EXPLOITING COARSE-
GRAINED PARALLELISM IN
B+ TREE SEARCHES ON

APUS

Mayank Daga
AMD Research

Mark Nutter
AMD Heterogeneous System Software

AMDZ1

B+ TREE SEARCHES

=B+ Tree is a fundamental data structure used in
— Relational Database Management Systems (RDBMS)

VSQLite
T

MHS& ORACLE
— Key-Value Database Management Systems

= High-throughput, read-only index searches are
gaining traction in é')rﬁﬁ

NNt
<
4

ANV

— Audio-search - Video-copy detection v 'g‘

— Online Transaction Processing (OLTP) Benchmarks N

= |ncrease in memory capacity allows many database
tables to reside in memory

— Brings computational performance to the forefront

AMDZ1

2 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11,2012 | Public

DATABASE PRIMITIVES ON ACCELERATORS

= Discrete graphics processing units (dGPUs)

provide a compelling mix of
— Performance per Watt

— Performance per Dollar

= dGPUs have been used to accelerate critical database
primitives
— scan
— sort
— join
— aggregation

— B+ Tree Searches?

AMDZ1

3 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

B+ TREE SEARCHES ON ACCELERATORS

= B+ Tree searches present significant challenges

— Irregular representation in memory

[— =
= An artifact of malloc() and new() \E\

A)

— Today’s dGPUs do not have a direct mapping to the CPU virtual
address space

= [ndirect links need to be converted to relative offsets

— Requirement to copy the tree to the dGPU, which entails

» One is always bound by the amount of GPU device memory

AMDZ1

4 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

OUR SOLUTION

= Accelerated B+ Tree searches on a fused CPU+GPU
processor (or APU") ——

— Eliminates data-copies by combining x86 CPU

AMD Fusion

and vector GPU cores on the same silicon die E =

= Developed a memory allocator to form a regular
representation of the tree in memory

— Fundamental data structure is not altered

— Merely parts of its layout is changed

[1] www.hsafoundation.com
AMD

5 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

OUTLINE

= Background
— AMD APU Architecture
— B+ Trees
= Approach
— Transforming the Memory Layout
— Eliminating the Divergence
= Results
— Performance
— Analysis

= Summary and Next Steps

AMDZ1

6 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMD APU ARCHITECTURE

Host Memory _ IGPU Frame-Bufior = The APU consists of a dedicated
$ $ |IOMMUvVZ2 hardware
| DRAM DRAM | Provides direct mapping
Controller | | Controller |~ | between GPU and CPU virtual
T rwg .| GPY address (VA) space
v ——————— jWVector| _ Enables GPUs to access the
System Request H Cores
MCT] nterface (SRi) & _ FPL system memory
<_|—> A - Enables GPUs to track whether
UNB xBar [& (S pages are resident in memory
Platform Interfaces
AMD 2nd Gen. A-series APU
UNB - Unified Northbridge, MCT - Memory Controller,
RMB - Radeon Memory Bus, FCL - Fusion Compute Link
AMDZ\

7 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11,2012 | Public

B+ TREES

IBIBI
=A B+ Tree ...) lﬁ”\
5

AREERERRIEAREBRIERRIEHKE

—is a dynamic, multi-level index & & & & & & ;is
— Is efficient for retrieval of data, stored in a block-oriented context
— has a high fan-out to reduce disk 1/O operations

= Order (b) of a B+ Tree measures the capacity of its nodes

= Number of children (m) in an internal node is
—[b/l2] <=m<=Db
— Root node can have as few as two children

= Number of keys in an internal node = (m — 1)

AMDZ1

8 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

APPROACH FOR PARALLELIZATION

* Fine-grained (Accelerate a single query)
— Replace Binary search in each node with K-ary search
— Maximum performance improvement = log(k)/log(2)
— Results in poor occupancy of the GPU cores
= Coarse-grained (Perform many queries in parallel)
— Enables data-parallelism
—Increases memory bandwidth with parallel reads
—Increases throughput (transactions per second for OLTP)

AMDZ1

9 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

TRANSFORMING THE MEMORY LAYOUT

/

nodes w/ metadata values

~

J

=\etadata

— Number of keys in a node

— Offset to keys/values in the buffer
— Offset to the first child node

— Whether a node is a leaf

*Pass a pointer to this memory buffer to the accelerator

10 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

ELIMINATING THE DIVERGENCE

= Each work-item/thread executes a single query

= May increase divergence within a wave-front
— Every query may follow a different path in the B+ Tree

3
WI-1 ‘1’

1 4
INfARfERfON
v v v v
d1 d2 d3 d4

= Sort the keys to be searched

— Increases the chances of work-items within a wave-front to
follow similar paths in the B+ Tree

— We use Radix Sort' to sort the keys on the GPU

[1]1 D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for gpgpu stream architectures,” in Proceedings of the 19th intl. conf. on
Parallel architectures and compilation techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010.

