Position Paper:
Logic Programming for Parallel

Irregular Applications

Jeremiah Willcock and Andrew Lumsdaine
CREST, Indiana University

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Need for Parallel Graph Algorithms

» Graph algorithms important to computer science
Breadth-first search, PageRank, shortest paths, etc.

» New applications demand large graphs
Social network analysis, bioinformatics

» Problems beyond capacity of single processors
Both memory and CPU performance limitations
Need parallelism

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Implementing Parallel Graph Algorithms

» Algorithms difficult to implement

Managing parallelism hard in general

Many programming models

Different approaches for different systems, data
» Limited portability

Shared memory vs. distributed memory

Cray XMT, GPUs, other systems

» Generic programming mitigates this partially

C++ limited for expressing vastly different computation
models in the same code

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Data Structures

» Different from those in most databases

» Vertex, edge properties can often be arrays
Might be distributed
» Graphs in compressed sparse row, adjacency list,
STINGER, specialized GPU formats, many variants
» Want to support symbolically represented graphs
BDD-based state machines for model checking

Implicit graphs such as grids for computer vision
de Bruijn graphs for bioinformatics

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Proposal: High-level Specification

» Write algorithms in a declarative language
» Compiler retargets them to different platforms
» Code generated for various

Platforms

Graph data structures
Data sizes

» Semi-automatically optimize code for each platform

» Graph algorithms easier to tune
Configure parameters to generator

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Datalog

» Declarative language for querying databases

» Subset of Prolog
No function symbols
Fewer primitives
Limited negation (usually)

» Allows recursion

Unlike SQL or relational algebra
Does not need barriers between recursive steps

» Programs always terminate

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Datalog Example

ancestor(X, Y) :- parent(X, Y).
“Forany X and, if X is the parent of Y then X is an
ancestor of Y.”

ancestor(X, Z) :-
ancestor(X, Y), ancestor(Y, Z).

“Forany X, Y,and Z, if Xis an ancestorof Y and Y is
an ancestor of Z, X is an ancestor of Z.”

» Would not terminate in normal Prolog

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Stratification

» Approach used for negation in Datalog
No cyclic dependencies containing negations

» Divide program into strongly connected components
» Negations only allowed between components

ancestor(X, Y) :- parent(X, Y). parent
ancestor(X, Z) :- T
ancestor(X, Y), d
ancestor
ancestor(Y, Z).
not_ancestor(X, Y) :- T

=1 ancestor(X, Y). not_ancestor

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Need for Multi-Valued Logic

» Graph algorithms return non-Boolean results
Shortest paths returns optimal distances
Semiring often used as structure for this

» Normal Datalog predicates are either true or false

Using one argument to a predicate as the result does not
allow updating

» Multi-valued logic generalizes predicate values
dist(X, Y) is valued as a number between —co and oo

» Monotonicity requirements similar to stratification

Algorithms such as betweenness centrality need multiple
passes with barriers in between

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Semilattices

» Set with associative, commutative, idempotent binary
operation ™ (“meet”)

» Operation defines partial order t on elements
xCyifandonlyif xmy=x

» Likely to relax commutativity in practice
Allow nondeterministic behavior in case of distance ties

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

O — = — N

Monotonicity

» Moving input of a function up or down semilattice
moves function result the same direction

» Formally, x C y implies that f(x) C f(y)

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Lattice-Valued Datalog Example

» Compute path length from source to each
vertex(pseudocode), assuming no negative-length
cycles:

Define table dist using min as reduction operator.
dist(S) = source(S), 0.
dist(W) = g(V, W, E), (dist(V) + weight(E)).

