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Outline 

Motivation 

Explosion of Social and Other Networks 

GraphCT: A Massive Graph Characterization Toolkit 

Provides summaries for graphs with billions of vertices & edges 

Tuned for the Cray XMT 

A Design for Streaming Graph Analysis 

STINGER: Data Structure for Changing Graphs  

Initial Experiments with Streaming Clustering Coefficients 

Future Directions 

Hierarchy of Interesting Temporal Graph Queries 



Center for Advanced Supercomputing Software for 
Multithreaded Architectures (CASS-MT) 

Objective 

To design software for the analysis of massive-scale 
spatio-temporal interaction networks using 
multithreaded architectures such as the Cray XMT.  The 
Center launched in July 2008 and is led by Pacific-
Northwest National Laboratory. 

Description 

We are designing and implementing advanced, 
scalable algorithms for static and dynamic graph 
analysis, including generalized k-betweenness 
centrality and dynamic clustering coefficients. 

Highlights 

On a 64-processor Cray XMT, k-betweenness centrality 

scales nearly linearly (58.4x) on a graph with 16M 
vertices and 134M edges.  Initial streaming clustering 

coefficients handle around 200k updates/sec on a 

similarly sized graph. 

Our research is focusing on temporal analysis, 
answering questions about changes in global 
properties (e.g. diameter) as well as local structures 
(communities, paths). 

Image Courtesy of Cray, Inc. 
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NSF Computing Research Infrastructure: 
Development of a Research Infrastructure for Multithreaded  
Computing Community Using Cray Eldorado Platform 

The Cray XMT system serves as an ideal platform for the 
research and development of algorithms, data sets, libraries, 
languages, tools and simulators for applications that benefit 
from large numbers of threads, massively data intensive, 
sparse-graph problems that are difficult to parallelize using 
conventional message-passing on clusters. 

•  A shared community resource capable of efficiently 
 running, in experimental and production modes, 
 complex programs with thousands of threads in 

  shared memory 

•   Assembling software infrastructure for developing 
 and measuring performance of programs running on 
 the hardware 

•  Building stronger ties between the people 
  themselves, creating ways for researchers at the 
  partner institutions to collaborate and communicate 
  their findings to the broader community 

Collaborators include: University of Notre Dame, 
University of Delaware, University of California 

Santa Barbara, CalTech, University of California 
Berkeley and Sandia National Laboratories  

David A. Bader (PI) 

Jeffrey Vetter (co-PI) 

NSF CNS-0708307 



Massive Social Networks 

Facebook    has more than 300 million active users 

Traditional graph partitioning often fails: 

Topology: Interaction graph is low-diameter, and has no good separators 

Irregularity: Communities are not uniform in size 

Overlap: individuals are members of one or more communities 

Sample queries:  

Allegiance switching: identify entities that switch communities. 

Community structure: identify the genesis and dissipation of communities 

Phase change: identify significant change in the network structure 

5 

3 orders of 

magnitude 
growth in 3 

years! 



Limitations of Current Tools 

Graphs with millions of vertices are well beyond simple 
comprehension or visualization: we need tools to 
summarize the graphs. 

Existing tools: UCINet, Pajek, SocNetV, tnet 

Limitations: 

Target workstations, limited in memory 

No parallelism, limited in performance. 

Scale only to low density graphs with a few million vertices 

We need a package that will easily accommodate graphs 
with several billion vertices and deliver results in a timely 
manner. 

Need parallelism both for computational speed and memory! 

The Cray XMT is a natural fit... 



What is GraphCT? 

Graph Characterization Toolkit 

Efficiently summarizes and analyzes static graph data 

Built for large multithreaded, shared memory machines 
like the Cray XMT 

Increases productivity by decreasing programming 
complexity 

Classic metrics & state-of-the-art kernels  

Works on many types of graphs 

directed or undirected 

weighted or unweighted 

Dynamic spatio-temporal graph 



Key Features of GraphCT 

Low-level primitives to high-level analytic kernels 

Common graph data structure 

Develop custom reports by mixing and matching functions 

Create subgraphs for more in-depth analysis 

Kernels are tuned to maximize scaling and performance 
(up to 64 processors) on the Cray XMT 

