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Motivation

* Increased parallelism translates to
more data-movement

* [For a given application, traffic is ﬁ>
predictableltll]

« Other applications are less predictable
— Graph exploration, operations on sparse

matrices, etc. :>

 HPC also targets these applications.

Can we devise a network that could be good for both regular and irregular apps?

[1] Shalf, J., et al. Analyzing Ultra-Scale Application Communication Requirements for a Reconfigurable Hybrid Interconnect. in SuperComputing (2005)
[2] Barker, K.J., et al., On the Feasibility of Optical Circuit Switching for High Performance Computing Systems, in SuperComputing (2005) 2




Optics emerging as a hot topic for SuperComputing

High bandwidth-density,

e Potential for ultra low-power WDM Transceivers
hlgh bandW|dth denSIty Comb Source Microring Modulator Array Data

— Also over large distances & By =R

— Low power

Microring Filters and Data

Receivers Array

 Potential for low latency
communication

— Cut-through transmission
— Optical switching

3D-Integrated Switch Matrix
Silicon Nitride

Polycrystalline Silicon ¢

Silicon Nitride

o Tight integration with
- Fast-reconfigurable
Computl_ng resourceg photonic core switches
using Silicon Photonics

What type of optics-enabled network is suited
for both regular and irregular apps?




[1] G. Dongaonkar, et al.

Traditional approach
1. Devise a networking concept e —’Buﬁejr J - 375 J_UWM
« Hardware links, interfaces, switches k -------- W
« Protocols for orchestration and allocation JQ ||° Input Wavegide
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[2] S. Rumley, et al. ECOC 2013
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2. Model, analyze and optimize the

network capabilities 2| e _mmTo

. Effective bandwidth I e X |
« Cost (equipment, energy) for bandwidth (o, X

« Modeling through random traffic \ — - ) "/
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Typical operation range

3. Put the bandwidth where the traffic is

 Dimension the network to meet traffic
demands
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Traditional approach not applicable

 Put bandwidth where the traffic is — but where is the traffic?
— Can we at least quantify the requirements?

 What is the impact of latency?

— Especially in an optical networking context
» Lack of buffers might produce “networking hiccups”

- Need to incorporate the application in the network modeling process

e Full-system simulation? - ——
, —— Application
e Execution of real code . log |
« Coarse-grained simulation? _—t [ Full-system
« Execution of (simplified or not) code _performance /

Network
. statelog )

T
g
= [ Network |
. performance |
feedback

(model)

Can we further simplify
the application while
keeping the feedback?

P Application




Proposal: Random tasks instead of random traffic

» Application reduced to its simplest form
— Computation phases characterized by an execution time
— Communication phases described by a byte amount

— Interdependent computations and communication
A computation depends on one or more message arrivals

» Messages are issued to the network simulator only upon a computation phase
completion

* Model tasks as directed acyclic graphs (DAGS)

 Mimic the workload as a random sequence of (random or not) DAGSsS
— Exponentially distributed inter-arrival times
« Small tasks occurring frequently - Data-Center
» Large tasks occurring sporadically - SuperComputer



Tree based task generation

1. Start from a tree structure

— Can be obtained through deterministic
or random generation

— Random trees for benchmarking proposed
in the past!

2. Assign four (random or predetermined)
values to each vertex

s, bits required to
/ begin sub-task

3. “Execute” the associated 7/
job described by
the DAG - Ve~

S bits to retrieve
at sub-task end

t. computation t, computation v
time for time for /,
initialization aggregation 7
[1] Olivier, S., et al. UTS: An Unbalanced Tree Search Benchmark, R Pl

~
-~ -
-—— -

in Workshop on Languages and Compilers for Parallel Computing (2006).



Scheduler and tasking model

e Central scheduling: one of the nodes hosts the scheduler
— This node is not available to execute tasks
— Only entry point for arising tasks
— Keeps a list of activity flags for computing nodes

 When a task is assigned to a node
— Recelves descriptor (of size s) <+ S

— Initialization phase (for t;). Discovery of the sub-tasks.\_
— Asks the scheduler for helpers
* Which may or may not be allocated / SN
« Task descriptors (of size s) sent to helpers Q Q
» Awaits results (of size s)
— Some sub-tasks kept locally (avoid stalling while waiting)
— Upon sub-task results collection (locally computed or received)
» Aggregation phase starts (for t,)
» Task results are sent back
 Inactivity is announced to the scheduler

recursion




Implementation - verification

« Job generators, task runtimes (scheduler and
clients) implemented on top of the LWSim simulatorl!!

