
1 / 24

Recent Research on the Cray XMT

Shahid Bokhari

Department of Biomedical Informatics

The Ohio State University

shahid@bmi.osu.edu

bmi.osu.edu/~shahid

shb@acm.org

home.earthlink.net/~drshb

November 17, 2009

Massively
XMT:

Multithreaded
Computing

Example: Sequence Alignment

Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

2 / 24

Ordinary C code–The compiler is reassured that P, T & D

do not overlap:automatically converts rectangular loop into

wavefronted loop.
| #pragma mta noalias *P, *T, *D

| for (i=1; i <=m; i++) {
| int j;

7 P:e | int myPi=P[i];

| for(j=1; j <= n ; j++){
| int v, h, d, m1, m2, p;

9 -P1:w | v= D[i-1][j]+1;

| p= (myPi!=T[j]);

9 -P1:w | ...

| m2 = MIN(m1,h);

9 P-:w | D[i][j] = m2;

9 SP1:w +

| }
| }

Massively
XMT:

Multithreaded
Computing

Comparative Timings

Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

3 / 24

Sequence alignment on the Cray XMT & SGI Altix

Concurrency & Computation

www3.interscience.wiley.com/journal/

122580907/abstract

Massively
XMT:

Multithreaded
Computing

Graph Theoretic Model for Virus

Reassortment
Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

4 / 24

■ Evolution over τ stages or seasons modeled
with a layered or multipartite graph.

■ Viruses = nodes

■ Reassortment events = nodes

■ Mutations/reassortment choices = edges

■ Weights on edges represent edit distances

IEEE Trans. Computational Biology & Bioinformatics

doi.ieeecomputersociety.org/10.1109/TCBB.2008.73

Massively
XMT:

Multithreaded
Computing

Reassortment Network

5 / 24

viruses

stage 1

O(n2)
mutation

edges

O(n3)
reassort
edges

O(n3)
reassort
costs

n

viruses
n

viruses reassortment
events

n

stage 2

O(n2)

Path in Reassortment Network corresponds to sequences of
mutations and reassortments that transform one virus into
another.

0

1

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

2

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

Network for

n =3 viruses,

τ =2 stages,

2 segments/virus

0

1

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

2

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

Path:

Virus 1
1← 1[0] (stasis)

W(1← 1[0], 1) = 0

1← 0[1] (reassort)
W(1← 0[1], 2)

Virus 2

Virus 1

0

1

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

(2←2[1], 2)S
(2←2[1], 1)M
(2←2[1], 0)M
(2←2[0], 2)S
(2←2[0], 1)M
(2←2[0], 0)M
(2←1[1], 2)S
(2←1[1], 1)M
(2←1[1], 0)R
(2←1[0], 2)S
(2←1[0], 1)M
(2←1[0], 0)R
(2←0[1], 2)S
(2←0[1], 1)R
(2←0[1], 0)M
(2←0[0], 2)S
(2←0[0], 1)R
(2←0[0], 0)M
(1←2[1], 2)M
(1←2[1], 1)S
(1←2[1], 0)R
(1←2[0], 2)M
(1←2[0], 1)S
(1←2[0], 0)R
(1←1[1], 2)M
(1←1[1], 1)S
(1←1[1], 0)M
(1←1[0], 2)M
(1←1[0], 1)S
(1←1[0], 0)M
(1←0[1], 2)R
(1←0[1], 1)S
(1←0[1], 0)M
(1←0[0], 2)R
(1←0[0], 1)S
(1←0[0], 0)M
(0←2[1], 2)M
(0←2[1], 1)R
(0←2[1], 0)S
(0←2[0], 2)M
(0←2[0], 1)R
(0←2[0], 0)S
(0←1[1], 2)R
(0←1[1], 1)M
(0←1[1], 0)S
(0←1[0], 2)R
(0←1[0], 1)M
(0←1[0], 0)S
(0←0[1], 2)M
(0←0[1], 1)M
(0←0[1], 0)S
(0←0[0], 2)M
(0←0[0], 1)M
(0←0[0], 0)S

2

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

2←2[1]

2←2[0]

2←1[1]

2←1[0]

2←0[1]

2←0[0]

1←2[1]

1←2[0]

1←1[1]

1←1[0]

1←0[1]

1←0[0]

0←2[1]

0←2[0]

0←1[1]

0←1[0]

0←0[1]

0←0[0]

1

2

0

Path:

Virus 1
1← 1[0] (stasis)

W(1← 1[0], 1) = 0

1← 0[1] (reassort)
W(1← 0[1], 2)

Virus 2

Virus 1

Massively
XMT:

Multithreaded
Computing

Comparative Timings

9 / 24

10

25

50

100

250

500

750
1000

 1 2 4 8 16 32 64

tim
e

(s
ec

)

processors

egret 16 proc
cougar 64 proc

Massively
XMT:

Multithreaded
Computing

Comparative Timings

10 / 24

10

25

50

100

250

500

750
1000

 1 2 4 8 16 32 64

tim
e

(s
ec

)

processors

egret 16 proc
egret ideal speedup

cougar 64 proc
cougar ideal speedup

Massively
XMT:

Multithreaded
Computing

Comparative Timings

11 / 24

10

25

50

100

250

500

750
1000

 1 2 4 8 16 32 64

tim
e

(s
ec

)

processors

egret 16 proc
cougar 64 proc

egret restructured
cougar restructured

Massively
XMT:

Multithreaded
Computing

Timings (restructured code)

12 / 24

10 sec

30 sec

1 min

5 min

10 min

30 min

1 hr

2 hrs

 1 2 4 8 16 32 64

tim
e

processors

viruses=1163
500
367

Massively
XMT:

Multithreaded
Computing

Shared Multilevel Parallel
Queues

Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

Motivation

Motivating Example

Performance Bounds

Generalization

Extensions

13 / 24

Massively
XMT:

Multithreaded
Computing

Motivation

Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

Motivation

Motivating Example

Performance Bounds

Generalization

Extensions

14 / 24

■ The use of parallel shared queues is essential
for the correct execution of many classes of
programs in parallel computers.