Load the Graph Data    Find Connected Components  Run k-Betweenness Centrality 

            on the largest component 



GraphCT Functions 

Name 

RMAT graph generator 

Degree distribution statistics 

Graph diameter 

Maximum weight edges 

Connected components 

Component distribution statistics 

Vertex Betweenness Centrality 

Vertex k-Betweenness Centrality 

Multithreaded BFS 

Edge-divisive Betweenness-based Community 
Detection (pBD) 

Lightweight Binary Graph I/O 

Name 

Modularity Score 

Conductance Score 

st-Connectivity 

Delta-stepping SSSP 

Bellman-Ford 

GTriad Census 

SSCA2 Kernel 3 Subgraphs 

Greedy Agglomerative Clustering 

Minimum spanning forest 

Clustering coefficients 

DIMACS Text Input 

Key 

Included 

In Progress 

Proposed/Available 



GraphCT Performance 

• RMAT(24) : 16.7M vertices, 134M edges 

• RMAT(28) : 268M vertices, 2.1B edges 

– BC
1
 : 2800s on 64P 

– CC : 1200s on 64P 



Driving Forces in Social Network Analysis 

Note the graph is changing as well as growing. 

What are this graph's properties? How do they change? 

300 million 

active Facebook 
users worldwide 

in September 
2009 



Analysis of Graphs with Streaming Updates 

STINGER: A Data Structure for Changing Graphs 

Light-weight data structure that supports efficient iteration and 
efficient updates. 

Experiments with Streaming Updates to Clustering 
Coefficients 

Working with bulk updates, can handle almost 200k per second 



STING Extensible Representation 

Enhanced representation developed for dynamic graphs developed in 
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks, 
Daniel Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and Steven 
C. Poulos. 

Design goals: 

Be useful for the entire “large graph” community 

Portable semantics and high-level optimizations across multiple platforms 
& frameworks (XMT C, MTGL, etc.) 

Permit good performance: No single structure is optimal for all. 

Assume globally addressable memory access 

Support multiple, parallel readers and a single writer 

Operations: 

Insert/update & delete both vertices & edges 

Aging-off: Remove old edges (by timestamp) 

Serialization to support checkpointing, etc. 



STING Extensible Representation 

Semi-dense edge 
list blocks with 
free space 

Compactly stores 
timestamps, 
types, weights 

Maps from 
application IDs to 
storage IDs 

Deletion by 
negating IDs, 
separate 
compaction 



Testbed: Clustering Coefficients 

Roughly, the ratio of actual triangles to possible triangles 
around a vertex. 

Defined in terms of triplets. 

i-j-v is a closed triplet (triangle). 

m-v-n is an open triplet. 

Clustering coefficient 

# closed triplets / # all triplets 

Locally, count those around v. 

Globally, count across entire graph. 

Multiple counting cancels (3/3=1) 



Streaming updates to clustering coefficients 

Monitoring clustering coefficients could identify anomalies, 
find forming communities, etc. 

Computations stay local.  A change to edge <u, v> 
affects only vertices u, v, and their neighbors. 

Need a fast method for updating the triangle counts, 
degrees when an edge is inserted or deleted. 

Dynamic data structure for edges & degrees: STINGER 

Rapid triangle count update algorithms: exact and approximate 

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, David, Karl 
Jiang, E. Jason Riedy, and David A. Bader. Technical Report, Georgia Tech, Fall 2009. 

u v 
-1 -1 

-1 
-1 



Updating clustering coefficients 

Using RMAT as a graph and edge stream generator. 

– Mix of insertions and deletions 

Result summary for single actions 

– Exact: from 8 to 618 actions/second 

– Approx: from 11 to 640 actions/second 

Alternative: Batch changes 

– Lose some temporal resolution within the batch 

– Median rates for batches of size B: 

STINGER overhead is minimal; most time in spent metric. 

Algorithm B = 1 B = 1000 B = 4000 

Exact 90 25 100 50 100 

Approx. 60 83 700 193 300 



Future Directions 

User interaction with GraphCT 

What characteristics are of interest? 

What output reports? 

STING, a framework for analyzing Spatio-Temporal 
Interaction Networks and Graphs 

Take current experimental infrastructure and generalize it. 

Accept streaming data from outside the XMT. 

(Frees up more memory for analyzing the data.) 

Incorporate new, novel analysis techniques. 

Update metrics, track statistically significant subgraphs (with 
Dr. Kamesh Madduri, LBNL), ... 

And eventually, more complicated user queries. 

(Transferring the analysis results back out is an open issue.) 