» Aggregation done automatically

» Works because of monotonicity and distributivity,
plus finite number of simple paths

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Data Flow

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Lattice-Valued Datalog Stratification

» Stratification has been generalized to lattice-valued
Datalog

» Non-monotonic operators treated as negations
» Same rules as before apply

» For applications, might want to stratify based on
values, not just syntax:

foo(X, N+1) :- foo(Y, N), bar(X, Y).
CENTER FOR RESEARCH

IN EXTREME SCALE
TECHNOLOGIES
INDIANA UNIVERSITY

Data Flow Adding Reciprocal

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY
Pervasive Technology Institute

Explicit Aggregation

» Sums, averages, etc. not semilattice operations
Not idempotent

» Necessary for practical system

» Only allow these between strata
Compute input data, then do aggregate operator

Could do some operators incrementally
Associative, commutative, with inverses

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Performance Hints

» Query optimizer may not get optimal performance
» Want ways to tune query plan, data structures, etc.

» One option is a “simple” implementation
Always uses a fixed query plan based on the program
User rearranges program to change behavior
Can be cumbersome to write some things in this model
dist(W) = dist(V) + (g(V, W, E), weight(E)).
» Can use same data structures as in hand-written
code as long as query patterns are limited

» Will also need to import external data
Including from sources such as SQL databases

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Comparison to Other Models

» Generalization of linear algebra over semirings
Multiple dimensions
Non-distributive operations (with imprecise results)

» Generalization of SQL, SPARQL, relational algebra
Allows recursion to be expressed directly

» Simplification of visitor-based models
Limits set of operations in visitors
Increases available parallelism

» Less limited than many graph DSLs
Recursion without requiring level-based iterations

IN EXTREME SCALE
TECHNOLOGIES
INDIANA UNIVERSITY

Expressiveness

» Expresses simpler algorithms directly

“Simpler” is relative — more difficult algorithms are hard
to write in any framework

» User queries are likely to be simple
Ad-hoc queries unlikely to use multilevel methods
Can still provide tuned kernels for these

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Join and Fixpoint Algorithms

» Joins map directly to Datalog
abc_path(X, Y) :- a(X, Z), b(Z, W), c(W, Y).

» Compute paths using recursion
abstar_path(X, X).
abstar_path(X, Y) :- a(X, Z), b(Z, W), abstar_path(W, Y).

alternating path(X, Y) :- abstar_path(X, Y).
alternating path(X, Y) :- b(X, Z), abstar_path(Z, W).

» Might want performance hint about ordering to use

Somewhat similar to tag collections in Intel Concurrent
Collections

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Iterative Algorithms

» Some algorithms normally written level-synchronous
Breadth-first search
PageRank

» Most of these have formulations with fewer barriers
Often not as work-efficient as with barrier

pr_iter(0, V, ..).
pr_iter(N+1, V, ..) :- pr_iter(N, .., ..).
pagerank(V, PR) :- stop iter(N), pr_iter(N, V, PR).

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Multi-Level Algorithms

» Most difficult class to express in this model
» Would need same features as iterative algorithms

» Maybe easier to use relational algebra directly?
Or linear-algebra-like operations with recursion?

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Programmability

» Graph data sets likely to have few types of
relationships used in a single query
Using many inputs at once leads to verbose code

» Can define helper relations to abstract out
iIntermediate computations

» Datalog being first-order might be a limitation

» User experience would be needed
SQL is commonly used, and constructs used are similar
Logic programming likely to be unfamiliar to most users

» Researchers have developed specialized front-ends

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Prior Work on Datalog

» Automatic parallelization

» Automatic incrementalization

» Implementation using SQL

» Implementation on binary decision diagrams (BDDs)

» Datalog for distributed systems
Bloom*
StarlLog

» Front-ends generating Datalog

Program Query Language
GraphQL

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Conclusion

» Lattice-valued Datalog advocated as a good high-
level specification for irregular algorithms

Aids productivity
Simplifies tuning
» Generate code for various platforms, data structures
from a single specification
Plus possibly some platform-specific hints

» Hybrid approaches possible
Datalog plus hand-written execution strategy/query plan
Parts of implementation given manually
Might include problem- and/or platform-specific data structures

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Prototype Compiler

» Translates lattice-valued Datalog to C++

» Currently targets
Sequential code

SQLite
Larrabee intrinsics

» Designed to target other platforms in the future
» Likely to become JIT

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Compiler Structure

Datalog code
Recursive tai)le equations
Abstract streém equations

CSP prg)cesses

C++ code

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Datalog Code (S-expressions)

