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Need for Parallel Graph Algorithms

» Graph algorithms important to computer science
Breadth-first search, PageRank, shortest paths, etc.

» New applications demand large graphs
Social network analysis, bioinformatics

» Problems beyond capacity of single processors
Both memory and CPU performance limitations
Need parallelism
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Implementing Parallel Graph Algorithms

» Algorithms difficult to implement

Managing parallelism hard in general

Many programming models

Different approaches for different systems, data
» Limited portability

Shared memory vs. distributed memory

Cray XMT, GPUs, other systems

» Generic programming mitigates this partially

C++ limited for expressing vastly different computation
models in the same code
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Data Structures

» Different from those in most databases

» Vertex, edge properties can often be arrays
Might be distributed
» Graphs in compressed sparse row, adjacency list,
STINGER, specialized GPU formats, many variants
» Want to support symbolically represented graphs
BDD-based state machines for model checking

Implicit graphs such as grids for computer vision
de Bruijn graphs for bioinformatics
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Proposal: High-level Specification

» Write algorithms in a declarative language
» Compiler retargets them to different platforms
» Code generated for various

Platforms

Graph data structures
Data sizes

» Semi-automatically optimize code for each platform

» Graph algorithms easier to tune
Configure parameters to generator
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Datalog

» Declarative language for querying databases

» Subset of Prolog
No function symbols
Fewer primitives
Limited negation (usually)

» Allows recursion

Unlike SQL or relational algebra
Does not need barriers between recursive steps

» Programs always terminate
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Datalog Example

ancestor(X, Y) :- parent(X, Y).
“Forany X and, if X is the parent of Y then X is an
ancestor of Y.”

ancestor(X, Z) :-
ancestor(X, Y), ancestor(Y, Z).

“Forany X, Y,and Z, if Xis an ancestorof Y and Y is
an ancestor of Z, X is an ancestor of Z.”

» Would not terminate in normal Prolog
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Stratification

» Approach used for negation in Datalog
No cyclic dependencies containing negations

» Divide program into strongly connected components
» Negations only allowed between components

ancestor(X, Y) :- parent(X, Y). parent
ancestor(X, Z) :- T
ancestor(X, Y), d
ancestor
ancestor(Y, Z).
not_ancestor(X, Y) :- T

=1 ancestor(X, Y). not_ancestor
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Need for Multi-Valued Logic

» Graph algorithms return non-Boolean results
Shortest paths returns optimal distances
Semiring often used as structure for this

» Normal Datalog predicates are either true or false

Using one argument to a predicate as the result does not
allow updating

» Multi-valued logic generalizes predicate values
dist(X, Y) is valued as a number between —co and oo

» Monotonicity requirements similar to stratification

Algorithms such as betweenness centrality need multiple
passes with barriers in between
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Semilattices

» Set with associative, commutative, idempotent binary
operation ™ (“meet”)

» Operation defines partial order t on elements
xCyifandonlyif xmy=x

» Likely to relax commutativity in practice
Allow nondeterministic behavior in case of distance ties
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Monotonicity

» Moving input of a function up or down semilattice
moves function result the same direction

» Formally, x C y implies that f(x) C f(y)

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY



Lattice-Valued Datalog Example

» Compute path length from source to each
vertex(pseudocode), assuming no negative-length
cycles:

Define table dist using min as reduction operator.
dist(S) = source(S), 0.
dist(W) = g(V, W, E), (dist(V) + weight(E)).

» Aggregation done automatically

» Works because of monotonicity and distributivity,
plus finite number of simple paths
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Data Flow
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Lattice-Valued Datalog Stratification

» Stratification has been generalized to lattice-valued
Datalog

» Non-monotonic operators treated as negations
» Same rules as before apply

» For applications, might want to stratify based on
values, not just syntax:

foo(X, N+1) :- foo(Y, N), bar(X, Y).
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Data Flow Adding Reciprocal
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Explicit Aggregation

» Sums, averages, etc. not semilattice operations
Not idempotent

» Necessary for practical system

» Only allow these between strata
Compute input data, then do aggregate operator

Could do some operators incrementally
Associative, commutative, with inverses
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Performance Hints

» Query optimizer may not get optimal performance
» Want ways to tune query plan, data structures, etc.

» One option is a “simple” implementation
Always uses a fixed query plan based on the program
User rearranges program to change behavior
Can be cumbersome to write some things in this model
dist(W) = dist(V) + (g(V, W, E), weight(E)).
» Can use same data structures as in hand-written
code as long as query patterns are limited

» Will also need to import external data
Including from sources such as SQL databases
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Comparison to Other Models

» Generalization of linear algebra over semirings
Multiple dimensions
Non-distributive operations (with imprecise results)

» Generalization of SQL, SPARQL, relational algebra
Allows recursion to be expressed directly

» Simplification of visitor-based models
Limits set of operations in visitors
Increases available parallelism

» Less limited than many graph DSLs
Recursion without requiring level-based iterations
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Expressiveness

» Expresses simpler algorithms directly

“Simpler” is relative — more difficult algorithms are hard
to write in any framework

» User queries are likely to be simple
Ad-hoc queries unlikely to use multilevel methods
Can still provide tuned kernels for these
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Join and Fixpoint Algorithms

» Joins map directly to Datalog
abc_path(X, Y) :- a(X, Z), b(Z, W), c(W, Y).

» Compute paths using recursion
abstar_path(X, X).
abstar_path(X, Y) :- a(X, Z), b(Z, W), abstar_path(W, Y).

alternating path(X, Y) :- abstar_path(X, Y).
alternating path(X, Y) :- b(X, Z), abstar_path(Z, W).