Hierarchy of Interesting Analytics 

Extend single-shot graph queries to include time. 

Are there s-t paths between time T
1
 and T

2
? 

What are the important vertices at time T? 

Use persistent queries to monitor properties. 

Does the path between s and t shorten drastically? 

Is some vertex suddenly very central? 

Extend persistent queries to fully dynamic properties. 

Does a small community stay independent rather than merge with 
larger groups? 

When does a vertex jump between communities? 

New types of queries, new challenges... 



Recent Publications 

Jiang, Karl, David Ediger, and David A. Bader. “Generalizing k-
Betweenness Centrality Using Short Paths and a Parallel 
Multithreaded Implementation.”  The 38th International Conference 
on Parallel Processing (ICPP 2009), Vienna, Austria, September 
2009.  

Madduri, Kamesh, David Ediger, et al. “A Faster Parallel Algorithm 
and Efficient Multithreaded Implementations for Evaluating 
Betweenness Centrality on Massive Datasets.”  Third Workshop 
on Multithreaded Architectures and Applications (MTAAP), Rome, 
Italy, May 2009.  

Bader, David A., et al. “STINGER: Spatio-Temporal Interaction 
Networks and Graphs (STING) Extensible Representation.” 2009. 

Ediger, David, Karl Jiang, E. Jason Riedy, and David A. Bader.  
“Massive Streaming Data Analytics: A Case Study with 
Clustering Coefficients,” Technical Report, Georgia Tech, Fall 
2009. 



Backup 

• k-Betweenness centrality details 

• Clustering coefficients details 

• GraphCT User's & Developer's Guide 



Outline: k-Betweenness Centrality, BC
k 

• A new twist on betweenness centrality: 

– Count short paths in addition to shortest paths 

– Captures wider connectivity information 

• Quick introduction and illustration 

• Applying BC
k
 to the Notre-Dame WWW data set: 

– How do the scores behave with increasing k? 

– Which vertices have zero scores? 

• (Directed and undirected graphs are different.) 

– Can we approximating by BC
k
 random sampling? 

• Scalability on the Cray XMT with RMAT graphs. 



k-Betweenness Centrality 

• Measure centrality of a vertex v by the number of paths 
passing through v between s and t relative to the 
number of paths connecting s and t. 

• High betweenness centrality (BC): many shortest 
paths 

• High k-betweenness centrality (BC
k
): many short paths 

All paths no longer than the shortest + parameter k 
counted. 

0-Betweenness centrality is simply betweenness centrality. 

1-BC also counts paths one step longer than the shortest. 

• BC
k
 captures more connectivity information with k. 

• Expensive to compute as k grows, but approximated... 



Betweenness Centrality 

• How important are v
1
 and v

2
?  Use betweenness 

centrality. 

• The betweenness centrality of v
1
, BC(v

1
): 

– Consider shortest paths between any two vertices s, t  
v1. 

– Sum over all such s, t: fraction of paths passing through v
1 

v
1 

v
2 



BC: Need More Than the Shortest Path? 

• Consider the view from a particular vertex pair s, t. 

• Total of five paths, so the st contributions to v
1
, v

2
 = 

1/5. 

• But there is more redundancy through v
2
, more nodes 

influence / are influenced by v
2
... 

s t 

v
1 

v
2 



k-Betweenness Centrality: Shortest + k 

• Consider counting paths one longer than the shortest. 

• Nothing new through v
1
. Two new paths cross through 

v
2
! 

• k-Betweenness Centrality (BC
k
): 

– Consider paths within k of the shortest path. Above is BC
1
. 

– 0-Betweenneess centrality is regular BC, BC
0
(v) = BC(v). 

s t 

v
1 

v
2 



BC
k
 for k > 0: More Path Information 

• Exact BC
k
 for k = 0, 1, 2 

• On directed ND-WWW 

• Vertices in increasing BC
k
 

order (independently) 

• Large difference going 
from k = 0 to k > 0 

• Few additional paths found 
in k = 2 

• k > 0 captures more path 
information, somewhat 
converges 



BC
k
 for k > 0: More Path Information 

• Exact BC
k
 for k = 0, 1, 

2 

• On directed ND-WWW 

• Vertices in increasing 
BC

k
 order (by k = 0) 

• Large difference going 
from k = 0 to k > 0 

• Few additional paths 
found in k = 2 

• Note how many 
vertices jump from 
BC

0
 = 0 to  BC

k
 > 0! 



