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Computed Tomography

Computed Tomography (CT) is an indirect 3D imaging technique.

Input: Set of X-ray images acquired about a center of rotation.

Output: Three-dimensional approximation of internal and external structure
Reconstruction: Convolution- Backprojection Algorithm (Feldkamp-Davis-Kress)
Geometry and Configuration of CT System determines magnification
Reconstruction algorithm is O(n?)
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Graphics Processing Units are coprocessors that handle image
manipulation and now are being used for general purpose computing.

Capable of Teraflops!

This massive computational capability of GPUs can be harnessed for many
applications.

= Parallel computing environment
= Fast dedicated memory
= Fast Cache

CT Reconstruction from projection images requires many arithmetic and
trigonometric operations for every volumetric pixel (voxel).



CT on GPUs rh) p

= “Porting” CT reconstruction on GPUs has shown major bottlenecks.

= Usually not an issue with medical datasets.
= Memory uploads/downloads to device (GPU).
= What ratio of x-ray data to volume should be allocated?

= Traditional CPU-based code reconstructed one slice at a time

Predicable memory access even when multi-threaded.

=  GPU-based reconstruction

Massively multithreaded environment creates scattered memory
reads if large x-ray data is utilized per kernel launch.

Scattered Memory reads present for large volume storage too!
Suddenly reconstruction becomes an Irregular Problem!




Approach

Maximize resources by blocking x-ray data and sub-volumes.

=  Counter Intuitive: Maximize x-ray data uploads to device!
= Partition x-ray images and batch small x-ray image subsets

= Volume: Use most GPU memory for direct volume storage.

= Utilize GPU-Specific Hardware/Features
= Massive parallelism
= Texture memory/Texture Cache
= Constant Memory
= Data prefetch to pinned memory for fast upload

= Dynamic Task Partitioning
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Implementation

= CUDA Programming environment and C++

=  Minimum requirements
= Fermi-based Architecture
= 1 GB Device memory
= At |least one x-ray sub image and one slice must fit simultaneously

= Allows for 1 — 8 GPUs per node
= Dynamic Partitioning determined by slice-to-texture ratio (STR)

= STR may not always be satisfied:
= Resource maximization vs. Awkward task size
= Reconstruction size — Too large or small?

= Tail-end reconstruction
I ———————————————————
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Dynamic GPU Tasking

= For a given subvolume the amount of x-ray data necessary varies
= Due to the geometry of the system.
= Taken into account with STR to determine memory data allocation on device.
= Typically, reconstruction along center slices require less data.

= Using OpenMP 2.0, a CPU thread controls one GPU in the system
= Each GPU will usually be reconstructing sub-volumes of varying size
= Load balancing difficult if subvolume is fixed for all GPUs
= No synchronization necessary for CPU threads while algorithm is executing.

= No synchronization necessary between GPU threads either.

= One atomic operation to update reconstruction progress and determine next
subvolume to reconstruct.



FDK Kernel Layout .

= |nput: X-ray data, index, and size, subvolume data, index, and size, system
geometry

= Get thread /D and voxel positions p,, .. ., p, based on ID
= if Thread ID position within ROl then
for Every slice j in slice block do
— Set register value to zero
— for Every image i in image subset do
» Determine texture interpolation coordinate in image i
» Update register value with texture fetch and scaling
— end for
— Update voxel p; in global memory with register value
End for
= End if



GPU Cache Hierarchy LR
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Evaluatlon ) i,
Supermicro workstation
= Dual Hexacore Intel Xeon X5690 @ 3.46 GHz w/ hyper threading
= 192 GB RAM
= 4 PCI-E 2.0 x16 slots
= 2 NVidia S2090 Devices
= 4 Tesla M2090 GPUs each (8 total)
= Connected via 4 PCI-E host interface cards
= M2090
= 6 GB GDDR5 memory apiece
= 16 streaming multiprocessors (SM)
= 768 KB L2 Cache (load, store, and texture operations)

= 32 Compute cores per SM
= 48 KB L1 Memory (explicitly set, shared memory not used)
= 8 KB Constant Memory and Texture Cache

= Two datasets tested

= 64 Gigavoxels

= 1 Teravoxel
I ———————————————————



Results: Throughput 64 GV/ 1 GPU 1) .

Voxel Throughput (4k3 Voxels/1 GPU)
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Results: Throughput 64 GV/ 8 GPUs ~ [TJ.

Voxel Throughput for8§ GPUs
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Results: Throughput 1 TV/ 1 GPU 1) .

Voxel Throughput (10K Voxels/1 GPU)
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Results: Throughput 1 TV/ 8 GPUs ) .

Voxel Throughput (10K Voxels/8 GPUs)
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Results: L1 Cache Hit-rates

Cache Hit-rate Percentage
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Results: L2 and Texture Cache Hit-rates
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Conclusion

Large-Scale CT Reconstruction algorithms clearly benefit from an Irregular
approach

= Massive parallelism has potential to destroy spatial locality

= Counter Intuitive approach may create performance gains

= |rregular approach improves voxel throughput by improving cache-hit rates
= Small X-ray data batches and large subvolume tend to perform best.

Are there other CPU-based algorithms that become irregular if implemented
efficiently on a GPU?

Thank you for your time!