» Might want performance hint about ordering to use

Somewhat similar to tag collections in Intel Concurrent
Collections
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Iterative Algorithms

» Some algorithms normally written level-synchronous
Breadth-first search
PageRank

» Most of these have formulations with fewer barriers
Often not as work-efficient as with barrier

pr_iter(0, V, ..).
pr_iter(N+1, V, ..) :- pr_iter(N, .., ..).
pagerank(V, PR) :- stop iter(N), pr_iter(N, V, PR).
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Multi-Level Algorithms

» Most difficult class to express in this model
» Would need same features as iterative algorithms

» Maybe easier to use relational algebra directly?
Or linear-algebra-like operations with recursion?
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Programmability

» Graph data sets likely to have few types of
relationships used in a single query
Using many inputs at once leads to verbose code

» Can define helper relations to abstract out
iIntermediate computations

» Datalog being first-order might be a limitation

» User experience would be needed
SQL is commonly used, and constructs used are similar
Logic programming likely to be unfamiliar to most users

» Researchers have developed specialized front-ends
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Prior Work on Datalog

» Automatic parallelization

» Automatic incrementalization

» Implementation using SQL

» Implementation on binary decision diagrams (BDDs)

» Datalog for distributed systems
Bloom*
StarlLog

» Front-ends generating Datalog

Program Query Language
GraphQL
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Conclusion

» Lattice-valued Datalog advocated as a good high-
level specification for irregular algorithms

Aids productivity
Simplifies tuning
» Generate code for various platforms, data structures
from a single specification
Plus possibly some platform-specific hints

» Hybrid approaches possible
Datalog plus hand-written execution strategy/query plan
Parts of implementation given manually
Might include problem- and/or platform-specific data structures
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Prototype Compiler

» Translates lattice-valued Datalog to C++

» Currently targets
Sequential code

SQLite
Larrabee intrinsics

» Designed to target other platforms in the future
» Likely to become JIT
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Compiler Structure

Datalog code
Recursive tai)le equations
Abstract streém equations

CSP prg)cesses

C++ code
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Datalog Code (S-expressions)

(InputTable 'source (TableType ~(,(VertexT)) (TypeAndReducer (VoidT) (FlatR))) (SingleEntryTable))
(ResultTable 'dist (TableType " (,(VertexT)) (TypeAndReducer (FloatT) (MinR))) (ArrayTable))

(InputTable 'g (TableType ~(,(VertexT) ,(VertexT) ,(EdgeT)) (TypeAndReducer (VoidT) (FlatR))) (GraphTable))
(InputTable 'weight (TableType " (,(EdgeT)) (TypeAndReducer (FloatT) (MinR))) (ArrayTable))

((TableRef 'dist '(W))
< .
(Combine
add-combiner
(TableRef 'dist '(V))
(Combine
second-combiner
(TableRef 'g '(V W E))
(TableRef 'weight '(E)))))
((TableRef 'dist '(S))

(Map.
(const-map-func (FloatT) (MinR) (ConstE "0.0"))
cedkabdeRefirisource ' (S))))))
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Conversion to Table Equations

» Combine all rules for a single relation
» Normalize conjunctions into joins

» Insert wildcard elements and projections
(aggregation of multiple results)
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Table Equations

(g . #(struct:Empty
#(struct:TableType
(#(struct:IntT) #(struct:IntT) #(struct:LongT))
#(struct:TypeAndReducer #(struct:VoidT) #(struct:FlatR)))))
(source . #(struct:Empty
#(struct:TableType
(#(struct:IntT))
#(struct:TypeAndReducer #(struct:VoidT) #(struct:FlatR)))))
(dist . #(struct:Union
#(struct:TEMap
#(struct:MapFunc #<procedure:const> #<procedure:const>)
#(struct:ReadTable source (90)))
#(struct:Rearrange
(E W V)
(W)
#(struct:TECombine
#(struct:CombineFunc
#i<procedure:...log/datalogd.rkt:75:3>
#t<procedure:...log/datalog4.rkt:79:3>)
#(struct:ReadTable dist (#f #f 0))
#(struct:Rearrange
(V W E)
(E W V)
#(struct:TECombine
#(struct:CombineFunc
#<procedure:...log/datalogd.rkt:93:3>
#t<procedure:...log/datalog4.rkt:94:3>)
#(struct:ReadTable g (0 1 2))
#(struct:ReadTable weight (#f #f 0))))))))
(weight . #(struct:Empty
#(struct:TableType
(#(struct:LongT))
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Recursive Table Equations
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Stream Equation Generation

» Define processing of newly added/updated elements
Seminaive evaluation

» Normalize joins to input stream and single relation
Add dummy streams as needed

» Insert explicit queues
Order of tuple processing matters for performance
Dijkstra’s algorithm uses increasing order of distances
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Stream Equations

Y

map (a) —2(0.0)
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rearrange V=—2>V W E

!

rearrange VW E —W

insert dist




Implementing Stream Operators

» Query optimization
» Solve for modes of tuples being passed around
Which elements are not filled in

» Determine best formats for streams
Scalar variables, SIMD, SQL tables, etc.

» Based on user-defined formats for relations

» Optimizer is currently simple
» Most platform-specific configuration will be here
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Coroutine Generation

» Convert each stream operator into coroutines

» Communication by CSP channels
Bounded resources, simple to implement

» Data sent in channels depends on implementation
» “Real” (non-coroutine) parallelism done by data

parallelism

Local coroutine-handling code does not need to know
about it
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Coroutine Structure

| Read priority queue |
Py 4

| Join with edge weights | | Join with source vertex |

~

Push into priority queue

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute



Code Generation

» Coroutines interleaved statically into a single thread

» Channels implemented using variables
Synchronization done by code generator

» Generates control flow graph
» Convert CFG into C++ code
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