Which Vertices Become Central with k > 0? 

Neighbors form 

a clique 

One step out of 

a path 

0 in- or out-

degree 

For all k For k = 0 only 

More? 

(Different than undirected.) 



Exact BC
k
: Too Expensive, So Approximate... 

• ND-WWW graph: 325K vertices, 1.4M edges (smallish) 

• 64 processor XMT @ PNNL, 16 proc. runs 

• Timings (more caveats mentioned later): 

– Approximate BC
k
 with 256 source vertices v. exact BC

k 

– Not parallel between samples. Limits scalability, but wasn't 
obvious until the code was optimized (by a factor of 11x). 

– Exact timings are older code on the 16-proc. XMT.  Too slow to 
run often. 

k Approx. Exact (old) 

0 34s 43m 

1 73s 13h 

2 123s 43h 



Approximating BC
k
 by Sampling 

• No approximation 
theory yet for directed 
graphs... 

• Poor normalization, but 
captures much of the 
shape. 

• Percentiles are better 
quality judge. 

• Current approximation 
renders too many zero 
scores, 
undersampling. 

• Missing a handful of 
vertices in top 5%. 



Outline: Clustering coefficients 

Quickly define clustering coefficients. 

We're not going into interpretation, just computation. 

Performance within GraphCT 

Static graph, scalable performance. 

Performance in a streaming framework 

Update clustering coefficients as new data arrives. 

Performance for adding edges 1-by-1 and in batches. 



Clustering coefficients, undirected graphs 

Roughly, the ratio of actual triangles to possible triangles 
around a vertex. 

Defined in terms of triplets. 

i-j-v is a closed triplet (triangle). 

m-v-n is an open triplet. 

Clustering coefficient 

# closed triplets / # all triplets 

Locally, count those around v. 

Globally, count across entire graph. 

Multiple counting cancels (3/3=1) 



Transitive coefficients, directed graphs 

Roughly, the ratio of actual triangles to possible triangles 
around a vertex.  But what counts as a triangle? 

Possibility: transitive coefficients 

i-v-j is a closed triplet, i-v-j has a 
transitive shortcut, i-j. 

m-v-n is an open triplet. 

Very sensitive to the direction of 
edges. 

Temporal heuristic: the reverse 
edges often appear, delayed. 

Many variations exist in the literature.  Computing each is 
similar; need application requests... 



Performance of static clustering coefficients 

GraphCT supports basic 
clustering coefficients and 
transitivity coefficients 

Performance roughly the 
same for all versions 

Nice, inexpensive 
characterization kernel 

Being extended to handle 
streaming data 

Multiple approaches: 

Exact: Count locally 

Approx: Bloom filters 

Global clustering coeff: Speed-up of 51x 
on 64p and RMAT(24) 



Streaming updates to clustering coefficients 

Monitoring clustering coefficients could identify anomalies, find 
forming communities, etc. 

Luckily, computations stay local.  A change to edge <u, v> affects 
only vertices u, v, and their neighbors. 

Need a fast method for updating the triangle counts, degrees when 
an edge is inserted or deleted. 

Dynamic data structure for edges & degrees: STINGER 

Rapid triangle count update algorithms: exact and approximate 

Technical Report: Ediger, David, Karl Jiang, E. Jason Riedy, and David A. 
Bader.  “Massive Streaming Data Analytics: A Case Study with Clustering 
Coefficients.” 

u v 
-1 -1 

-1 
-1 



Updating clustering coefficients 

Update local & global clustering coefficients while edges 
<u, v> are inserted and deleted. 

Exact and approximate approaches: 

Exact: Explicitly count triangle changes by doubly-nested loop 

O(du * dv), where dx is the degree of x after insertion/deletion 

Exact: Sort one edge list, loop over other and search with 
bisection. 

O((du + dv) log (du)) 

Approx: Summarize one edge list with a Bloom filter.  Loop over 
other, check using O(1) approximate lookup. May count too 
many, never too few. 

O(du + dv) 

Expect issues near high degree vertices (hubs). 



Updating clustering coefficients 

Using RMAT as a graph and edge generator. 

Generate graph with scale S and edge factor F, 2S F 
edges. 

Scale 24: 17 million vertices 

Edge factors 8 to 32: 134 to 537 million edges 

Generate 1024 actions. 

