
2:00 – 3:00 Invited Talk
“Parallel Programming in the Age of Ubiquitous Parallelism”
Keshav Pingali, University of Texas, Austin

Abstract: Multicore and manycore processors are now ubiquitous, but parallel

programming remains as difficult as it was 30-40 years ago. During this time, our
community has explored many promising approaches including functional and dataflow
languages, logic programming, and automatic parallelization using program analysis and
restructuring, but none of these approaches has succeeded except in a few niche
application areas.

In this talk, I will argue that these problems arise largely from the computation-centric
foundations and abstractions that we currently use to think about parallelism. In their
place, I will propose a novel data-centric foundation for parallel programming called the
operator formulation in which algorithms are described in terms of actions on data. The
operator formulation shows that a generalized form of data-parallelism called amorphous
data-parallelism is ubiquitous even in complex, irregular graph applications such as
mesh generation/refinement/partitioning and SAT solvers. Regular algorithms emerge as
a special case of irregular ones, and many application-specific optimization techniques
can be generalized to a broader context. The operator formulation also leads to a
structural analysis of algorithms called TAO-analysis that provides implementation
guidelines for exploiting parallelism efficiently. Finally, I will describe a system called
Galois based on these ideas for exploiting amorphous data-parallelism on multicores and
GPUs.

3:00 – 3:30 Invited Talk
 “Graph Mining Using the Ex-MATE System”
Gagan Agrawal, The Ohio State University

Abstract: Scalable and convenient programming models for developing graph analysis

applications continue to be an open question. Though more specialized APIs have been
proposed recently, the Map-reduce framework has been widely used as the
infrastructure for processing large-scale datasets in various domains, including graph
analysis. Recent work has shown that an alternate API MATE (Mapreduce with an
AlTErnate API), where a reduction object is explicitly maintained and updated, reduces
memory requirements and can significantly improve performance for many applications.
This approach is promising for graph mining, though it also requires that large (disk-
based) reduction objects can be supported.

This talk will describe a system, Extended MATE or Ex-MATE, which supports this
alternate API with reduction objects of arbitrary sizes. We develop support for managing
disk-resident reduction objects and updating them efficiently. We evaluate our system
using three graph mining applications and compare the performance to that of
PEGASUS, a graph mining system implemented based on the original map-reduce API
and its Hadoop implementation. Our results on a cluster with 128 cores show that for all
three applications, our system outperforms PEGASUS, by factors ranging between
9 and 35.

3:30 – 4:00 Coffee Break

4:00 – 4:30 “Towards Scalable Optimal Sequence Homology Detection”
Jeff Daily, Sriram Krishnamoorthy and Ananth Kalyanaraman
Pacific Northwest National Laboratory, and Washington State University

Abstract: The field of bioinformatics and computational biology is experiencing a data

revolution — experimental techniques to procure data have increased in throughput,
improved in accuracy and reduced in costs. This has spurred an array of high profile
sequencing and data generation projects. While the data repositories represent untapped
reservoirs of rich information critical for scientific breakthroughs, the analytical software
tools that are needed to analyze large volumes of such sequence data have significantly
lagged behind in their capacity to scale. In this paper, we address homology detection,
which is a fundamental problem in large-scale sequence analysis with numerous
applications. We present a scalable framework to conduct largescale optimal homology
detection on massively parallel supercomputing platforms. Our approach employs
distributed memory work stealing to effectively parallelize optimal pairwise alignment
computation tasks. Results on 120,000 cores of the Hopper Cray XE6 supercomputer
demonstrate strong scaling and up to 2:42 x 10

7
 optimal pairwise sequence alignments

computed per second (PSAPS), the highest reported in the literature.

4:30 – 5:00 “Towards Highly Scalable X10 Based Spectral Clustering”
Hidefumi Ogata, Miyuru Darayathna and Toyotaro Suzumura
Tokyo Institute of Technology, and IBM Research, Tokyo

Abstract: Large graph analysis has become a widely studied area in recent years.

Clustering is one of the most important types of analysis that has versatile applications
such as community detection in social networks, image segmentation, graph partitioning,
etc. However, existing clustering algorithms do not intend for large scale graphs. To
solve this problem, we implemented spectral clustering in X10 that is a programming
language aimed for developing highly scalable applications on Post-Petascale
supercomputers. Our spectral clustering is based on the algorithm proposed by Shi and
Malik. After evaluating scalability and precision, we found that our implementations are
scalable in terms of execution time and precise for analyzing real data.

5:00 – 5:30 “External Memory based Distributed Generation of Massive Scale Social
Networks on Small Clusters”
Sandeep Gupta

Abstract: Small distributed systems are limited by their main memory to generate

massively large graphs. Trivial extensions to current graph generators to utilize external
memory leads to large amount of random I/O hence do not scale with size. In this
work we offer a technique to generate massive scale graphs on small cluster of compute
nodes with limited main memory. We develop several distributed and external memory
algorithms, primarily, shuffle, relabel, redistribute, and, compressed-sparse-row
(CSR) convert. The algorithms are implemented in MPI/pthread model to help parallelize
the operations across multicores within each core. Using our scheme it is feasible to
generate a graph of size 238 nodes (scale 38) using only 64 compute nodes. This
can be compared with the current scheme would require at least 8192 compute node,
assuming 64GB of main memory. Our work has broader implications for external
memory graph libraries such as STXXL and graph processing on SSD-based
supercomputers such as Dash and Gordon

