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Outline

ﬂ Workload: distributed BFS on large graphs

Q Platform: 3D Torus interconnect, support for GPU peer-to-peer

© Results: on 4-8 nodes with APEnet+
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Rationale

From the Workshop web site:

@ Many data intensive scientific applications are by nature
irreqular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irreqular applications on them demands
a substantial effort, and often leads to poor performance.
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Rationale

From the Workshop web site:

@ Many data intensive scientific applications are by nature
irreqular. . . Current supercomputing systems are organized
around components optimized for data locality and regular
computation. Developing irreqular applications on them demands
a substantial effort, and often leads to poor performance.

@ The solutions needed to address these challenges can only come
by considering the problem from all perspectives: from micro- to
system-architectures. .. from algorithm design to data
characteristics.

@ Only collaborative efforts among researchers with different
expertise, including end users, domain experts, and computer
scientists, could lead to significant breakthroughs.

@ We (clearly :) match them all, You'll see ...
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Large Graphs

@ Large scale networks are often represented as large graphs with
having up to billions of edges

@ Power-law degree distribution
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High performance graph algorithms

@ Most of graph algorithms have low arithmetic
intensity and irregular memory access
patterns
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High performance graph algorithms

@ Most of graph algorithms have low arithmetic
intensity and irregular memory access
patterns

@ How do modern architectures perform
running such algorithms?
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High performance graph algorithms

@ Most of graph algorithms have low arithmetic
intensity and irregular memory access

patterns
@ How do modern architectures perform GR
running such algorithms?

@ Several graph-theoretical challenges:
DIMACS9, SCA#2, Graph 500
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Overview

@ Distributed Breadth First Search (BFS)
@ Implementation for GPU clusters
@ Programming paradigm: CUDA + MPI

@ Developed according to the Graph 500 specifications.
Performance metric: Traversed Edges Per Second (TEPS)

R i

MPI

( cenn cranc )
G500 Steps
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Distributed data structure

Edge list

@ Edge list with: < V >=25CALE; < M >= 16 x 25CALE

@ Each task generates a subset of the edge list in the form: (Uo, Vo), (U1, V4), ...

@ Edges are assigned to processes via a simple rule:
edge (U, V)) € Pcif Uy mod #P ==

Compressed Sparse Row (CSR) data structure
@ CSRis simple and has minimal memory requirements

'°°a'®®®® ®

vertices
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Straightforward implementation of BFS on a cluster of

GPUs

Data mapping
@ Each vertex U; of Qggs is
assigned to one thread ¢

@ Each thread ¢; visits all the
neighbors V; of its vertex

GPU-related issues

@ Threads workloads are
unbalanced

@ Memory access patterns can
be irregular

4

Algorithm rely on atomic (add) operations.

%%%% g ¢

Us Uss ooo| |u |

Qars

J
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Straightforward BFS: Results

TEPS (Billion)

(infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)
T T

Weak scaling plot

T T T T

— Ideal scaling vvvvvvvvvvvvvvvv vvvvvvvvvvvvvvvv LSRN
® @ G500 Reference BFS

'’ Straightfwd BFS e A ]

10 20 30 40 50 60
number of processes

Poor TEPS scaling
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Straightforward BFS: Issues

Communication-related issues
@ Multiple copies of the same vertex are sent

[ ] . Processor 1

Array of
u L W] @ e

. Processor k

nelghbors of Uz neighbors of U;
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Issues and Solutions

number of neighbors

We used one thread for each vertex in the queue. |Q| =k ....
.... |Neighbors| = m. We want to use as many threads as the

Adjacency list array...

Neighbors of vertices in the queue are not-contiguous in the
...We want a contiguous array of neighbors

We send/recv multiple copies...