■ Control of concurrent access to shared queues
is possible with FETCH AND ADD or similar
instructions. Unfortunately these instructions
generate severe overhead as the number of
threads increases.

■ A Shared Multilevel Parallel Queue (SMPQ)
mechanism has been developed that greatly
reduces this overhead.

Massively
XMT:

Multithreaded
Computing

15 / 24

■ While the FETCH AND ADD hardware will permit logically correct
operation of shared queues, most parallel computer systems have a
limited number of hardware units capable of carrying it out and the
performance of queuing operations drops dramatically as the
number of active threads increases.

■ Consequently, the performance of many algorithms that require
frequent use of the FETCH AND ADD operation is very limited
and performance scales very poorly as the number of processors
increases.

■ At the same time, it is impossible to obtain correct implementations
of many important parallel algorithms without using the
FETCH AND ADD operation.

Massively
XMT:

Multithreaded
Computing

Motivating Example

16 / 24

■ Breadth First Search (BFS) will be used as a motivating
example in the exposition of the SMPQ concept.

■ BFS is a widely used operation at the heart of many
graph algorithms and its efficient parallel
implementation shall improve the performance of many
existing and proposed parallel graph codes.

■ However SMPQs are applicable directly, or with minor
modification, to a much wider range of parallel
algorithms.

n

q

r rr

q

s

q q

r r

q

r rr

q q

Q Q
EW

W
RR

E

n

q1

1

2

2

t

t

t+1

t+1

m+1

m+1

n

n

t+2

t+2

m

m

Two first level parallel queues QW/QE and RW/RE, each of size n, hold

pointers to serial queues qi and ri respectively, each of size s. The total

capacity of this system is N = sn. This figures shows an empty system, thus

the pointers are in the queues of empty queues QE and RE.

E

q

r

τ

q

τ

r

q

τ

r

q

r

q

r

q

r

q

r

q

r

Q Q
EW

W
RR

1

1

1

n2

2

n2

t

t

t

t+1

t+1

t+2

t+2

m

m

m+1

m+1

An intermediate stage in breadth first search (BFS). Each thread τi, 0 ≤ i ≤ t

has acquired private input(output) queues qi(ri) from QW(RE). A thread

takes nodes from its private q and puts nodes on its private r. QW contains

pointers to the remaining qs that are non-empty. QE(RE) contains pointers to

the remaining qs(rs) that are empty. Thread τ2 has just filled up its output

queue r .

E

r

q

τ

r

q

r

τ

r

qq

r

q q

r r

q

r

q

Q Q
EW

W
RR

τ

1

1

1

2

2

2

t

t

t

t+1

t+1

t+2

t+2

m

m

m+1

m+1

n

n

Thread τ2 puts its filled queue r2 in RW and gets a fresh output queue rt+1

from RE. At this point thread τt has emptied out its input queue qt.

E

r r

q

τ

r

τ

q

r r

q q q

r r

q

r

q

τ

Q Q
EW

W
RR

q1

1

1

2

2

2

t

t

t

t+1

t+1

t+2

t+2

m

m

m+1

m+1

n

n

E

r

q

r

τ

qq

r

q

τ

q

r r

τ

q

r

qq

rr

Q Q
EW

W
RR

1

1

1

2

2

2

t

t

t

m+1

m+1

n

n

t+1

t+1

m

m

t+2

t+2

One stage of the BFS is completed, all input queues qi (originally in QW) have

been emptied and put in QE. All output queues have been filled (as much as

possible) and put in RW . At this point the roles of QW/QE and RW/RE (as

well as qis and ris) are interchanged and the next stage proceeds (the system

returns to the configuration shown in first Fig.).

Massively
XMT:

Multithreaded
Computing

Performance Bounds

22 / 24

Massively
XMT:

Multithreaded
Computing

Generalization

23 / 24

QQ

Q

Q

Q

q q q q q q q q q

r r r r r r r r r

R R R

Q

R R R

Q

R

3122

31N

311

312N

1

21

41N1

31N

41N2

21

41NN

22

4111 4112 411N 3121

22

3122 312N

2N

41N1 41N2

1

41NN

4111

311

4112 411N

312

3121

2N

312

A shared multilevel parallel queuing system with k = 4. The
E and W queues have been lumped together for simplicity.

Massively
XMT:

Multithreaded
Computing

Extensions

24 / 24

■ The shared multilevel parallel queuing mechanism described above
has been motivated and presented in the context of Breadth First
Search (BFS), where the required capacity of the queue is known a
priori and is bounded by the total number of nodes in the graph.

■ It is equally applicable to other computational problems where a
bound on the total queue size is known. However, there may be
cases where a bound on the total queue size is not known
beforehand.

■ In such cases it is straightforward to extend the approach so that
when the system sees the total capacity approach exhaustion, it
allocates additional queues (in dynamic memory) and inserts them
appropriately in the data structure. The overhead of carrying out
these allocations will be hidden by the activity of the active threads,
of which there may be thousands or even millions in a massively
multithreaded system.

	Example: Sequence Alignment
	Comparative Timings
	Graph Theoretic Model for Virus Reassortment
	Reassortment Network
	
	
	
	Comparative Timings
	Comparative Timings
	Comparative Timings
	Timings (restructured code)
	Shared Multilevel Parallel Queues
	Motivation
	
	Motivating Example
	
	
	
	
	
	Performance Bounds
	Generalization
	Extensions

