
Characterizing and Analyzing
Massive Spatio-Temporal Graphs

•David A. Bader, David Ediger,

•Karl Jiang, & Jason Riedy

Outline

Motivation

Explosion of Social and Other Networks

GraphCT: A Massive Graph Characterization Toolkit

Provides summaries for graphs with billions of vertices & edges

Tuned for the Cray XMT

A Design for Streaming Graph Analysis

STINGER: Data Structure for Changing Graphs

Initial Experiments with Streaming Clustering Coefficients

Future Directions

Hierarchy of Interesting Temporal Graph Queries

Center for Advanced Supercomputing Software for
Multithreaded Architectures (CASS-MT)

Objective

To design software for the analysis of massive-scale
spatio-temporal interaction networks using
multithreaded architectures such as the Cray XMT. The
Center launched in July 2008 and is led by Pacific-
Northwest National Laboratory.

Description

We are designing and implementing advanced,
scalable algorithms for static and dynamic graph
analysis, including generalized k-betweenness
centrality and dynamic clustering coefficients.

Highlights

On a 64-processor Cray XMT, k-betweenness centrality

scales nearly linearly (58.4x) on a graph with 16M
vertices and 134M edges. Initial streaming clustering

coefficients handle around 200k updates/sec on a

similarly sized graph.

Our research is focusing on temporal analysis,
answering questions about changes in global
properties (e.g. diameter) as well as local structures
(communities, paths).

Image Courtesy of Cray, Inc.

David A. Bader (PI)
David Ediger, Karl Jiang, Jason Riedy

Pacific Northwest National Laboratory

NSF Computing Research Infrastructure:
Development of a Research Infrastructure for Multithreaded
Computing Community Using Cray Eldorado Platform

The Cray XMT system serves as an ideal platform for the
research and development of algorithms, data sets, libraries,
languages, tools and simulators for applications that benefit
from large numbers of threads, massively data intensive,
sparse-graph problems that are difficult to parallelize using
conventional message-passing on clusters.

• A shared community resource capable of efficiently
 running, in experimental and production modes,
 complex programs with thousands of threads in

 shared memory

• Assembling software infrastructure for developing
 and measuring performance of programs running on
 the hardware

• Building stronger ties between the people
 themselves, creating ways for researchers at the
 partner institutions to collaborate and communicate
 their findings to the broader community

Collaborators include: University of Notre Dame,
University of Delaware, University of California

Santa Barbara, CalTech, University of California
Berkeley and Sandia National Laboratories

David A. Bader (PI)

Jeffrey Vetter (co-PI)

NSF CNS-0708307

Massive Social Networks

Facebook has more than 300 million active users

Traditional graph partitioning often fails:

Topology: Interaction graph is low-diameter, and has no good separators

Irregularity: Communities are not uniform in size

Overlap: individuals are members of one or more communities

Sample queries:

Allegiance switching: identify entities that switch communities.

Community structure: identify the genesis and dissipation of communities

Phase change: identify significant change in the network structure

5

3 orders of

magnitude
growth in 3

years!

Limitations of Current Tools

Graphs with millions of vertices are well beyond simple
comprehension or visualization: we need tools to
summarize the graphs.

Existing tools: UCINet, Pajek, SocNetV, tnet

Limitations:

Target workstations, limited in memory

No parallelism, limited in performance.

Scale only to low density graphs with a few million vertices

We need a package that will easily accommodate graphs
with several billion vertices and deliver results in a timely
manner.

Need parallelism both for computational speed and memory!

The Cray XMT is a natural fit...

What is GraphCT?

