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Motivation

• Increased parallelism translates to 
more data-movement

• For a given application, traffic is 
predictable[1][2]

• Other applications are less predictable
– Graph exploration, operations on sparse 

matrices, etc.

• HPC also targets these applications.

Can we devise a network that could be good for both regular and irregular apps? Can we devise a network that could be good for both regular and irregular apps? 

[1] Shalf, J., et al. Analyzing Ultra-Scale Application Communication Requirements for a Reconfigurable Hybrid Interconnect. in SuperComputing (2005)
[2] Barker, K.J., et al., On the Feasibility of Optical Circuit Switching for High Performance Computing Systems, in SuperComputing (2005)
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Optics emerging as a hot topic for SuperComputing

• Potential for ultra 
high bandwidth density
– Also over large distances

– Low power

• Potential for low latency
communication
– Cut-through transmission

– Optical switching

• Tight integration with 
computing resources
using Silicon Photonics

High bandwidth-density, 

low-power WDM Transceivers

Fast-reconfigurable
photonic core switches

What type of optics-enabled network is suited
for both regular and irregular apps? 

What type of optics-enabled network is suited
for both regular and irregular apps? 
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Traditional approach
1. Devise a networking concept

• Hardware links, interfaces, switches

• Protocols for orchestration and allocation

2. Model, analyze and optimize the 
network capabilities 
• Effective bandwidth

• Cost (equipment, energy) for bandwidth
• Modeling through random traffic

3. Put the bandwidth where the traffic is
• Dimension the network to meet traffic 

demands
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[1] G. Dongaonkar, et al.
IEEE Optical Interconnects 2013

[2] S. Rumley, et al. ECOC 2013
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Traditional approach not applicable

• Put bandwidth where the traffic is – but where is the traffic?
– Can we at least quantify the requirements?

• What is the impact of latency?
– Especially in an optical networking context

• Lack of buffers might produce “networking hiccups”

� Need to incorporate the application in the network modeling process
• Full-system simulation? 

• Execution of real code

• Coarse-grained simulation?
• Execution of (simplified or not) code

•
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Can we further simplify 
the application while 
keeping the feedback? 

Can we further simplify 
the application while 
keeping the feedback? 
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Proposal: Random tasks instead of random traffic
• Application reduced to its simplest form

– Computation phases characterized by an execution time

– Communication phases described by a byte amount

– Interdependent computations and communication 
• A computation depends on one or more message arrivals

• Messages are issued to the network simulator only upon a computation phase 
completion

• Model tasks as directed acyclic graphs (DAGs)

• Mimic the workload as a random sequence of (random or not) DAGs
– Exponentially distributed inter-arrival times

• Small tasks occurring frequently � Data-Center

• Large tasks occurring sporadically � SuperComputer
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Tree based task generation

1. Start from a tree structure
– Can be obtained through deterministic

or random generation

– Random trees for benchmarking proposed 
in the past[1]

2. Assign four (random or predetermined) 
values to each vertex

3. “Execute” the associated
job described by 
the DAG

ti, ta

ti, ta

ss bits required to 
begin sub-task

ti, ta

sr bits to retrieve 
at sub-task end

ti computation 
time for 

initialization

ta computation 
time for 

aggregation

ti, ta

ti, ta ti, ta

ss

sr

ss

sr

ss

sr

ss
sr

ss

sr

[1] Olivier, S., et al. UTS: An Unbalanced Tree Search Benchmark, 
in Workshop on Languages and Compilers for Parallel Computing (2006).
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Scheduler and tasking model
• Central scheduling: one of the nodes hosts the scheduler

– This node is not available to execute tasks
– Only entry point for arising tasks
– Keeps a list of activity flags for computing nodes

• When a task is assigned to a node
– Receives descriptor (of size ss) 
– Initialization phase (for ti). Discovery of the sub-tasks.
– Asks the scheduler for helpers

• Which may or may not be allocated 
• Task descriptors (of size ss) sent to helpers
• Awaits results (of size sr)

– Some sub-tasks kept locally (avoid stalling while waiting)
– Upon sub-task results collection (locally computed or received)

• Aggregation phase starts (for ta)
• Task results are sent back
• Inactivity is announced to the scheduler
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ss
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Implementation - verification
• Job generators, task runtimes (scheduler and 

clients) implemented on top of the LWSim simulator[1]

• Implementation verification:
– Completion time for a single job

• Execution time for each vertex: 20µs

• Sequential execution time: 340µs

• Lower bound for parallel execution: 60µs

�Maximum speed-up: 5.66

– System with N computing nodes 
connected with simplistic star 
network with access bandwidth B