« Implementation verification:

— Completion time for a single job >
» Execution time for each vertex: 20us
» Sequential execution time: 340us
» Lower bound for parallel execution: 60us
- Maximum speed-up: 5.66

— System with N computing nodes
connected with simplistic star
network with access bandwidth B (5

[1] S. Rumley, R. Hendry, K. Bergman, "Fast Exploration of Silicon Photonic Network Designs for Exascale Systems [position paper],"

ASCR Workshop on Modeling and Simulation (Sep 2013).
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Impact of bandwidth
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5 job/ms

30 job/ms

Let’'s consider more than

one task
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Simulation of the same sequence of tasks on differe nt

architectures
1

Network utilization

Computing node utilization
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Speed-up relation with utilization
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Conclusions

Synthetic workload model generates both traffic and computing tasks
— Easy to model, scalable

Simulation of DAG described applications over a network
— Random trees can be replaced by real-life DAGs

Simulation results show that
— Centralized scheduling is not adequate

— Can we achieve speed-up and high network utilization

» Not possible in the conditions tested here: high utilization means queuinq,
queuing means delays, delays means inefficiency.

Room to investigate various topologies, even abstractly described
— Optimize cluster sizes, over-subscription ratios, etc.

— Test our optical aware architectures in more application-like
environments

15



Next steps

Main limiting factor: centralized dynamic scheduling
— Static allocation?
— Work stealing approach?

Allocate bandwidth where traffic is?

— SDN-connected scheduler?

» Network topology configured (in advance) by the scheduler
or

* Network configuration aware scheduling

Task generation:
— Non-tree random pattern generation

@

— Comparison with real-life workload

SNDAZ =
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0
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T SUMU

Thank you for your attention

e Any question?

Contact: sr3061@colubia.edu

— Thanks to my co-authors!

17
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Extra slides
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Workload modeling

A given tree has a communication and
computation footprints F___and F

comm comp
Feomp 1S directly proportional to the number of vertices n
and to E[t; + t]

Feomm IS @lSO proportional to nand to E[S, + S]. \
 However, no communication arises if two sub-tasks F =4(t +t
(vertices) are executed on the same node o
| me(F o= 4(3+ 9)

* max(F.)=N(s,+ s) can be taken as upper bound

« System loads can be estimated with these footprints
— If Bis the task arrival rate in [s!]:

The computing load is unitless. It expresses the
) _ _ number of reference CPUs required to avoid task
B Feonp is the computation load in [-] accumulation at 100% CPU utilization

B F s, IS the communication load in [bit/s] —_—

The network system must support at least £ F
[bits/s] of injection bandwidth.

19



Modeling — continued

 The target system executing the workload can also be modeled
— N computing nodes , each equipped with the reference CPU
— Each node connected to the network with bandwidth B [bits/s]

* By relating the loads to the system size, one obtains normalized loads
~ Peomp = BFeomp! N is the theoretical computing node utilization
* Predicts computing resource utilization ... except if tasks accumulate.

—  Peorm= B Feorm ! BN is the theoretical network utilization
* Predicts network utilization ... except if tasks accumulate or are executed sequentially

* TO have 'Ocomp: 'Ocomm

one needs a bandwidth B, = F., ./ Feonp

B4 IS the bandwidth required if equal utilizations are targeted
— We can relate any bandwidth to this “reference bandwidth”

* BBy, = BI(FeomfFeomp) = 4

o ({expresses the asymmetry of a system

(large ¢ = over-dimensioned network)

20




Measurement vs. predictions

100 F|ms—1] 300

« Computing utilization accurately o ]
predicted as the load is kept below 1 | St
— Ratio prediction/measurement close to 1
— Difference due to time spent by task in the 08
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 Communication utilization quickly
diverges from the bound

— Resulting from sequential execution

— Higher bandwidth makes the system more
reactive and prevents sequential execution
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Topology aware scheduling

Speed-up

5

unaware scheduling

Over subscribed
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over-subscription even with massive over-
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Network utilization vs. bandwidth
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Impact of network latency
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