Graph Characterization Toolkit

Efficiently summarizes and analyzes static graph data

Built for large multithreaded, shared memory machines
like the Cray XMT

Increases productivity by decreasing programming
complexity

Classic metrics & state-of-the-art kernels

Works on many types of graphs

directed or undirected

weighted or unweighted

Dynamic spatio-temporal graph

Key Features of GraphCT

Low-level primitives to high-level analytic kernels

Common graph data structure

Develop custom reports by mixing and matching functions

Create subgraphs for more in-depth analysis

Kernels are tuned to maximize scaling and performance
(up to 64 processors) on the Cray XMT

Load the Graph Data Find Connected Components Run k-Betweenness Centrality

 on the largest component

GraphCT Functions

Name

RMAT graph generator

Degree distribution statistics

Graph diameter

Maximum weight edges

Connected components

Component distribution statistics

Vertex Betweenness Centrality

Vertex k-Betweenness Centrality

Multithreaded BFS

Edge-divisive Betweenness-based Community
Detection (pBD)

Lightweight Binary Graph I/O

Name

Modularity Score

Conductance Score

st-Connectivity

Delta-stepping SSSP

Bellman-Ford

GTriad Census

SSCA2 Kernel 3 Subgraphs

Greedy Agglomerative Clustering

Minimum spanning forest

Clustering coefficients

DIMACS Text Input

Key

Included

In Progress

Proposed/Available

GraphCT Performance

• RMAT(24) : 16.7M vertices, 134M edges

• RMAT(28) : 268M vertices, 2.1B edges

– BC
1
 : 2800s on 64P

– CC : 1200s on 64P

Driving Forces in Social Network Analysis

Note the graph is changing as well as growing.

What are this graph's properties? How do they change?

300 million

active Facebook
users worldwide

in September
2009

Analysis of Graphs with Streaming Updates

STINGER: A Data Structure for Changing Graphs

Light-weight data structure that supports efficient iteration and
efficient updates.

Experiments with Streaming Updates to Clustering
Coefficients

Working with bulk updates, can handle almost 200k per second

STING Extensible Representation

Enhanced representation developed for dynamic graphs developed in
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks,
Daniel Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and Steven
C. Poulos.

Design goals:

Be useful for the entire “large graph” community

Portable semantics and high-level optimizations across multiple platforms
& frameworks (XMT C, MTGL, etc.)

Permit good performance: No single structure is optimal for all.

Assume globally addressable memory access

Support multiple, parallel readers and a single writer

Operations:

Insert/update & delete both vertices & edges

Aging-off: Remove old edges (by timestamp)

Serialization to support checkpointing, etc.

STING Extensible Representation

Semi-dense edge
list blocks with
free space

Compactly stores
timestamps,
types, weights

Maps from
application IDs to
storage IDs

Deletion by
negating IDs,
separate
compaction

Testbed: Clustering Coefficients

Roughly, the ratio of actual triangles to possible triangles
around a vertex.

Defined in terms of triplets.

i-j-v is a closed triplet (triangle).

m-v-n is an open triplet.

Clustering coefficient

closed triplets / # all triplets

Locally, count those around v.

Globally, count across entire graph.

Multiple counting cancels (3/3=1)

Streaming updates to clustering coefficients

Monitoring clustering coefficients could identify anomalies,
find forming communities, etc.

Computations stay local. A change to edge <u, v>
affects only vertices u, v, and their neighbors.

Need a fast method for updating the triangle counts,
degrees when an edge is inserted or deleted.

Dynamic data structure for edges & degrees: STINGER

Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, David, Karl
Jiang, E. Jason Riedy, and David A. Bader. Technical Report, Georgia Tech, Fall 2009.

u v
-1 -1

-1
-1

Updating clustering coefficients

Using RMAT as a graph and edge stream generator.

– Mix of insertions and deletions

Result summary for single actions

– Exact: from 8 to 618 actions/second

– Approx: from 11 to 640 actions/second

Alternative: Batch changes

– Lose some temporal resolution within the batch

– Median rates for batches of size B:

STINGER overhead is minimal; most time in spent metric.

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

Approx. 60 83 700 193 300

Future Directions

User interaction with GraphCT

What characteristics are of interest?

What output reports?

STING, a framework for analyzing Spatio-Temporal
Interaction Networks and Graphs

Take current experimental infrastructure and generalize it.

Accept streaming data from outside the XMT.

(Frees up more memory for analyzing the data.)

Incorporate new, novel analysis techniques.

Update metrics, track statistically significant subgraphs (with
Dr. Kamesh Madduri, LBNL), ...