B

[1] S. Rumley, R. Hendry, K. Bergman, "Fast Exploration of Silicon Photonic Network Designs for Exascale Systems [position paper]," 
ASCR Workshop on Modeling and Simulation (Sep 2013). 
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Impact of bandwidth
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Speed-up relation with utilization
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Conclusions

• Synthetic workload model generates both traffic and computing tasks
– Easy to model, scalable

• Simulation of DAG described applications over a network
– Random trees can be replaced by real-life DAGs

• Simulation results show that
– Centralized scheduling is not adequate 

– Can we achieve speed-up and high network utilization
• Not possible in the conditions tested here: high utilization means queuing, 

queuing means delays, delays means inefficiency.

• Room to investigate various topologies, even abstractly described
– Optimize cluster sizes, over-subscription ratios, etc.

– Test our optical aware architectures in more application-like 
environments
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Next steps
• Main limiting factor: centralized dynamic scheduling

– Static allocation? 

– Work stealing approach?

• Allocate bandwidth where traffic is?
– SDN-connected scheduler?

• Network topology configured (in advance) by the scheduler
or

• Network configuration aware scheduling

• Task generation:
– Non-tree random pattern generation

– Comparison with real-life workload
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Thank you for your attention

• Any question?

Contact: sr3061@colubia.edu

– Thanks to my co-authors!
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Extra slides
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Workload modeling

• A given tree has a communication and
computation footprints Fcomm and Fcomp

– Fcomp is directly proportional to the number of vertices n
and to E[ti + ta]

– Fcomm is also proportional to n and to E[ss + sr]. 
• However, no communication arises if two sub-tasks

(vertices) are executed on the same node.
• max(Fcomm)= n(ss + sr) can be taken as upper bound

• System loads can be estimated with these footprints
– If β is the task arrival rate in [s-1]:

• β Fcomp is the computation load in [-]
• β Fcomm is the communication load in [bit/s]
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The computing load is unitless. It expresses the 
number of reference CPUs required to avoid task 
accumulation at 100% CPU utilization

The network system must support at least β Fcomm

[bits/s] of injection bandwidth.
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Modeling – continued

• The target system executing the workload can also be modeled
– N computing nodes , each equipped with the reference CPU
– Each node connected to the network with bandwidth B [bits/s]

• By relating the loads to the system size, one obtains normalized loads
– ρcomp = β Fcomp / N is the theoretical computing node utilization

• Predicts computing resource utilization … except if tasks accumulate. 

– ρcomm = β Fcomm / BN is the theoretical network utilization
• Predicts network utilization … except if tasks accumulate or are executed sequentially

• To have ρcomp = ρcomm one needs a bandwidth Beq = Fcomm/ Fcomp

– Beq is the bandwidth required if equal utilizations are targeted

– We can relate any bandwidth to this “reference bandwidth”
• B/Beq = B/(Fcomm/Fcomp) = ζ

• ζ expresses the asymmetry of a system  (large ζ � over-dimensioned network)
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Measurement vs. predictions

• Computing utilization accurately
predicted as the load is kept below 1
– Ratio prediction/measurement close to 1
– Difference due to time spent by task in the

system

• Communication utilization quickly
diverges from the bound
– Resulting from sequential execution

– Higher bandwidth makes the system more
reactive and prevents sequential execution
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Topology aware scheduling
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Network utilization vs. bandwidth

0

0.05

0.1

0.15

0.2

0.25

6.25 25 50 75

Bandwidth in Gb/s

N
et

w
or

k 
ut

ili
za

tio
n 100 Computing nodes

25 Computing nodes

500 Computing nodes

0

25

50

75

100

0 0.05 0.1 0.15 0.2

Network utilization

B
an

dw
id

th
 in

 G
b/

s 100 Computing nodes

25 Computing nodes

500 Computing nodes



Rev PA1Rev PA1 24

Impact of network latency

50 100 150 200 250 300 350 400
0

0.2

0.4

Number of nodes

C
om

pu
tin

g 
ov

er
he

ad

 

 

50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

Number of nodes

N
et

w
or

k 
ut

ili
sa

tio
n

 

 

latency=500ns, B=10Gb/s

latency=2000ns, B=10Gb/s

latency=5000ns, B=10Gb/s

latency=500ns, B=25Gb/s

latency=2000ns, B=25Gb/s

latency=5000ns, B=25Gb/s

50 100 150 200 250 300 350 400
0

2

4

6

8

Number of nodes

S
pe

ed
-u

p

 

 


