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§ B+ Tree is a fundamental data structure used in 
– Relational Database Management Systems (RDBMS)  

 
– Key-Value Database Management Systems 

§ High-throughput, read-only index searches are 
gaining traction in  
– Audio-search  

– Online Transaction Processing (OLTP) Benchmarks 

§ Increase in memory capacity allows many database 
tables to reside in memory 

– Brings computational performance to the forefront 

 

B+ TREE SEARCHES 

-  Video-copy detection 

X 
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DATABASE PRIMITIVES ON ACCELERATORS 

§ Discrete graphics processing units (dGPUs)  
  provide a compelling mix of  

– Performance per Watt 

– Performance per Dollar 

§ dGPUs have been used to accelerate critical database 
primitives 
– scan  

– sort 

–  join 

– aggregation 

– B+ Tree Searches? 
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B+ TREE SEARCHES ON ACCELERATORS 

§ B+ Tree searches present significant challenges  
–  Irregular representation in memory 
§ An artifact of malloc() and new() 

 

– Today’s dGPUs do not have a direct mapping to the CPU virtual 
address space  
§  Indirect links need to be converted to relative offsets 

– Requirement to copy the tree to the dGPU, which entails 
§ One is always bound by the amount of GPU device memory 
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OUR SOLUTION 

§ Accelerated B+ Tree searches on a fused CPU+GPU 
processor (or APU1) 
– Eliminates data-copies by combining x86 CPU 

   and vector GPU cores on the same silicon die 

§ Developed a memory allocator to form a regular 
representation of the tree in memory 
– Fundamental data structure is not altered 

– Merely parts of its layout is changed 

[1] www.hsafoundation.com 
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OUTLINE 

§ Motivation and Contribution 
§ Background 

– AMD APU Architecture 

– B+ Trees 

§ Approach 
– Transforming the Memory Layout 

– Eliminating the Divergence 

§ Results 
– Performance 

– Analysis 

§ Summary and Next Steps 
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AMD APU ARCHITECTURE 

x86 
Cores GPU 

Vector 
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System Request 
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xBar 

Link 
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GPU Frame-Buffer 

System Memory 

AMD 2nd Gen. A-series APU 

UNB - Unified Northbridge, MCT - Memory Controller, 
RMB - Radeon Memory Bus, FCL - Fusion Compute Link  

§  The APU consists of a dedicated 
IOMMUv2 hardware 
-  Provides direct mapping 

between GPU and CPU virtual 
address (VA) space 

-  Enables GPUs to access the 
system memory 

-  Enables GPUs to track whether 
pages are resident in memory 
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B+ TREES 

§ A B+ Tree … 
–  is a dynamic, multi-level index 

–  Is efficient for retrieval of data, stored in a block-oriented context 

– has a high fan-out to reduce disk I/O operations 

§ Order (b) of a B+ Tree measures the capacity of its nodes 

§ Number of children (m) in an internal node is 
–  [b/2] <= m <= b 

– Root node can have as few as two children 

§ Number of keys in an internal node = (m – 1) 

3 5 

6 7 

7 8 

d1 d8 d7 d2 d3 d4 d5 d6 

2 4 

1 2 3 4 5 6 
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APPROACH FOR PARALLELIZATION 

§ Fine-grained (Accelerate a single query) 
– Replace Binary search in each node with K-ary search 

– Maximum performance improvement = log(k)/log(2) 

– Results in poor occupancy of the GPU cores 

§ Coarse-grained (Perform many queries in parallel) 
– Enables data-parallelism 

– Increases memory bandwidth with parallel reads 
– Increases throughput (transactions per second for OLTP) 
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TRANSFORMING THE MEMORY LAYOUT 

§ Metadata 
– Number of keys in a node 

– Offset to keys/values in the buffer 

– Offset to the first child node 

– Whether a node is a leaf 

§ Pass a pointer to this memory buffer to the accelerator 

.. .. .. 
nodes w/ metadata keys values 
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3 5 

6 7 

7 8 

d1 d8 d7 d2 d3 d4 d5 d6 

2 4 

1 2 3 4 5 6 

ELIMINATING THE DIVERGENCE 

§ Each work-item/thread executes a single query 
§ May increase divergence within a wave-front 

– Every query may follow a different path in the B+ Tree 

§ Sort the keys to be searched 
–  Increases the chances of work-items within a wave-front to 

follow similar paths in the B+ Tree 
– We use Radix Sort1 to sort the keys on the GPU 

WI-1 WI-2 
WI-2 

[1] D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for gpgpu stream architectures,” in Proceedings of the 19th intl. conf. on  
Parallel architectures and compilation techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010.  