And eventually, more complicated user queries.

(Transferring the analysis results back out is an open issue.)

Hierarchy of Interesting Analytics

Extend single-shot graph queries to include time.

Are there s-t paths between time T
1
 and T

2
?

What are the important vertices at time T?

Use persistent queries to monitor properties.

Does the path between s and t shorten drastically?

Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.

Does a small community stay independent rather than merge with
larger groups?

When does a vertex jump between communities?

New types of queries, new challenges...

Recent Publications

Jiang, Karl, David Ediger, and David A. Bader. “Generalizing k-
Betweenness Centrality Using Short Paths and a Parallel
Multithreaded Implementation.” The 38th International Conference
on Parallel Processing (ICPP 2009), Vienna, Austria, September
2009.

Madduri, Kamesh, David Ediger, et al. “A Faster Parallel Algorithm
and Efficient Multithreaded Implementations for Evaluating
Betweenness Centrality on Massive Datasets.” Third Workshop
on Multithreaded Architectures and Applications (MTAAP), Rome,
Italy, May 2009.

Bader, David A., et al. “STINGER: Spatio-Temporal Interaction
Networks and Graphs (STING) Extensible Representation.” 2009.

Ediger, David, Karl Jiang, E. Jason Riedy, and David A. Bader.
“Massive Streaming Data Analytics: A Case Study with
Clustering Coefficients,” Technical Report, Georgia Tech, Fall
2009.

Backup

• k-Betweenness centrality details

• Clustering coefficients details

• GraphCT User's & Developer's Guide

Outline: k-Betweenness Centrality, BC
k

• A new twist on betweenness centrality:

– Count short paths in addition to shortest paths

– Captures wider connectivity information

• Quick introduction and illustration

• Applying BC
k
 to the Notre-Dame WWW data set:

– How do the scores behave with increasing k?

– Which vertices have zero scores?

• (Directed and undirected graphs are different.)

– Can we approximating by BC
k
 random sampling?

• Scalability on the Cray XMT with RMAT graphs.

k-Betweenness Centrality

• Measure centrality of a vertex v by the number of paths
passing through v between s and t relative to the
number of paths connecting s and t.

• High betweenness centrality (BC): many shortest
paths

• High k-betweenness centrality (BC
k
): many short paths

All paths no longer than the shortest + parameter k
counted.

0-Betweenness centrality is simply betweenness centrality.

1-BC also counts paths one step longer than the shortest.

• BC
k
 captures more connectivity information with k.

• Expensive to compute as k grows, but approximated...

Betweenness Centrality

• How important are v
1
 and v

2
? Use betweenness

centrality.

• The betweenness centrality of v
1
, BC(v

1
):

– Consider shortest paths between any two vertices s, t
v1.

– Sum over all such s, t: fraction of paths passing through v
1

v
1

v
2

BC: Need More Than the Shortest Path?

• Consider the view from a particular vertex pair s, t.

• Total of five paths, so the st contributions to v
1
, v

2
 =

1/5.

• But there is more redundancy through v
2
, more nodes

influence / are influenced by v
2
...

s t

v
1

v
2

k-Betweenness Centrality: Shortest + k

• Consider counting paths one longer than the shortest.

• Nothing new through v
1
. Two new paths cross through

v
2
!

• k-Betweenness Centrality (BC
k
):

– Consider paths within k of the shortest path. Above is BC
1
.

– 0-Betweenneess centrality is regular BC, BC
0
(v) = BC(v).

s t

v
1

v
2

BC
k
 for k > 0: More Path Information

• Exact BC
k
 for k = 0, 1, 2

• On directed ND-WWW

• Vertices in increasing BC
k

order (independently)

• Large difference going
from k = 0 to k > 0

• Few additional paths found
in k = 2

• k > 0 captures more path
information, somewhat
converges

BC
k
 for k > 0: More Path Information

• Exact BC
k
 for k = 0, 1,

2

• On directed ND-WWW

• Vertices in increasing
BC

k
 order (by k = 0)

• Large difference going
from k = 0 to k > 0

• Few additional paths
found in k = 2

• Note how many
vertices jump from
BC

0
 = 0 to BC

k
 > 0!