Deletion chance 6.25% = 1/16 

Same RMAT process, will prefer same vertices. 

Start with an exact triangle count, run individual updates. 

Result summary 

Exact: from 8 to 618 actions/second 

Approx: from 11 to 640 actions/second 



Updating clustering coefficients one-by-one 



Updating clustering coefficients in a batch 

Start with an exact triangle count, run individual batched 
updates: 

Consider B updates at once. 

Currently loses some temporal resolution within a batch.  
Changes to the same edge are collapsed. 

Result summary 

More analysis in progress... 

Algorithm B = 1 B = 1000 B = 4000 

Exact 90 25 100 50 100 

Approx. 60 83 700 193 300 



CASS-MT Task #7 - Georgia Tech 

GraphCT: 
A Graph Characterization Toolkit 
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Outline 

• Motivation 

• What is GraphCT? 

– Package for Massive Social Network Analysis 

– Can handle graphs with billions of vertices & edges 

• Key Features 

– Common data structure 

– A “buffet” of functions that can be combined 

• Using GraphCT 

• Future of GraphCT 

• Function Reference 



Driving Forces in Social Network Analysis 

• An explosion of data! 

300 million 

active Facebook 
users worldwide 

in September 
2009 



Current Social Network Packages 

• UCINet, Pajek, SocNetV, tnet 

• Written in C, Java, Python, Ruby, R 

• Limitations 

– Runs on workstation 

– Single-threaded 

– Several thousand to several million vertices 

– Low density graphs 

• We need a package that will easily accommodate graphs 
with several billion vertices on large, parallel machines 



The Cray XMT 

• Tolerates latency by massive multithreading 

– Hardware support for 128 threads on each processor 

– Globally hashed address space 

– No data cache  

– Single cycle context switch 

– Multiple outstanding memory requests 

• Support for fine-grained,  

   word-level synchronization 

– Full/empty bit associated with every  

   memory word 

• Flexibly supports dynamic load balancing 

• GraphCT currently tested on a 64 processor XMT: 8192 threads 

– 512 GB of globally shared memory 

Image Source: cray.com 



What is GraphCT? 

• Graph Characterization Toolkit 

• Efficiently summarizes and analyzes static graph data 

• Built for large multithreaded, shared memory machines 
like the Cray XMT 

• Increases productivity by decreasing programming 
complexity 

• Classic metrics & state-of-the-art kernels  

• Works on all types of graphs 

– directed or undirected 

– weighted or unweighted 

Dynamic spatio-temporal graph 



Key Features of GraphCT 

• Low-level primitives to high-level analytic kernels 

• Common graph data structure 

• Develop custom reports by mixing and matching functions 

• Create subgraphs for more in-depth analysis 

• Kernels are tuned to maximize scaling and performance 
(up to 64 processors) on the Cray XMT 

Load the Graph Data    Find Connected Components   Run k-Betweenness Centrality 
            on the largest component 



Static graph data structure 

typedef struct { 

 int numEdges; 

 int numVertices; 

 int startVertex[NE]; /* start vertex of edge, 

        sorted, primary key */ 

 int endVertex[NE];  /* end vertex of edge, 

        sorted, secondary key */ 

 int intWeight[NE];  /* integer edge weight */ 

 int edgeStart[NV];  /* per-vertex index into 

        endVertex array */ 

 int marks[NV];  /* common array for marking 

        or coloring of vertices */ 

} graph; 



Using GraphCT 



Usage options 

• Operations on input graphs can be specified in 3 ways: 

– Via the command line 

• Perform a single graph operation 

• Read in graph, execute kernel, write back result 

– Via a script  [in progress] 

• Batch multiple operations 

• Intermediate results need not be written to file (though they 
can be) 

– Via a developer’s API 

• Perform complex series of operations 

• Manipulate data structures 

• Implement custom functions 



The command line interface 



1. Command line parameters 

Example: ./GraphCT-CLI –i patents.txt –t dimacs –o 
result.txt –z kcentrality 1 

-i:  Input file 

-t:  Graph type, can currently be either ‘dimacs’ or ‘binary’.  ‘binary’ type 

    is binary compressed row format generated by GraphCT 

-o:  Output file 

-z:  Kernel type (see following sections): 



2. Kernel types (index) 

• Specified after –z flag 

kcentrality k Vs  

degree 

conductance 

modularity 

components 

clustering 

transitivity 

diameter n 



3. Degree distribution & graph diameter 

• Diameter can only be ascertained by repeatedly 
performing breadth first searches different vertices.  