12 |  IA3 Workshop on Irregular Applications: Architectures & Algorithms, Salt Lake City, Utah, USA |  November 11, 2012  |  Public 

IMPACT OF DIVERGENCE IN B+ TREE SEARCHES 
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Impact of Divergence on CPU – 1.8-fold (average) 
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OUTLINE 

§ Motivation and Contribution 
§ Background 

– AMD APU Architecture 

– B+ Trees 

§ Approach 
– Transforming the Memory Layout 

– Eliminating the Divergence 

§ Results 
– Performance 

– Analysis 

§ Summary and Next Steps 
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EXPERIMENTAL SETUP 
§ Software 

– A B+ Tree w/ 4M records is used 
– Search queries are created using  

§ normal_distribution() (C++-11 feature) 
§ The queries have been sorted 

– CPU Implementation from  
§  http://www.amittai.com/prose/bplustree.html  

– Driver: AMD CatalystTM v12.8 
– Programming Model: OpenCLTM  

§ Hardware 
– AMD Radeon HD 7660 APU (Trinity) 

§ 4 cores w/ 6GB DDR3, 6 CUs w/ 2GB DDR3 

– AMD Phenom II X6 1090T + AMD Radeon HD 7970 (Tahiti) 
§ 6 cores w/ 8GB DDR3, 32 CUs w/ 3GB GDDR5 

– Device Memory does not include data-copy time  
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RESULTS – QUERIES PER SECOND 

dGPU (device memory)  ~350M Queries/Sec. (avg.) 
dGPU (pinned memory)  ~9M Queries/Sec. (avg.) 
Phenom CPU  ~18M Queries/Sec. (avg.) 
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RESULTS – QUERIES PER SECOND 

APU (pinned memory) is faster than the CPU implementation 

APU (device memory)  ~66M Queries/Sec. (avg.) 
APU (pinned memory)  ~40M Queries/Sec. (avg.) 
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RESULTS - SPEEDUP 
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Average Speedup – 4.3-fold (Device Memory), 2.5-fold (Pinned Memory) 

4.9-fold speedup 

Baseline: six-threaded, hand-tuned, SSE-optimized CPU implementation.  

•  Efficacy of IOMMUv2 + HSA on the APU 
Platform 

Size of the B+ Tree 
< 1.5GB 1.5GB – 2.7GB > 2.7GB 

Discrete GPU (memory size = 3GB) ✓ ✓ ✗ 
APU (prototype software) ✓ ✓ ✓ 
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ANALYSIS 

§ The accelerators and the CPU yield best performance for 
different orders of the B+ Tree 
– CPU à order = 64 
§ Ability of CPUs to prefetch data is beneficial for higher orders 

 

– APU and dGPU à order = 16 
§ GPUs do not have a prefetcher à cache line should be most efficiently utilized 

§ GPUs have a cache-line size of 64 bytes 

–  Order = 16 is most beneficial (16 * 4 bytes) 

.. .. .. 
nodes w/ metadata keys values 
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ANALYSIS 

§ Minimum batch size to match the CPU performance 

 

§ reuse_factor - amortizing the cost of data-copies to the GPU 

Order = 64 Order = 16 
dGPU (device memory) 4K queries 2K queries 
dGPU (pinned memory N.A. N.A. 
APU (device memory) 10K queries 4K queries 
APU (pinned memory 20K queries 16K queries 

to match the CPU performance. For order = 16, the dGPU
(device memory) requires at least 2K search-keys batched
together, whereas for order = 64 it requires 4K batched
queries. Having the tree resident in the pinned memory does
not enable the dGPU to match CPU’s performance for any
number of queries. When using the pinned memory, the
APU requires 10K and 20K queries, whereas when using the
device memory, it requires 4K and 10K queries for orders
16 and 64, respectively.