(InputTable 'source (TableType ~(,(VertexT)) (TypeAndReducer (VoidT) (FlatR))) (SingleEntryTable))
(ResultTable 'dist (TableType " (,(VertexT)) (TypeAndReducer (FloatT) (MinR))) (ArrayTable))

(InputTable 'g (TableType ~(,(VertexT) ,(VertexT) ,(EdgeT)) (TypeAndReducer (VoidT) (FlatR))) (GraphTable))
(InputTable 'weight (TableType " (,(EdgeT)) (TypeAndReducer (FloatT) (MinR))) (ArrayTable))

((TableRef 'dist '(W))
< .
(Combine
add-combiner
(TableRef 'dist '(V))
(Combine
second-combiner
(TableRef 'g '(V W E))
(TableRef 'weight '(E)))))
((TableRef 'dist '(S))

(Map.
(const-map-func (FloatT) (MinR) (ConstE "0.0"))
cedkabdeRefirisource ' (S))))))

IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Conversion to Table Equations

» Combine all rules for a single relation
» Normalize conjunctions into joins

» Insert wildcard elements and projections
(aggregation of multiple results)

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Table Equations

(g . #(struct:Empty
#(struct:TableType
(#(struct:IntT) #(struct:IntT) #(struct:LongT))
#(struct:TypeAndReducer #(struct:VoidT) #(struct:FlatR)))))
(source . #(struct:Empty
#(struct:TableType
(#(struct:IntT))
#(struct:TypeAndReducer #(struct:VoidT) #(struct:FlatR)))))
(dist . #(struct:Union
#(struct:TEMap
#(struct:MapFunc #<procedure:const> #<procedure:const>)
#(struct:ReadTable source (90)))
#(struct:Rearrange
(E W V)
(W)
#(struct:TECombine
#(struct:CombineFunc
#i<procedure:...log/datalogd.rkt:75:3>
#t<procedure:...log/datalog4.rkt:79:3>)
#(struct:ReadTable dist (#f #f 0))
#(struct:Rearrange
(V W E)
(E W V)
#(struct:TECombine
#(struct:CombineFunc
#<procedure:...log/datalogd.rkt:93:3>
#t<procedure:...log/datalog4.rkt:94:3>)
#(struct:ReadTable g (0 1 2))
#(struct:ReadTable weight (#f #f 0))))))))
(weight . #(struct:Empty
#(struct:TableType
(#(struct:LongT))

CENTER FOR#R&tpbaR CypeandReducer #(struct:FloatT) #(struct:MinR))))))
IN EXTREME SCALE

TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Recursive Table Equations

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY
Pervasive Technology Institute

Stream Equation Generation

» Define processing of newly added/updated elements
Seminaive evaluation

» Normalize joins to input stream and single relation
Add dummy streams as needed

» Insert explicit queues
Order of tuple processing matters for performance
Dijkstra’s algorithm uses increasing order of distances

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Stream Equations

Y

map (a) —2(0.0)

UENIER FUR REDEAKRUH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

rearrange V=—2>V W E

!

rearrange VW E —W

insert dist

Implementing Stream Operators

» Query optimization
» Solve for modes of tuples being passed around
Which elements are not filled in

» Determine best formats for streams
Scalar variables, SIMD, SQL tables, etc.

» Based on user-defined formats for relations

» Optimizer is currently simple
» Most platform-specific configuration will be here

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Coroutine Generation

» Convert each stream operator into coroutines

» Communication by CSP channels
Bounded resources, simple to implement

» Data sent in channels depends on implementation
» “Real” (non-coroutine) parallelism done by data

parallelism

Local coroutine-handling code does not need to know
about it

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Coroutine Structure

| Read priority queue |
Py 4

| Join with edge weights | | Join with source vertex |

~

Push into priority queue

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

Pervasive Technology Institute

Code Generation

» Coroutines interleaved statically into a single thread

» Channels implemented using variables
Synchronization done by code generator

» Generates control flow graph
» Convert CFG into C++ code

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

INDIANA UNIVERSITY