– The more breadth first searches, the better approximation to the 
true diameter 

-z diameter <P> 

• Does breadth first searches from P percent of the vertices, 
where P is an integer 

• Degree distribution: 

-z degree: gives  

• Maximum out-degree 

• Average out-degree 

• Variance 

• Standard deviation 



4. Conductance and modularity 

-z conductance, -z modularity 

• Defined over colorings of input graph 

– Describe how tightly knit communities divided by a cut are 

– Not very meaningful in command line mode 

– In batch mode a coloring can be followed by conductance/
modularity calculation 

• In batch mode: 

– Finds connected components 

– Modularity uses component coloring as a partition 

– Conductance uses the largest component as the cut 



5.Vertex k-Betweenness Centrality 

-z kcentrality k Vs 

• Vs: number of source vertices (of breadth first search) 

– Set equal to NV (number of vertices) for exact computation 

• k: count shortest path length + k 

• Outputs file with k-BC scores ordered by vertex number 

• Note: Set k equal to 0 for betweenness centrality 

K. Jiang, D. Ediger, and D.A. Bader, “Generalizing k-Betweenness Centrality Using Short Paths and a 
Parallel Multithreaded Implementation,” The 38th International Conference on Parallel Processing 

(ICPP 2009), Vienna, Austria, September 22-25, 2009. 



6. Transitivity/clustering coefficient 

-z transitivity 

• Writes output file with local transitivity coefficient of each 
vertex 

– Measures number of transitive triads over total number of 
transitive triples 

-z clustering 

• Writes output file with local clustering coefficient of each 
vertex 

– Number of triangles formed by neighbors over number of potential 
triangles 

– Gives sense of how close vertex is to belonging to a clique 

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,” 
Social Networks, 31(2):155-163, May 2009. 



7. Component statistics 

-z components 

• Statistics about connected components in graph 

– Number of components 

– Largest component size 

– Average component size 

– Variance 

– Standard deviation 

• Writes output file with vertex to component mapping 



Writing a script file [in progress] 



1. Example script 

read dimacs patents.txt => binary_pat.bin 

print diameter 10 

save graph 

extract component 1 => component1.bin 

print degrees 

kcentrality 1 256 => k1scores.txt 

kcentrality 2 256 => k2scores.txt 

restore graph 

extract component 2 

print degrees 



2. Script fundamentals   

• Work on single ‘active graph’ 

• Can save and restore graphs at any point, like memory 
feature on pocket calculator 

• Operations can: 

– Output data to the screen (e.g. degree information) 

– Output data to file (e.g. kcentrality data) 

– Modify the active graph (extract subgraph, component) 



3. Example breakdown 

read dimacs patents.txt => binary_pat.bin 

• Two operations: reads in ‘patents.txt’ as a dimacs graph 
file, and writes the resulting graph back out as a binary file 
called ‘binary_pat.dat’ 

– Binary graph is usually smaller and quicker to load 

=> filename always takes the output of a particular command 
and writes it to the file ‘filename’ 

– Current graph formats are ‘dimacs’ and ‘binary’ 

print diameter 10 

print command is used to print information to the 
screen 

– Shows the estimated diameter based on BFS runs from 10% of 
vertices 



3. Example breakdown (cont.) 

save graph 

• Retain the current active graph for use later 

extract component 1 => component1.bin 

extract command is used to use a coloring to extract a 
subgraph from the active graph 

component 1  colors the largest connected component 

• Writes resulting graph to a binary file 

print degrees 

• Any kernel from the previous section may be used 

• If output is a graph or per-vertex data, it cannot be printed 



3. Example breakdown (cont.) 

kcentrality 1 256 => k1scores.txt 

• Calculates k=1 betweenness centrality based on breadth 
first searches from 256 source vertices 

– Result stored in ‘k1scores.txt’, one line per vertex 

kcentrality result cannot be printed to screen since it is per-
vertex data 

restore graph 

• Restore active graph saved earlier 

• Can restore same graph multiple times 



3. Example breakdown (cont.) 

extract component 2 

• Extract the second largest component of the graph 



Graph parsers 



DIMACS graph parser 

c comments 

c here 

p max n m 

e v1 v2 w 

• DIMACS file: 