...We want to prune the array that we send
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Beyond the straightforward BFS: Sort-Unique BFS

@ Build an array of offsets and compute the total number of
neighbors, say m

@ Start m threads, map threads to neighbors and build a contiguous
array of neighbors

© With m threads prune the contiguous array of neighbors

© Exchange vertices with other processes and update the parent
array
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Sort-Unique BFS

Recipe #1: build the new offset and compute the total number of

neighbors

@ Start k threads, each element of
Qprs is assigned to one thread
Qsrs

@ Build Qgeg, by substituting each
vertex with its degree

@ Perform a prefix-sum operation
on Qqeg to build the New Offset
array (by using the Thrust library)
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Sort-Unique BFS

Recipe #1: build the new offset and compute the total number of
neighbors

@ Start k threads, each element of
Qprs is assigned to one thread

[N
NN
VA
EVAVES
YA
[N AR

Qgrs | Us | Uy | Uy [Ugg |COO| U; |

@ Build Qgeg, by substituting each Queg | 3 | d7 | dyy |die [00O| d | d
vertex with its degree

@ Perform a prefix-sum operation
on Qqeg to build the New Offset
array (by using the Thrust library)
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Sort-Unique BFS

Recipe #1: build the new offset and compute the total number of

neighbors

@ Start k threads, each element of
Qprs is assigned to one thread

@ Build Qqeq. by substituting each
vertex with its degree

@ Perform a prefix-sum operation
on Qqeg to build the New Offset
array (by using the Thrust library)
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Sort-Unique BFS
Recipe #1: build the new offset and compute the total number of
neighbors

@ Start k threads, each element of
Qprs is assigned to one thread

[N
NN
VA
A SAV 2
YA
[N AR

Qgrs | Us | Uy | Uy [Ugg 00O U; |

@ Build Qgeg, by substituting each Queg | 3 | d7 | dyy |die [00O| d | d
vertex with its degree

@ Perform a prefix-sum operation
on Qqeg to build the New Offset New | ot | off, |off,, |off,s|000| off, [ M
array (by using the Thrust liorary) ~ ©ff

The last element of New Offsetis: m= 3}, o _di J
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Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

° ot miesss SHHHIHHT

@ Each thread performs a binary
search on New Offset and finds
its index

@ Each thread reads from the Adj

list the element corresponding to
the index

@ and write it in the Next Level
Frontier Set (NLFS).
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Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

© Start mthreads $3333333333333322

@ Each thread performs a binary

search on New Offset and finds '"

its index

@ Each thread reads from the Adj
list the element corresponding to
the index

@ and write it in the Next Level
Frontier Set (NLFS).
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Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

© Start mthreads $3333333333333322

@ Each thread performs a binary

search on New Offset and finds '"

its index
Id; Idy Idp,
@ Each thread reads from the Adj I‘_\gti § § g § § g
list the element corresponding to '-]:-]:.:-]:.E.]
the index 0. e 0

@ and write it in the Next Level
Frontier Set (NLFS).
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Sort-Unique BFS

Recipe #2: map threads to neighbors and build a contiguos array of
neighbors

© Start mthreads $3333333333333322

@ Each thread performs a binary

search on New Offset and finds '"

its index

d, Id Idp,

i Adj
@ Each thread reads from the Adj Adj § § g § § § g §
list the element corresponding to
theindex ... 0 0 =

@ and write it in the Next Level lNeth Tl OEEg .
Frontier Set (NLFS). fontier O .
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Sort-Unique BFS

Recipe #3: prune the Next Level Frontier Set

© Start mtreads $33333333333333338

@ Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

@ and compact it to n unique
elements
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Sort-Unique BFS

Recipe #3: prune the Next Level Frontier Set

© Start mtreads $33333333333333338

Sort - Unique
@ Perform a sort-unique operation Compact
on the Next Level Frontier Set ERIA A 27
(by using the Thrust library) o m

@ and compact it to n unique
elements
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Sort-Unique BFS

Recipe #3: prune the Next Level Frontier Set

© Start mtreads $33333333333333338

Sort - Unique
@ Perform a sort-unique operation Compact
on the Next Level Frontier Set ERIA A 27
(by using the Thrust library) o m

come ([ Tl ][]

@ and compact it to n unique 0 n
elements
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Sort-Unique BFS

Recipe #3: prune the Next Level Frontier Set

© Start mtreads $33333333333333338

Sort - Unique
Compact

@ Perform a sort-unique operation
on the Next Level Frontier Set
(by using the Thrust library)

come ([ Tl ][]

@ and compact it to n unique o n
elements
H H m
@ Unique ratio 7 ~ 20 J
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Sort-Unique BFS: communication and enqueue
Recipe #4: Exchange vertices and update the parent array

@ Start n threads

n
CRUSRUSEREE

@ Substitute vertices with tasks

ooy | Pol Pa[ Po[ P[Py [P [Py -
0

@ Sort by process id (by using N
the Thrust library) cora - [Pol Pl Pa[Pa[Pa P2 [Pa] -