Which Vertices Become Central with k > 0?

Neighbors form

a clique

One step out of

a path

0 in- or out-

degree

For all k For k = 0 only

More?

(Different than undirected.)

Exact BC
k
: Too Expensive, So Approximate...

• ND-WWW graph: 325K vertices, 1.4M edges (smallish)

• 64 processor XMT @ PNNL, 16 proc. runs

• Timings (more caveats mentioned later):

– Approximate BC
k
 with 256 source vertices v. exact BC

k

– Not parallel between samples. Limits scalability, but wasn't
obvious until the code was optimized (by a factor of 11x).

– Exact timings are older code on the 16-proc. XMT. Too slow to
run often.

k Approx. Exact (old)

0 34s 43m

1 73s 13h

2 123s 43h

Approximating BC
k
 by Sampling

• No approximation
theory yet for directed
graphs...

• Poor normalization, but
captures much of the
shape.

• Percentiles are better
quality judge.

• Current approximation
renders too many zero
scores,
undersampling.

• Missing a handful of
vertices in top 5%.

Outline: Clustering coefficients

Quickly define clustering coefficients.

We're not going into interpretation, just computation.

Performance within GraphCT

Static graph, scalable performance.

Performance in a streaming framework

Update clustering coefficients as new data arrives.

Performance for adding edges 1-by-1 and in batches.

Clustering coefficients, undirected graphs

Roughly, the ratio of actual triangles to possible triangles
around a vertex.

Defined in terms of triplets.

i-j-v is a closed triplet (triangle).

m-v-n is an open triplet.

Clustering coefficient

closed triplets / # all triplets

Locally, count those around v.

Globally, count across entire graph.

Multiple counting cancels (3/3=1)

Transitive coefficients, directed graphs

Roughly, the ratio of actual triangles to possible triangles
around a vertex. But what counts as a triangle?

Possibility: transitive coefficients

i-v-j is a closed triplet, i-v-j has a
transitive shortcut, i-j.

m-v-n is an open triplet.

Very sensitive to the direction of
edges.

Temporal heuristic: the reverse
edges often appear, delayed.

Many variations exist in the literature. Computing each is
similar; need application requests...

Performance of static clustering coefficients

GraphCT supports basic
clustering coefficients and
transitivity coefficients

Performance roughly the
same for all versions

Nice, inexpensive
characterization kernel

Being extended to handle
streaming data

Multiple approaches:

Exact: Count locally

Approx: Bloom filters

Global clustering coeff: Speed-up of 51x
on 64p and RMAT(24)

Streaming updates to clustering coefficients

Monitoring clustering coefficients could identify anomalies, find
forming communities, etc.

Luckily, computations stay local. A change to edge <u, v> affects
only vertices u, v, and their neighbors.

Need a fast method for updating the triangle counts, degrees when
an edge is inserted or deleted.

Dynamic data structure for edges & degrees: STINGER

Rapid triangle count update algorithms: exact and approximate

Technical Report: Ediger, David, Karl Jiang, E. Jason Riedy, and David A.
Bader. “Massive Streaming Data Analytics: A Case Study with Clustering
Coefficients.”

u v
-1 -1

-1
-1

Updating clustering coefficients

Update local & global clustering coefficients while edges
<u, v> are inserted and deleted.

Exact and approximate approaches:

Exact: Explicitly count triangle changes by doubly-nested loop

O(du * dv), where dx is the degree of x after insertion/deletion

Exact: Sort one edge list, loop over other and search with
bisection.

O((du + dv) log (du))

Approx: Summarize one edge list with a Bloom filter. Loop over
other, check using O(1) approximate lookup. May count too
many, never too few.

O(du + dv)

Expect issues near high degree vertices (hubs).

Updating clustering coefficients

Using RMAT as a graph and edge generator.

Generate graph with scale S and edge factor F, 2S F
edges.