– c = comment 

– p = problem line: n = number of vertices, m = number of edges 

– e = edge: indicates an edge from v1 to v2 of weight w 

• Use standalone parser or read directly into GraphCT 

– Standalone parser outputs binary format graph file 

• Good if graph will be used multiple times to reduce I/O time 



From data to analysis 

• GraphCT produces a simple 
listing of the metrics most 
desired by the analyst 

• At a glance, the size, structure, 
and features of the graph can be 
described 

• Output can be custom tailored to 
show more or less data 

• Full results are written to files on 
disk for per-vertex kernels 

– k-Betweenness Centrality 

– Local clustering coefficients 

– BFS distance 

• Excellent for external plotting & 
visualization software 



The Future of GraphCT 

• Additional high-level tools 

– Divisive betweenness-based community detection 

– Greedy agglomerative clustering (CNM) 

– Hybrid techniques 

– Additional subgraph generators 

• Helper functions 

– Data pre-processing 

– Support for common graph formats 

• Extension to support dynamic graph data 

– STINGER example 



Experimental Kernels 



Random walk subgraph extraction 

• Choose a number of random 

starting vertices nSG 

• Perform a BFS of length 

subGraphPathLength from 

each source vertex 

• Extract the subgraph: 

void findSubGraphs(graph *G, int nSG, 

int subGraphPathLength) 

subG = genSubGraph(G, NULL, 1); 



Developer’s Notes: 

A Programming Example 



1. Initialization & graph generation 

// I want a graph with ~270 million vertices 

getUserParameters(28); 

// Generate the graph tuples using RMAT 

SDGdata  = (graphSDG*) malloc(sizeof(graphSDG)); 

genScalData(SDGdata, 0.57, 0.19, 0.19, 0.05); 

// Build the graph data structure 

G = (graph *) malloc(sizeof(graph)); 

computeGraph(G, SDGdata); 



2. Degree distribution & graph diameter 

// Display statistics on the vertex out-degree 

calculateDegreeDistributions(G); 

// Find the graph diameter exactly 

calculateGraphDiameter(G, NV); 

// This will require 270M breadth first searches! 

// Estimate the graph diameter 
calculateGraphDiameter(G, 1024); 

// This only does 1024 breadth first searches 



3. Mark & summarize connected components 

// run connected components & store the result in the 
graph 

numComp = connectedComponents(G); 

// display component size statistics based on colors 

calculateComponentDistributions(G, numComp, &max, 
&maxV); 



4. Find 10 highest 2-betweenness vertices 

BC = (double *) malloc(NV * sizeof(double)); 

// k=2, 256 source vertices 

kcentrality(G, BC, 256, 2); 

printf("Maximum BC Vertices\n"); 

for (j = 0; j < 10; j++) { 

      maxI  = 0; maxBC = BC[0]; 

      for (i = 1; i < NV; i++) 

     if (BC[i] > maxBC) {maxBC = BC[i]; maxI = i;} 

      printf("#%2d: %8d - %9.6lf\n", j+1, maxI, maxBC); 

      BC[maxI] = 0.0; 

} 



Function Reference 



Initialize default environment 

void getUserParameters(int scale) 

• Sets a number of application parameters 

scale: determines size of graph generation 

– log2 Number of Vertices 



Load external graph data 

int graphio_b(graph *G, char *filename) 

• Load from a binary data file containing compressed data 
structure using 4-byte integers 

• Format: 
– Number of Edges (4 bytes) 

– Number of Vertices (4 bytes) 

– Empty padding (4 bytes) 

– edgeStart array (NV * 4 bytes) 

– endVertex array (NE * 4 bytes) 

– intWeight array (NE * 4 bytes) 



Scalable data generator 

void genScalData(graphSDG*, double a, double b, 
double c, double d) 

• Input: 

– RMAT parameters A, B, C, & D 

– Must call getUserParameters( ) prior to calling this function 

• Output: 

– graphSDG data structure (raw tuples) 

• Note: this function should precede a call to 
computeGraph() to transform tuples into a graph data 
structure 

D. Chakrabarti, Y. Zhan, and C. Faloutsos. “R-MAT: A 
recursive model for graph mining”. In Proc. 4th SIAM Intl. 

Conf. on Data Mining (SDM), Orlando, FL, April 2004. SIAM. 