Figure 6 shows that the performance on both the dGPU
and the APU is much better when the tree is copied to
device memory because device memory provides accesses
at a higher bandwidth than system memory. However, when
one takes into account the cost of copying the data to the
device, the performance ceases to be impressive, at least
if the tree is used only once to perform the search. We
performed an analysis to compute the reuse factor, defined
as the number of times a tree must be reused to amortize
the cost of copying the tree to the accelerator. The equations
we used are:

T ime

accel

= T

copy

+ (T
acclExec

⇤ reuse factor)

T ime

cpu

= T

cpuExec

⇤ reuse factor

or reuse factor <= T

copy

/(T
cpuExec

� T

acclExec

)

Table III depicts the reuse factor for the accelerators to
perform as well as the CPU for two cases: (i) for 90% of
the total queries and (ii) for all queries. The table illustrates
that copying the tree to the accelerator comes at a great cost
that cannot always be amortized, as in the case of the APU
for 100% queries, and should be avoided when possible. This
further strengthens the case for accelerators to eliminate the
data-copies for optimal performance, which the APUs have
proved capable of accomplishing, as illustrated in figure 7.

Table III
REUSE FACTOR TO AMORTIZE THE COST OF COPYING

Platform 90% Queries 100% Queries
dGPU 15 54
APU 100 N.A.

V. RELATED WORK

B+ trees were designed to accelerate disk-based database
management systems [17]. As main memory capacities have
increased, substantial research has been carried out on the
CPUs to optimize in-memory databases. Lehman et al.
proposed T-trees specifically tuned for the main memory
index structure [18]. Rao et al. argued that although T-trees
provide less storage overhead, they are cache-inefficient and
proposed the use of cache-conscious B+ trees called the
CSB+ trees [12]. Research has also been carried out to find
the optimum node size of a B+ tree. In [19], Hankens et al.
proposed the node size of the tree should be greater than the
cache-line size for efficient use of the TLB. Prefetching has

also been proposed to improve the performance of B+ tree
searches by optimizing for both disk I/O and the caches [20],
[21].

The recent rise in the adoption of dGPUs has made them
a popular platform to accelerate database searches. In [22],
Kim et al. presented a novel, architecture-sensitive layout of
the index tree to accelerate searches on modern CPUs and
dGPUs. They proposed the use of a binary tree optimized
for architecture features like page size, cache-line size, and
the SIMD width. In [23], [24], authors proposed the use of a
dictionary structure to benefit from the massive parallelism
on the dGPUs to accelerate relational query co-processing.
Bakkum et al. accelerated SQLite queries on the dGPU
by transforming the database to a row-column format [25].
Therefore, all of them proposed a change in the inherent
data structure used by the databases (i.e., the B+ tree).

Sewall et al. presented latch-free modifications to B+ trees
on many-core processors using the bulk synchronous par-
allel model to perform multiple queries on in-memory
B+ trees [26]. Heimel et al. proposed the use of dGPUs for
query optimization which however, is not as significant as
the actual query execution [27]. They argued that the query
execution phase is plagued by the fundamental constraints of
dGPUs, and hence is not suitable for acceleration. Fix et al.
used braided parallelism to accelerate B+ tree searches on
a dGPU [28]. They used a modified memory representation
of a B+ tree that can be effectively used on the dGPU.

In this paper, we accelerated B+ tree searches on the APU.
To the best of our knowledge, we are the first to do so. APUs,
while preserving all the virtues of dGPUs, improve on their
biggest criticism, which is that they eliminate the need to
copy the data to the GPU. Our approach does not modify
the inherent data structure used in databases, unlike those
discussed. All we do is modify the representation of the
B+ tree in memory, a step that is expected to be eliminated
in coming years with the advances in the AMD HSA.