Scale 24: 17 million vertices

Edge factors 8 to 32: 134 to 537 million edges

Generate 1024 actions.

Deletion chance 6.25% = 1/16

Same RMAT process, will prefer same vertices.

Start with an exact triangle count, run individual updates.

Result summary

Exact: from 8 to 618 actions/second

Approx: from 11 to 640 actions/second

Updating clustering coefficients one-by-one

Updating clustering coefficients in a batch

Start with an exact triangle count, run individual batched
updates:

Consider B updates at once.

Currently loses some temporal resolution within a batch.
Changes to the same edge are collapsed.

Result summary

More analysis in progress...

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

Approx. 60 83 700 193 300

CASS-MT Task #7 - Georgia Tech

GraphCT:
A Graph Characterization Toolkit

•David A. Bader, David Ediger,

•Karl Jiang & Jason Riedy

October 26, 2009

Outline

• Motivation

• What is GraphCT?

– Package for Massive Social Network Analysis

– Can handle graphs with billions of vertices & edges

• Key Features

– Common data structure

– A “buffet” of functions that can be combined

• Using GraphCT

• Future of GraphCT

• Function Reference

Driving Forces in Social Network Analysis

• An explosion of data!

300 million

active Facebook
users worldwide

in September
2009

Current Social Network Packages

• UCINet, Pajek, SocNetV, tnet

• Written in C, Java, Python, Ruby, R

• Limitations

– Runs on workstation

– Single-threaded

– Several thousand to several million vertices

– Low density graphs

• We need a package that will easily accommodate graphs
with several billion vertices on large, parallel machines

The Cray XMT

• Tolerates latency by massive multithreading

– Hardware support for 128 threads on each processor

– Globally hashed address space

– No data cache

– Single cycle context switch

– Multiple outstanding memory requests

• Support for fine-grained,

 word-level synchronization

– Full/empty bit associated with every

 memory word

• Flexibly supports dynamic load balancing

• GraphCT currently tested on a 64 processor XMT: 8192 threads

– 512 GB of globally shared memory

Image Source: cray.com

What is GraphCT?

• Graph Characterization Toolkit

• Efficiently summarizes and analyzes static graph data

• Built for large multithreaded, shared memory machines
like the Cray XMT

• Increases productivity by decreasing programming
complexity

• Classic metrics & state-of-the-art kernels

• Works on all types of graphs

– directed or undirected

– weighted or unweighted

Dynamic spatio-temporal graph

Key Features of GraphCT

• Low-level primitives to high-level analytic kernels

• Common graph data structure

• Develop custom reports by mixing and matching functions

• Create subgraphs for more in-depth analysis

• Kernels are tuned to maximize scaling and performance
(up to 64 processors) on the Cray XMT

Load the Graph Data Find Connected Components Run k-Betweenness Centrality
 on the largest component

Static graph data structure

typedef struct {

 int numEdges;

 int numVertices;

 int startVertex[NE]; /* start vertex of edge,

 sorted, primary key */

 int endVertex[NE]; /* end vertex of edge,

 sorted, secondary key */

 int intWeight[NE]; /* integer edge weight */

 int edgeStart[NV]; /* per-vertex index into

 endVertex array */

 int marks[NV]; /* common array for marking

 or coloring of vertices */

} graph;

Using GraphCT

Usage options

• Operations on input graphs can be specified in 3 ways:

– Via the command line

• Perform a single graph operation

• Read in graph, execute kernel, write back result

– Via a script [in progress]

• Batch multiple operations

• Intermediate results need not be written to file (though they
can be)

– Via a developer’s API

• Perform complex series of operations

• Manipulate data structures

• Implement custom functions

The command line interface

1. Command line parameters

Example: ./GraphCT-CLI –i patents.txt –t dimacs –o
result.txt –z kcentrality 1

-i: Input file

-t: Graph type, can currently be either ‘dimacs’ or ‘binary’. ‘binary’ type

 is binary compressed row format generated by GraphCT

-o: Output file

-z: Kernel type (see following sections):

2. Kernel types (index)

• Specified after –z flag

kcentrality k Vs

degree

conductance

modularity

components

clustering

transitivity

diameter n

3. Degree distribution & graph diameter

• Diameter can only be ascertained by repeatedly
performing breadth first searches different vertices.

