroutine on
Intel R© Xeon Phi co-processor for
constant number of element local
linear systems calculated and
equations assembled.

Figure: Weak scaling of the assembly
procedure on Intel R© Xeon Phi
co-processor for constant number of
element local linear systems calculated
and equations assembled.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 18 / 27

Performance Parallel Scaling Sandy Bridge CPU

Strong and Weak Scaling - Sandy Bridge CPU

Figure: Strong scaling on Sandy
Bridge CPU for data set containing
4871 nodes and 9840 elements.

Figure: Weak scaling on Sandy Bridge
CPU for constant number of element
local linear systems calculated and
equations assembled.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 19 / 27

Performance Parallel Scaling Sandy Bridge CPU

Weak Scaling Close Up - Sandy Bridge CPU

Figure: Weak scaling of local linear
system calculation procedure on
Sandy Bridge CPU for constant
number of element local linear
systems calculated and equations
assembled.

Figure: Weak scaling of assembly
procedure on Sandy Bridge CPU for
constant number of element local linear
systems calculated and equations
assembled.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 20 / 27

Performance Data Scaling Xeon Phi

Relative Data Scaling of Parallel Implementations - Xeon
Phi

Figure: Scaling of assemblers with data size, plotted by number of elements, and
carried out on the Intel R© Xeon Phi co-processor.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 21 / 27

Performance Discussion

Optimisation

Vectorisation! This is much more efficient when data is well aligned
and continuous. The summation array and K and F matrix/vector are
64-byte aligned, as are the local ke and fe arrays.

Use of array/single nested loops for matrices improves vectorisation
through allowing of better filling of vector registers, more transparent
storage in memory and better compiler level optimisation.

In the case of our assembler algorithm performance can be improved
when summations sharing contributing elements are handled by the
same thread. This is due to reduction in likelihood of paged out
output memory location requiring look up overhead.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 22 / 27

Conclusions

Conclusions and Recommendations I

Our assembly procedure shows an improvement in both data and
parallelism scaling performance of previous assembler algorithms.

The use of Xeon Phi over GPU results in significant memory
simplification and improved portability of algorithm due to use of
OpenMP. However in future we wish to implement our assembler on
GPU to compare the algorithms and the device performances.

Vectorisation and memory alignment are important for optimisation
[7]. Good vectorisation can be achieved by our assembler algorithm.

Performance improvement was seen through arranging thread
summation data structure according to sharing of contributing
elements. This was due to reduce paged memory requests. A more
systematic strategy to achieve this is an important direction in future
research on this topic.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 23 / 27

Conclusions

Acknowledgements

This work was supported by IBM Global University Programs and the
Graduate Studies department of Dublin City University (DCU). The
authors are also grateful to IBM Platform Computing group that supplied
the hardware used in the experiments.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 24 / 27

Conclusions

References I

T. Hughes, The finite element method: linear static and dynamic finite element analysis, ser. Dover Civil and Mechanical

Engineering Series. Dover Publications, 2000. [Online]. Available:
http://books.google.com.br/books?id=yarmSc7ULRsC

S. RAO, The Finite Element Method in Engineering. Elsevier Science, 2010. [Online]. Available:

http://books.google.com.br/books?id=9PwTNzyySzwC

M. Wang, H. Klie, M. Parashar, and H. Sudan, “Solving sparse linear systems on nvidia tesla gpus,” in Computational

Science ICCS 2009, ser. Lecture Notes in Computer Science, G. Allen, J. Nabrzyski, E. Seidel, G. Albada, J. Dongarra,
and P. Sloot, Eds. Springer Berlin Heidelberg, 2009, vol. 5544, pp. 864–873. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01970-8$ $87

L. Buatois, G. Caumon, and B. Lvy, “Concurrent number cruncher: a gpu implementation of a general sparse linear

solver,” International Journal of Parallel, Emergent and Distributed Systems, vol. 24, no. 3, pp. 205–223, 2009. [Online].
Available: http://www.tandfonline.com/doi/abs/10.1080/17445760802337010

E. Saule, K. Kaya, and U. V. Catalyurek, “Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon

Phi,” ArXiv e-prints, Feb. 2013.

C. Cecka, A. J. Lew, and E. Darve, GPU Computing Gems Jade Edition, ser. Applications of GPU Computing Series.

Elsevier Science, 2011, ch. Application of Assembly of Finite Element Methods on Graphics Processors for Real-Time
Elastodynamics. [Online]. Available: http://books.google.com.br/books?id=LsNVFUnzcVMC

J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming. Elsevier Science, 2013. [Online].

Available: http://books.google.com.br/books?id=KJORYTHOxbEC

R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM JOURNAL ON APPLIED MATHEMATICS,

vol. 17, no. 2, pp. 416–429, 1969.

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 25 / 27

http://books.google.com.br/books?id=yarmSc7ULRsC
http://books.google.com.br/books?id=9PwTNzyySzwC
http://dx.doi.org/10.1007/978-3-642-01970-8$_$87
http://www.tandfonline.com/doi/abs/10.1080/17445760802337010
http://books.google.com.br/books?id=LsNVFUnzcVMC
http://books.google.com.br/books?id=KJORYTHOxbEC

Conclusions

References II

C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods on graphics processors,” International Journal

for Numerical Methods in Engineering, vol. 85, no. 5, pp. 640–669, 2011. [Online]. Available:
http://dx.doi.org/10.1002/nme.2989

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 26 / 27

http://dx.doi.org/10.1002/nme.2989

Conclusions

Thank You
Questions?

shortname (shortinst) FEM Assembler for Xeon Phi 17th November 2013 27 / 27

	Introduction
	Motivation
	Mathematical Formulation

	Parallel Assembler
	Hardware
	Algorithm Strategy

	Performance
	Parallel Scaling Xeon Phi
	Parallel Scaling Sandy Bridge CPU
	Data Scaling Xeon Phi
	Discussion

	Conclusions