Graph construction 

void computeGraph(graph *G, graphSDG *SDGdata) 

• Input: 

– graphSDG data structure 

• Output: 

– graph data structure 



Directed graph -> undirected 

graph * makeUndirected(graph *G) 

• Input: 

– graph data structure 

• Output: 

– Returns an undirected graph containing bidirectional edges for 
each edge in the original graph.  Duplicate edges are removed 
automatically. 



Generate a subgraph 

graph * genSubGraph(graph *G, int NV, int color) 

• Input: 

– graph data structure (marks[] must be set) 

– NV should always be set to NULL 

– color of vertices to extract 

• Output: 

– Returns a graph containing only those vertices in the original 
graph marked with the specified color 



K-core graph reduction 

graph * kcore(graph *G, int K) 

• Input: 

– graph data structure 

– minimum out-degree K 

• Output: 

– Returns a graph containing only those vertices in the original 
graph with an out-degree of at least K 



Vertex k-Betweenness Centrality 

double kcentrality(graph *G, double BC[], int Vs, 

 int K) 

• Vs: number of source vertices 

– Set equal to G->NV for an exact computation 

• K: count shortest path length + K 

• BC[ ]: stores per-vertex result of computation 

• Note: Set K equal to 0 for betweenness centrality 

K. Jiang, D. Ediger, and D.A. Bader, “Generalizing k-Betweenness Centrality Using Short Paths and a 
Parallel Multithreaded Implementation,” The 38th International Conference on Parallel Processing 

(ICPP 2009), Vienna, Austria, September 22-25, 2009. 



Degree distribution statistics 

void calculateDegreeDistributions(graph*) 

• Input: 

– graph data structure 

• Output: 

– Maximum out-degree 

– Average out-degree 

– Variance 

– Standard deviation 



Component statistics 

void calculateComponentDistributions (graph *G, 

 int numColors, int *max, int *maxV) 

• Input: 

– graph data structure 

– numColors: largest integer value of the coloring 

• Output: 

– max: size of the largest component 

– maxV: an integer ID within the largest component 



Modularity score 

double computeModularityValue(graph *G, 

 int membership[], int numColors) 

• Input: 

– graph data structure 

membership[]: the vertex coloring (partitioning) 

numColors: the number of colors used above 

• Output: 

– Modularity score is returned 



Conductance score 

double computeConductanceValue(graph *G, 

 int membership[]) 

• Input: 

– graph data structure 

membership[]: a binary partitioning 

• Output: 

– Conductance score is returned 



Connected components 

int connectedComponents(graph *G) 

• Input: 

– graph data structure 

• Output: 

G->marks[] : array containing each vertex’s coloring where each 
component has a unique color 

– Returns the number of connected components 



Breadth first search 

int * calculateBFS(graph *G, int startV, int mode) 

• Input: 

– graph data structure 

– startV: vertex ID to start the search from 

– mode: 

• mode = 0: return an array of the further vertices where the first 
element is the number of vertices 

• mode = 1: return an array of the distances from each vertex to 
the source vertex 

• Output: 

– Returns an array according to the mode described above 

D.A. Bader and K. Madduri, “
Designing Multithreaded Algorithms for Breadth-First Search and st-

connectivity on the Cray MTA-2,”  The 35th International Conference on 
Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006. 



Graph diameter 

int calculateGraphDiameter(graph *G, int Vs) 

• Input: 

– graph data structure 

– Vs: number of breadth-first searches to run 

• Output: 

– Returns the diameter (if Vs = NV) or the length of the longest path 
found 

• Note: this can be used to find the exact diameter or an 
approximation if only a subset of source vertices is used 



Global transitivity coefficient 

double calculateTransitivityGlobal(graph *G) 

• Input: 

– graph data structure 

• Output: 

– Returns the global transitivity coefficient (for both directed and 
undirected graphs) 

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,” 
Social Networks, 31(2):155-163, May 2009. 



Local transitivity coefficient 

double * calculateTransitivityLocal(graph *G) 

• Input: 

– graph data structure 

• Output: 

– Returns the local transitivity coefficient for each vertex in an array 

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,” 
Social Networks, 31(2):155-163, May 2009. 



Local clustering coefficient 

double * calculateClusteringLocal(graph *G) 

• Input: 

– graph data structure 

• Output: 

– Returns the local clustering coefficient for each vertex in an array 

Tore Opsahl and Pietro Panzarasa. “Clustering in weighted networks,” 
Social Networks, 31(2):155-163, May 2009. 