– The more breadth first searches, the better approximation to the
true diameter

-z diameter <P>

• Does breadth first searches from P percent of the vertices,
where P is an integer

• Degree distribution:

-z degree: gives

• Maximum out-degree

• Average out-degree

• Variance

• Standard deviation

4. Conductance and modularity

-z conductance, -z modularity

• Defined over colorings of input graph

– Describe how tightly knit communities divided by a cut are

– Not very meaningful in command line mode

– In batch mode a coloring can be followed by conductance/
modularity calculation

• In batch mode:

– Finds connected components

– Modularity uses component coloring as a partition

– Conductance uses the largest component as the cut

5.Vertex k-Betweenness Centrality

-z kcentrality k Vs

• Vs: number of source vertices (of breadth first search)

– Set equal to NV (number of vertices) for exact computation

• k: count shortest path length + k

• Outputs file with k-BC scores ordered by vertex number

• Note: Set k equal to 0 for betweenness centrality

K. Jiang, D. Ediger, and D.A. Bader, “Generalizing k-Betweenness Centrality Using Short Paths and a
Parallel Multithreaded Implementation,” The 38th International Conference on Parallel Processing

(ICPP 2009), Vienna, Austria, September 22-25, 2009.

6. Transitivity/clustering coefficient

-z transitivity

• Writes output file with local transitivity coefficient of each
vertex

– Measures number of transitive triads over total number of
transitive triples

-z clustering

• Writes output file with local clustering coefficient of each
vertex

– Number of triangles formed by neighbors over number of potential
triangles

– Gives sense of how close vertex is to belonging to a clique

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,”
Social Networks, 31(2):155-163, May 2009.

7. Component statistics

-z components

• Statistics about connected components in graph

– Number of components

– Largest component size

– Average component size

– Variance

– Standard deviation

• Writes output file with vertex to component mapping

Writing a script file [in progress]

1. Example script

read dimacs patents.txt => binary_pat.bin

print diameter 10

save graph

extract component 1 => component1.bin

print degrees

kcentrality 1 256 => k1scores.txt

kcentrality 2 256 => k2scores.txt

restore graph

extract component 2

print degrees

2. Script fundamentals

• Work on single ‘active graph’

• Can save and restore graphs at any point, like memory
feature on pocket calculator

• Operations can:

– Output data to the screen (e.g. degree information)

– Output data to file (e.g. kcentrality data)

– Modify the active graph (extract subgraph, component)

3. Example breakdown

read dimacs patents.txt => binary_pat.bin

• Two operations: reads in ‘patents.txt’ as a dimacs graph
file, and writes the resulting graph back out as a binary file
called ‘binary_pat.dat’

– Binary graph is usually smaller and quicker to load

=> filename always takes the output of a particular command
and writes it to the file ‘filename’

– Current graph formats are ‘dimacs’ and ‘binary’

print diameter 10

print command is used to print information to the
screen

– Shows the estimated diameter based on BFS runs from 10% of
vertices

3. Example breakdown (cont.)

save graph

• Retain the current active graph for use later

extract component 1 => component1.bin

extract command is used to use a coloring to extract a
subgraph from the active graph

component 1 colors the largest connected component

• Writes resulting graph to a binary file

print degrees

• Any kernel from the previous section may be used

• If output is a graph or per-vertex data, it cannot be printed

3. Example breakdown (cont.)

kcentrality 1 256 => k1scores.txt

• Calculates k=1 betweenness centrality based on breadth
first searches from 256 source vertices

– Result stored in ‘k1scores.txt’, one line per vertex

kcentrality result cannot be printed to screen since it is per-
vertex data

restore graph

• Restore active graph saved earlier

• Can restore same graph multiple times

3. Example breakdown (cont.)

extract component 2

• Extract the second largest component of the graph

Graph parsers

DIMACS graph parser

c comments

c here

p max n m

e v1 v2 w

• DIMACS file:

– c = comment

– p = problem line: n = number of vertices, m = number of edges

– e = edge: indicates an edge from v1 to v2 of weight w

• Use standalone parser or read directly into GraphCT

– Standalone parser outputs binary format graph file

• Good if graph will be used multiple times to reduce I/O time

From data to analysis

• GraphCT produces a simple
listing of the metrics most
desired by the analyst

• At a glance, the size, structure,
and features of the graph can be
described

• Output can be custom tailored to
show more or less data

• Full results are written to files on
disk for per-vertex kernels

– k-Betweenness Centrality

– Local clustering coefficients

– BFS distance

• Excellent for external plotting &
visualization software

The Future of GraphCT

• Additional high-level tools

– Divisive betweenness-based community detection

– Greedy agglomerative clustering (CNM)

– Hybrid techniques

– Additional subgraph generators

• Helper functions

– Data pre-processing

– Support for common graph formats

• Extension to support dynamic graph data

– STINGER example

Experimental Kernels

Random walk subgraph extraction

• Choose a number of random

starting vertices nSG

• Perform a BFS of length

subGraphPathLength from

each source vertex

• Extract the subgraph:

void findSubGraphs(graph *G, int nSG,

int subGraphPathLength)

subG = genSubGraph(G, NULL, 1);

Developer’s Notes:

A Programming Example

1. Initialization & graph generation

// I want a graph with ~270 million vertices

getUserParameters(28);

// Generate the graph tuples using RMAT

SDGdata = (graphSDG*) malloc(sizeof(graphSDG));

genScalData(SDGdata, 0.57, 0.19, 0.19, 0.05);

// Build the graph data structure

G = (graph *) malloc(sizeof(graph));

computeGraph(G, SDGdata);

2. Degree distribution & graph diameter

// Display statistics on the vertex out-degree

calculateDegreeDistributions(G);

// Find the graph diameter exactly

calculateGraphDiameter(G, NV);

// This will require 270M breadth first searches!

// Estimate the graph diameter
calculateGraphDiameter(G, 1024);

// This only does 1024 breadth first searches

3. Mark & summarize connected components

// run connected components & store the result in the
graph

numComp = connectedComponents(G);

// display component size statistics based on colors

calculateComponentDistributions(G, numComp, &max,
&maxV);

4. Find 10 highest 2-betweenness vertices

BC = (double *) malloc(NV * sizeof(double));

// k=2, 256 source vertices

kcentrality(G, BC, 256, 2);

printf("Maximum BC Vertices\n");

for (j = 0; j < 10; j++) {

 maxI = 0; maxBC = BC[0];

 for (i = 1; i < NV; i++)

 if (BC[i] > maxBC) {maxBC = BC[i]; maxI = i;}

 printf("#%2d: %8d - %9.6lf\n", j+1, maxI, maxBC);

 BC[maxI] = 0.0;

}

Function Reference

Initialize default environment

void getUserParameters(int scale)

• Sets a number of application parameters

scale: determines size of graph generation

– log2 Number of Vertices

Load external graph data

int graphio_b(graph *G, char *filename)

• Load from a binary data file containing compressed data
structure using 4-byte integers

• Format:
– Number of Edges (4 bytes)

– Number of Vertices (4 bytes)

– Empty padding (4 bytes)

– edgeStart array (NV * 4 bytes)

– endVertex array (NE * 4 bytes)

– intWeight array (NE * 4 bytes)

Scalable data generator

void genScalData(graphSDG*, double a, double b,
double c, double d)

• Input:

– RMAT parameters A, B, C, & D

– Must call getUserParameters() prior to calling this function

• Output:

– graphSDG data structure (raw tuples)

• Note: this function should precede a call to
computeGraph() to transform tuples into a graph data
structure

D. Chakrabarti, Y. Zhan, and C. Faloutsos. “R-MAT: A
recursive model for graph mining”. In Proc. 4th SIAM Intl.

Conf. on Data Mining (SDM), Orlando, FL, April 2004. SIAM.