11 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

IMPACT OF DIVERGENCE IN B+ TREE SEARCHES

(€]

N

w

N

Impcat of Divergence

o

© © I < © © © N < 0 0 © N < 0 0 © Q < 0
~ o © N ~ o © N ~ (4p] © N ~ o © N
h h h ~

16K | 32K | 64K | 128K
Number of Queries w/ Order of B+ Tree

HAMD Radeon HD 7660 ®AMD Phenom Il X6 1090T

Impact of Divergence on GPU — 3.7-fold (average)
Impact of Divergence on CPU — 1.8-fold (average)

AMDZ1

12 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

OUTLINE

= Results
— Performance
— Analysis

= Summary and Next Steps

13 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

EXPERIMENTAL SETUP

60000

>
= Software ; oo
— A B+ Tree w/ 4M records is used 8 16000

— Search queries are created using
" normal distribution () (C++-11 feature)

100000

400000

700000
1000000
1300000
1600000
1900000
2200000
2500000
2800000
3100000
3400000

» The queries have been sorted
— CPU Implementation from

= http://www.amittai.com/prose/bplustree.html

— Driver: AMD Catalyst™ v12.8 .,.tEf}‘
— Programming Model: OpenCL™ ;
= Hardware Opencl

— AMD Radeon HD 7660 APU (Trinity)
= 4 cores w/ 6GB DDR3, 6 CUs w/ 2GB DDR3

>

3700000
4000000

Bin
E ID (PKey) | Age
0000001 34

4 million entries

4194304

50

— AMD Phenom Il X6 1090T + AMD Radeon HD 7970 (Tahiti)

= 6 cores w/ 8GB DDR3, 32 CUs w/ 3GB GDDR5
— Device Memory does not include data-copy time

14 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

RESULTS - QUERIES PER SECOND

1000

0C Juerids/Sec

100 -

16K 32K 64K 128K
Number of Queries w/ Order of B+Tree

Queries/Second (Million)
S

B AMD Phenom Il X6 1090T (6-Threads+SSE) ® AMD Radeon HD 7970 (Device Memory) ® AMD Radeon HD 7970 (Pinned Memory)

dGPU (device memory) ~350M Queries/Sec. (avg.)
dGPU (pinned memory) ~9M Queries/Sec. (avg.)
Phenom CPU ~18M Queries/Sec. (avg.)

AMDZ1

15 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

RESULTS - QUERIES PER SECOND

—
N
o

N
o

-_—
® O
o O

[e2]
o

N
o

Queries/Second (Million)
N
o

o

©
—

o | o | o | x| o o | ©| o | x| o o | © | o] x| o 0
= S e d & T e & & T e & & T
sl A A

16K | 32K | 64K | 128K
Number of Queries w/ Order of B+Tree

B AMD Phenom Il X6 1090T (6-Threads+SSE) ® AMD Radeon HD 7660 (Device Memory) ® AMD Radeon HD 7660 (Pinned Memory)

APU (device memory) ~66M Queries/Sec. (avg.)
APU (pinned memory) ~40M Queries/Sec. (avg.)

APU (pinned memory) is faster than the CPU implementation

AMDZ1

16 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

RESULTS - SPEEDUP

12

10

Speedup
()]

16K | 32K

B AMD Radeon HD 7660 (Device Memory)

64K |
Number of Queries w/ Order of B+Tree

old speedup

128K

= AMD Radeon HD 7660 (Pinned Memory)

Baseline: six-threaded, hand-tuned, SSE-optimized CPU implementation.
Average Speedup — 4.3-fold (Device Memory), 2.5-fold (Pinned Memory)

« Efficacy of IOMMUv2 + HSA on the APU

Size of the B+ Tree
Platform
<1.5GB [1.5GB -2.7GB | > 2.7GB
Discrete GPU (memory size = 3GB) v v X
APU (prototype software) v v v

17 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

ANALYSIS

= The accelerators and the CPU yield best performance for
different orders of the B+ Tree

— CPU - order =64
= Ability of CPUs to prefetch data is beneficial for higher orders

nodes w/ metadata keys values

— APU and dGPU - order = 16

» GPUs do not have a prefetcher - cache line should be most efficiently utilized

» GPUs have a cache-line size of 64 bytes
— Order = 16 is most beneficial (16 * 4 bytes)

AMDZ1

18 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

ANALYSIS

= Minimum batch size to match the CPU performance

Order =64 | Order =16
dGPU (device memory) | 4K queries | 2K queries
dGPU (pinned memory N.A. N.A.