@ Exchange non-local edges MPI- Exchange

@ Update the parent array and *
Enqueue

@ If Qgrs == 0 quit. J
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Sort-Unique BFS: Results

Weak scaling plot, Kernel 2
0 (infiniband cluster @ Cineca, 32 nodes: 2xM2070, 2x six-core intel Westmere)

T T T T T

— Ideal scaling

@ ® G500 Reference BFS : : :
25k @ @ Straightfwd BFS | o oo A
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Sort-Unique BFS: weak scaling analysis

@ Time spent in computation is almost constant

@ Time spent in communication increases with Np
@ Sort-Unique cuts ~ 90% of vertices

SCALE | Np | kernelstime | mpitime ||  NLFS NLFS-after-SU
21 1 0.68 0.0 37,651,259 1,043,789
22 2 0.85 0.1 37,906,934 1,678,486
23 4 0.85 0.4 37,739,872 2,688,755
24 8 0.85 0.5 58,416,610 4,502,903
25 16 0.9 0.6 45,334,918 5,519,616
26 32 0.95 0.7 58,863,642 8,703,456
27 64 1.01 0.9 42,174,869 9,316,248

NOTE: figures are for third-level of BFS.
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The Graph 500 List

November 2011 | June 2011 | November 2010
Complete Results - November 2011

Machine Owner Pl"oblem
Size

NNSA/SC Blue Gene/Q

1 Cremhpe T (CRH6 meles Lo Cli L] 254,349,000,000 Custom

Research, T.]. Watson

/ 65,536 cores )
Hopper (1800 nodes /

2 LBL 7 11
43,200 cores) 3 3,368,000,000 Custom
Lomonosov (4096 nodes Moscow State
ey iy 37 103,251,000,000 Custom
TSUBAME (2732

3 processors / 1366 nodes ;Ssltiuc;":;;:ﬁy;l’o 36 100,366,000,000 Custom
/ 16,392 CPU cores) 9y
Blacklight (512 2

LA PSC 3 4,452,270,000  Custom

processors) (Small)
Todi (176 AMD

19 Interlagos, 176 NVIDIA CSCS 28 3,059,970,000 E::‘Ttm GPu
Tesla X2090)
Dingus (Convey HC-1ex -

20 1 node / 4 cores, 4 SNL 28 1,758,682,718 Convey Custom
FPGAS)

‘ 2g PIX (32 nodes each With yecp gojogna, Ttaly 26 1,357,320,000  GPU Customized

2 Tesla M2070)
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Platform: APEnet+ test setup

@ 8-nodes setup

@ dual-socket Westmere Xeon
servers

@ 2D Torus 4x2x1 topology

@ one/two NVIDIA Fermi 2050
GPUs per node

@ GPU ECC OFF
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APEnet+ card

@ FPGA based (Altera Stratix
V)

@ 3D Torus, 6 bidirectional
links up to 34 GbpS raw mini-USB Gbit Ethernet

@ PCle X8 Gen2 in X16 slot
(peak BW 4+4 GB/s)
@ Network Processor,

off-loading engine integrated
on FPGA

External Power

Gbit Ethernet

v
o Zero-copy RDMA host QSFP+ Connectors ~ PC1-€ connector peyice SO-DIMM DDRS3
interface

Programmable

@ Direct GPU peer-to-peer
logic

@ Industry standard QSFP+
cabling (copper & optical)

Figure : APEnet+ card, front view
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Data exchange between GPUs

@ (In general) GPUs cannot exchange data directly

@ Data staging on host memory represents a bottleneck on
multi-GPUs systems

@ NVIDIA Fermi GPUs introduced HW support for peer-to-peer
(P2P) over PClexpress

@ SW support present since CUDA 4.0

E% =
s B -

GUDA4O

Before CUDA 4.0

Figure : Direct memory copy between

Figure : Data exchange between GPUs enabled by CUDA 4.0

GPUs before CUDA 4.0
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Data exchange with 3rd party devices

@ CUDA 4.1, unofficial P2P support for 3rd party devices

@ APEnet+ is 1st (only?) non-NVIDIA device to support the P2P HW
protocol, directly across PClexpress

@ CUDA 5.0, 3rd party access via BAR1 for Kepler

PCle

)
en| 2=l

ISYSTEM|
MEM

InfiniBand

g Bl

Figure : Standard interconnects, data

staging on host memory
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CPU

SYSTEM|
MEM

PCle

o=

APEnet+

g Bl

Figure : Direct P2P data transfer of

GPUs data to/from APEnet+ across
the PClexpress bus
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A possible confusion ...