VI. CONCLUSIONS AND FUTURE WORK

B+ trees are used heavily in database management sys-
tems; hence, accelerating tree search is critical. Accelerating
data-parallel problems is the stronghold of dGPUs. Although
tree search is data-parallel, it presents significant challenges
for acceleration, primarily due to the irregular memory
representation of the tree and the cost of copying the tree
to the dGPU. To overcome these challenges, we use the
accelerated processing unit (APU) to accelerate B+ tree
searches. The APU helps eliminate the need to copy the
data over the slow PCIe bus. We reorganize the B+ tree in
memory to form a regular representation and exploit the
coarse-grained parallelism in tree searches. Of particular
importance, we do not modify the inherent data structure
used in the databases. Our APU implementation can perform
up to 70M queries per second and results in a 4.9x (best-
case) and 2.5x (on average) speed-up over a six-threaded,

90% Queries 100% Queries 
dGPU 15 54 
APU 100 N.A. 
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PROGRAMMABILITY 

 

int i = 0, j; 

node * c = root; 

__m128i vkey = _mm_set1_epi32(key); 

__m128i vnodekey, *vptr; 

short int mask; 

/* find the leaf node */ 

while( !c->is_leaf ){ 

for(i = 0; i < (c->num_keys-3); i+=4){ 

vptr = (__m128i *)&(c->keys[i]); 

vnodekey = _mm_load_si128(vptr); 

mask = 
_mm_movemask_ps(_mm_cvtepi32_ps( _mm_cmplt_epi32(vkey, 
vnodekey))); 

if((mask) & 8) break; 

} 

for(j = i; j < c->num_keys; j++){ 

if(key < c->keys[j]) break; 

} 

c = (node *)c->pointers[j]; 

} 

/* match the key in the leaf node */ 

for (i = 0; i < c->num_keys; i++) 

if (c->keys[i] == key) break; 

/* retrieve the record */ 

if (i != c->num_keys)  

return (record *)c->pointers[i]; 

CPU-SSE 
 

typedef global unsigned int g_uint; 

typedef global mynode g_mynode; 

int tid = get_global_id(0); 

int i = 0; 

g_mynode *c = (g_mynode *)root; 

/* find the leaf node */ 

while(!c->is_leaf){ 

    while (i < c->num_keys){ 

        if(keys[tid] >= ((g_uint *)((intptr_t)root + c->keys))
[i]) 

            i++; 

        else break; 

    } 

    c = (g_mynode *)((intptr_t)root + c->ptr + 
i*sizeof(mynode)); 

} 

/* match the key in the leaf node */ 

for(i=0; i<c->num_keys; i++){ 

    if((((g_uint *)((intptr_t)root + c->keys))[i]) == 
keys[tid]) break; 

} 

/* retrieve the record */ 

if(i != c->num_keys) 

    records[tid] = ((g_uint *)((intptr_t)root + c->is_leaf + 
i*sizeof(g_uint)))[0]; 

 

GPU 
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RELATED WORK 

§  J. Fix, A. Wilkes, and K. Skadron,  "Accelerating Braided B+ Tree Searches on a 
GPU with CUDA." In Proceedings of the 2nd Workshop on Applications for Multi 
and Many Core Processors: Analysis, Implementation, and Performance, in 
conjunction with ISCA, 2011 

–  Authors report ~10-fold speedup over single-thread-non-SSE CPU implementation, 
using a discrete NVIDIA GTX 480 GPU (do not take data-copies into account) 

§ C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee, 
S. A. Brandt, P. Dubey, “FAST: fast architecture sensitive tree search on modern 
CPUs and GPUs”, SIGMOD Conference, 2010 

–  Authors report ~100M queries per second using a discrete NVIDIA GTX 280 GPU 
(do not take data-copies into account)  

§  J. Sewall, J. Chhugani, C. Kim, N. Satish, P. Dubey, “PALM: Parallel, Architecture-
Friendly, Latch-Free Modifications to B+ Trees on Multi-Core Processors”, 
Proceedings of VLDB Endowment, (VLDB 2011)  

–  Applicable for B+ Tree modifications on the GPU 
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SUMMARY 

§ B+ Tree is the fundamental data structure in many RDBMS 
– Accelerating B+ Tree searches is critical 

§ Presents significant challenges on discrete GPUs  

§ We have accelerated B+ Tree searches by exploiting 
coarse-grained parallelism on a APU 
– 2.5-fold (avg.) speedup over 6-threads+SSE CPU 

implementation 

§ Possible Next Steps 
– HSA + IOMMUv2 would alleviate the issue of modifying B+ 

Tree representation 
§  Investigate CPU-GPU co-scheduling 

–  Investigate modifications on the B+ Tree 
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