APU (device memory) | 10K queries | 4K queries
APU (pinned memory | 20K queries | 16K queries

= reuse_factor - amortizing the cost of data-copies to the GPU

Timegeee] = Teopy + (TacclExec * reuse_factor)
Timecpy = TepuEzec * Teuse_factor
or reuse_factor <= Tcopy/(TcpuE:cec — Ta,cclEa:ec)

90% Queries | 100% Queries
dGPU 15 54

APU 100 N.A.

AMD1

19 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

PROGRAMMABILITY
CPU-SSE

GPU

int 1 = 0, j;
hode * ¢ = root;
| ml128i vkey = mm setl epi32(key);
| ml128i vnodekey, *vptr;
short int mask;

* find the leaf node */

while (!c->is leaf) {
for(i = 0; 1 < (c—>num keys-3); i+=4) {
vptr = (_ ml28i *)&(c->keys[i]);
vnodekey = mm load sil28(vptr);
mask = . .
mm movemask ps(mm cvtepi32 ps(mm cmplt epi32 (vkey,
vnodekey))) ;— - - - - - -

if ((mask) & 8) break;
}
for(j = 1i; Jj < c->num_keys; Jj++) {
if (key < c->keys[]j]) break;
}
c = (node *)c->pointers[j];
}
* match the key in the leaf node */

for (i = 0; 1 < c->num_keys; i++)
if (c->keys[i] == key) break;

* retrieve the record */

if (i != c->num keys)

return (record *)c->pointers(il];

typedef global unsigned int g_uint;
typedef global mynode g mynode;
int tid = get global id(0);
int 1 = 0;
g mynode *c = (g_mynode *)root;
* find the leaf node */
Wwhile (!lc->is leaf) {
while (i < c->num keys) {

. f(keys[tid] >=

[i1) (keys| 1
i++;

else break;

}
.. .c = myno *
1*51zeof2%yngae??;
}

(intptr t)root + c->ptr +

* match the key in the leaf node */

for (1=0; i++) {
keys{gféffgb%égﬁ;*

}

i<c->num_keys;

(intptr_t)root + c->keys)) [i])

* retrieve the record */

((g_uint *) ((intptr_t)root + c->keys))

if (1 != c->num_keys)
= i * i + c=>1 +
1 Slgggg{g éEng)[6fg_ulnt) ((intptr_ t)root c->is leaf

20 | IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA| November 11, 2012 | Public

AMDZ1

RELATED WORK

= J. Fix, A. Wilkes, and K. Skadron, "Accelerating Braided B+ Tree Searches on a
GPU with CUDA." In Proceedings of the 2nd Workshop on Applications for Multi
and Many Core Processors: Analysis, Implementation, and Performance, in
conjunction with ISCA, 2011

— Authors report ~10-fold speedup over single-thread-non-SSE CPU implementation,
using a discrete NVIDIA GTX 480 GPU (do not take data-copies into account)

= C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, P. Dubey, “FAST: fast architecture sensitive tree search on modern
CPUs and GPUSs”, SIGMOD Conference, 2010

— Authors report ~100M queries per second using a discrete NVIDIA GTX 280 GPU
(do not take data-copies into account)

= J. Sewall, J. Chhugani, C. Kim, N. Satish, P. Dubey, “PALM: Parallel, Architecture-
Friendly, Latch-Free Modifications to B+ Trees on Multi-Core Processors”,
Proceedings of VLDB Endowment, (VLDB 2011)

— Applicable for B+ Tree modifications on the GPU

AMDZ1

21 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

SUMMARY

=B+ Tree is the fundamental data structure in many RDBMS

— Accelerating B+ Tree searches is critical

= Presents significant challenges on discrete GPUs

=\We have accelerated B+ Tree searches by exploiting
coarse-grained parallelism on a APU

— 2.5-fold (avg.) speedup over 6-threads+SSE CPU
Implementation

" Possible Next Steps

— HSA + IOMMUvV2 would alleviate the issue of modifying B+
Tree representation

» Investigate CPU-GPU co-scheduling

— Investigate modifications on the B+ Tree

22 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA | November 11, 2012 | Public

AMDZ1

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States
and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of

their respective owners.

©2012 Advanced Micro Devices, Inc. All rights reserved.

23 | 1A3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA| November 11, 2012 | Public

AMDZ1