GPU-aware MPI, ever heard of them ?
@ OSU MVAPICH2 and OpenMPI (SVN trunk)

@ hide data staging on host memory, i.e. MPI_Send and MPI_recv
accept GPU memory pointers.

@ rely on NVIDIA UVA

Useful but not GPU peer-to-peer with interconnect )
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Results: BFS on APEnet+

@ OpenMPI/IB using MPI_Send/Recv
@ APEnet+ using native RDMA PUT (needs padding) J

Traversed Edges Per Second, Traversed Edges Per Second, Weak Scaling,

Strong Scaling, |V| = 220 |V| = 2SCALE
NP INFINIBAND APENET NP SCALE MPIIB  APEnet+
1 6.2x 10"  6.2x 107 1 19 56 x 107 6.0 x 107
2 78x10"  1.0x10® 2 20 79x10” 1.0 x 108
4 82x10" 1.3 x 108 4 21 11 %108 1.5x 108
8 2.0 x 108 ? 8 22 2.7 x 108 ?
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APEnet+ vs. MPI/IB

Breakdown of running times, |V|[=2"20

0.30f

0.25f

"
8 0.20F

0.05f

0.00

APENET
Bl kernels

[ apenet

3 cudaMemcpy
. all

101

Figure : Execution time breakdown, SCALE = 20, N, = 4, on one process

among four.
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Network pattern

@ all-to-all communication

@ msg size, rise and fall

@ sharp peak at level 3
eg. for Np = 4 and SCALE = 20:

level 1

src=0 dest=1 len=64
src=0 dest=2 len=64
src=0 dest=3 len=64

level 2

src=1 dest=0 len=588
src=2 dest=0 len=256
src=3 dest=0 len=268KB
src=0 dest=1 len=576
src=2 dest=1 len=192
src=3 dest=1 len=263KB
src=0 dest=2 len=576
src=1 dest=2 len=5.8KB
src=3 dest=2 len=261KB
src=0 dest=3 len=576
src=1 dest=3 len=5.9KB
src=2 dest=3 len=192

level 3

src=1 dest=0 len=1.0MB
src=2 dest=0 len=1.6MB
src=3 dest=0 len=1.6MB
src=0 dest=1 len=1.6MB
src=2 dest=1 len=1.6MB
src=3 dest=1 len=1.6MB
src=0 dest=2 len=1.6MB
src=1 dest=2 len=1.6MB
src=3 dest=2 len=1.6MB
src=0 dest=3 len=1.6MB
src=1 dest=3 len=1.6MB
src=2 dest=3 len=1.6MB

D.Rossetti (INFN)

level 4

src=1 dest=0 len=1MB
src=2 dest=0 len=1MB
src=3 dest=0 len=1MB
src=0 dest=1 len=1MB
src=2 dest=1 len=1MB
src=3 dest=1 len=1MB
src=0 dest=2 len=1MB
src=1 dest=2 len=1MB
src=3 dest=2 len=1MB
src=0 dest=3 len=1MB
src=1 dest=3 len=1MB
src=2 dest=3 len=1MB

BFS on APEnet+

level 5

src=1 dest=0 len=128
src=3 dest=0 len=41KB
src=2 dest=0 len=41KB
src=0 dest=1 len=41KB
src=2 dest=1 len=41KB
src=3 dest=1 len=40KB
src=1 dest=2 len=41KB
src=0 dest=2 len=40KB
src=3 dest=2 len=42KB
src=1 dest=3 len=41KB
src=0 dest=3 len=41KB
src=2 dest=3 len=42KB

level 6

src=3 dest=0 len=128
src=2 dest=0 len=128
src=0 dest=1 len=128
src=2 dest=1 len=128
src=3 dest=1 len=128
src=1 dest=2 len=128
src=0 dest=2 len=128
src=3 dest=2 len=128
src=1 dest=3 len=192
src=0 dest=3 len=256
src=2 dest=3 len=128

IA® Workshop
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Network pattern