Graph construction

void computeGraph(graph *G, graphSDG *SDGdata)

• Input:

– graphSDG data structure

• Output:

– graph data structure

Directed graph -> undirected

graph * makeUndirected(graph *G)

• Input:

– graph data structure

• Output:

– Returns an undirected graph containing bidirectional edges for
each edge in the original graph. Duplicate edges are removed
automatically.

Generate a subgraph

graph * genSubGraph(graph *G, int NV, int color)

• Input:

– graph data structure (marks[] must be set)

– NV should always be set to NULL

– color of vertices to extract

• Output:

– Returns a graph containing only those vertices in the original
graph marked with the specified color

K-core graph reduction

graph * kcore(graph *G, int K)

• Input:

– graph data structure

– minimum out-degree K

• Output:

– Returns a graph containing only those vertices in the original
graph with an out-degree of at least K

Vertex k-Betweenness Centrality

double kcentrality(graph *G, double BC[], int Vs,

 int K)

• Vs: number of source vertices

– Set equal to G->NV for an exact computation

• K: count shortest path length + K

• BC[]: stores per-vertex result of computation

• Note: Set K equal to 0 for betweenness centrality

K. Jiang, D. Ediger, and D.A. Bader, “Generalizing k-Betweenness Centrality Using Short Paths and a
Parallel Multithreaded Implementation,” The 38th International Conference on Parallel Processing

(ICPP 2009), Vienna, Austria, September 22-25, 2009.

Degree distribution statistics

void calculateDegreeDistributions(graph*)

• Input:

– graph data structure

• Output:

– Maximum out-degree

– Average out-degree

– Variance

– Standard deviation

Component statistics

void calculateComponentDistributions (graph *G,

 int numColors, int *max, int *maxV)

• Input:

– graph data structure

– numColors: largest integer value of the coloring

• Output:

– max: size of the largest component

– maxV: an integer ID within the largest component

Modularity score

double computeModularityValue(graph *G,

 int membership[], int numColors)

• Input:

– graph data structure

membership[]: the vertex coloring (partitioning)

numColors: the number of colors used above

• Output:

– Modularity score is returned

Conductance score

double computeConductanceValue(graph *G,

 int membership[])

• Input:

– graph data structure

membership[]: a binary partitioning

• Output:

– Conductance score is returned

Connected components

int connectedComponents(graph *G)

• Input:

– graph data structure

• Output:

G->marks[] : array containing each vertex’s coloring where each
component has a unique color

– Returns the number of connected components

Breadth first search

int * calculateBFS(graph *G, int startV, int mode)

• Input:

– graph data structure

– startV: vertex ID to start the search from

– mode:

• mode = 0: return an array of the further vertices where the first
element is the number of vertices

• mode = 1: return an array of the distances from each vertex to
the source vertex

• Output:

– Returns an array according to the mode described above

D.A. Bader and K. Madduri, “
Designing Multithreaded Algorithms for Breadth-First Search and st-

connectivity on the Cray MTA-2,” The 35th International Conference on
Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006.

Graph diameter

int calculateGraphDiameter(graph *G, int Vs)

• Input:

– graph data structure

– Vs: number of breadth-first searches to run

• Output:

– Returns the diameter (if Vs = NV) or the length of the longest path
found

• Note: this can be used to find the exact diameter or an
approximation if only a subset of source vertices is used

Global transitivity coefficient

double calculateTransitivityGlobal(graph *G)

• Input:

– graph data structure

• Output:

– Returns the global transitivity coefficient (for both directed and
undirected graphs)

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,”
Social Networks, 31(2):155-163, May 2009.

Local transitivity coefficient

double * calculateTransitivityLocal(graph *G)

• Input:

– graph data structure

• Output:

– Returns the local transitivity coefficient for each vertex in an array

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,”
Social Networks, 31(2):155-163, May 2009.

Local clustering coefficient

double * calculateClusteringLocal(graph *G)

• Input:

– graph data structure

• Output:

– Returns the local clustering coefficient for each vertex in an array

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,”
Social Networks, 31(2):155-163, May 2009.