@ all-to-all communication
@ msg size, rise and fall
@ sharp peak at level 3

eg. for N, = 4 and SCALE = 20:

D.Rossetti (INFN)

data exchange of peer 0, SCALE=20, Np=4
1000000 -
T
g
0 1000
1 “
1 2 3 4 5 6 7
“topeer 1 64 576 1622336 | 1073792 41024 128 0
 to peer 2 64 576 1628352 | 1077504 40192 128 0
 to peer 3 64 576 1627072 | 1077440 41280 256 )
i from peer 1 0 5888 1657664 | 1072896 41536 128 0
« from peer 2 ) 256 1643072 | 1080384 41408 128 )
 from peer 3 0 268416 1647680 | 1075328 41728 128 0
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understanding the performance difference

using basic network benchmarks as a guide:

@ 2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+
staging in host memory

Effect of P2P on GPU to GPU one-way bandwidth
APEnet+ (Link 28Gbps) vs MVAPICH2 IB (40G)

'G-G APEnet+ p2p=ON —+—
3000 - G-G APEnet+ p2p=OFF -~
G-G MVAPICH2 IB wictMcpy %~

Bandwidth (MB/s)

o e
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
Message size (64B-4M)
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understanding the performance difference

using basic network benchmarks as a guide:

@ 2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+

staging in host memory
@ APEnet+ round-trip latency with GPU peer-to-peer

Latency (us)
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Effect of P2P on GPU to GPU roundtrip latency
APEnet+ (Link 28Gbps) vs MVAPICH2 1B (40G)

G-G APEnet+ p2p=ON ——
G-G MVAPICH2 IB w/cuMcpy - -*---

W/

L L L L L
64 128 256 512 1K 2K 4K

Message size (Bytes)
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understanding the performance difference

using basic network benchmarks as a guide:

@ 2-nodes uni-directional bandwidth test, GPU-to-GPU; p2p=OFF is APEnet+

staging in host memory
@ APEnet+ round-trip latency with GPU peer-to-peer
@ the MVAPICH2 result on OSU MPI bandwidth test is for reference

Latency (us)
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Effect of P2P on GPU to GPU roundtrip latency
APEnet+ (Link 28Gbps) vs MVAPICH2 1B (40G)

G-G APEnet+ p2p=ON ——
G-G MVAPICH2 IB w/cuMcpy - -*---

W/

L L L L L
64 128 256 512 1K 2K 4K

Message size (Bytes)

BFS on APEnet+
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Conclusions

Summary
@ Distributed BFS on multi-GPUs that relies on pruning
@ Good scaling properties
@ Up to 3 billions TEPS with 128 GPUs (19 rank in graph500)
@ APEnet+ 1st attempt at GPU peer-to-peer

Future Work
@ CUDA streams to overlap computation with communication
@ P2P among GPUs on the same host
@ APEnet+ is reconfigurable, space for HW optimizations
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Backup slides
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K2: balancing

Cumulative running time, 16 processors

[ Kernel
1.2p [ MPI ]
I CudaCpy
1.0t ]
5 0.8f i
2
1
Eosl 1
0.4} |
0.2t ]
I

Computations and communications among processes are well
balanced
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K2: cuda kernels times

time (sec)

o
w

0.7

0.6

0.5

e
~

0.2

0.1

0.0
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Sum of running time over bfs levels, proc 0 of 64

Cuda Kernels
mm binary search

= sort-unique

=3 enqueue-local
mm enqueue-received
B sort owners

Communications
=3 mpi allgather
= mpi send/recv
= mpi allreduce

CudaCpy

mm cuda-cpy sendbuff
cuda-cpy recvbuff
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Sum of running time over bfs levels, proc 0 of 64

Cuda Kernels
mm binary search

= sort-unique

= enqueue-local
Em enqueue-received
B sort owners

Communications
mm mpi allgather
=W mpi send/recv
= mpi allreduce

CudaCpy

= cuda-cpy sendbuff
= cuda-cpy recvbuff
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Sum of running time over bfs levels, proc 0 of 64

Cuda Kernels
mm binary search

B sort-unique

=3 enqueue-local
B enqueue-received
=W sort owners

Communications
= mpi allgather
3 mpi send/recv
3 mpi allreduce

CudaCpy

= cuda-cpy sendbuff
=3 cuda-cpy recvbuff
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