
CnC Research Efforts

Zoran Budimlić

Rice University

CnC Workshop
September 2014

Acknowledgments

Rice
Michael Burke
Vincent Cavé
Philippe Charles
Shams Imam
Kath Knobe
Vivek Sarkar
Alina Sbîrlea
Dragoș Sbîrlea
Jianing Shi
Sağnak Taşırlar
Nick Vrvilo

Reservoir Labs
Benoit Meister

Facebook
Nicolas Vasilache

Micron
Kyle Wheeler

UCLA
Sara Achour
Jason Cong
Jens Palsberg
Louis-Noel Pouchet
Di Wu
Peng Zhang
Yi Zou

Intel
James Brodman
Sanjay Chatterjee
Frank Schlimbach
Kamal Sharma

Indiana
Aaron Hsu
Ryan Newton

UCSD
Laura Carrington
Pietro Cicotti

PNNL
John Feo
Ellen Porter

2

Topics

• CnC Flavors
• CnC Memory Management
• CnC Tuning
• Not covered in this talk:

– CnC in classroom
– Checkpoint/restart
– Flexible preconditions
– Hierarchy and reuse
– Memory reuse
– CnC for heterogeneous platforms
– Applications

3

CnC Flavors

Two-level programming model

CnC, as a coordination language, is paired with a
computation language
– Existing: C, C++, Haskell, Java, Scala, Python, Matlab

– In the works: Chapel, Fortran, JavaScript…

How is the CnC graph specified?
– Separate language, needs a translator to interface

with computation language
• Rice, UCLA, Indiana

– As computation language API
• Intel, Sandia

5

CnC-HJ

• Uses Habanero-Java runtime for step
execution

• Steps are written in Java or Habanero-Java
– Use of HJ allows for parallelism in step code

• Mature and tested, well suited to evaluating
new CnC research ideas

• Work-sharing, work-stealing, data-driven
runtimes

• Separate graph spec and translator

6https://wiki.rice.edu/confluence/display/HABANERO/CNC-Download

CnC-HC

• Uses Habanero-C runtime for step execution

• Steps are written in C or HC
– C wrappers can be used for CUDA, OpenCL, FPGA

libraries

• Strict preconditions

• Work-stealing runtime
– Heterogeneous execution, steps can be executed on

CPU, GPU, FPGA

• Separate graph spec and translator with support
for tag functions

7

 Language
interoperability toolkit
for high-performance
computing

 designed for fast, in-
process communication

 handles generation of all
glue-code

 Mature project from
LLNL

Babel – language interoperability tool

8
https://computation.llnl.gov/casc/components

 user writes textual description of CnC graph

 user annotates graph with extra information to be used
by Babel

– impl. language for Steps and Item Collections

– types of items stored in the Item Collections

 user runs translator to generate code

– Babel generates Step template

 user writes Step code and initialization logic

 user runs code using HJ

CnC-Babel

9

• User writes CnC graph specification labeling steps which will be
implemented in Matlab

• User writes Matlab code for steps

• User uses Mathworks’ Matlab Coder product to generate C code

• User writes glue code in C that manually

• get/put items from/to collections

• Convert SIDL arrays to Matlab arrays using provided helper
functions

• User runs CnC translator to generate other glue code

• User compiles and runs application

CnC-Matlab

10

• CnC-Scala has two modes for managing input
dependences:

1. Explicit “awaits” list for inputs

2. Creation of continuations on get operations

• Implementation

• Based on Habanero Scala (HS), implemented as a Scala library

• uses compiler plugin for continuations support

• details on HS can be found in OOPSLA 2012 paper

• Only dependency is jsr-166y.jar (fork-join framework, already
bundled with Java 7)

http://cnc-scala.rice.edu/

CnC-Scala

11

Qthreads CnC

• C++ based CnC implementation developed at
Sandia by Kyle Wheeler, Alina Sbirlea, and Dragos
Sbirlea
– Includes get-counts support
– Three runtimes:

• eager execution
• strict preconditions,
• flexible preconditions

• External API similar to Intel CnC
– Support for Intel CnC benchmarks

• Based on Sandia Qthreads library

12

OCR (Open Community Runtime)

5

CnC-OCR

• CnC used as a high-level programming model
• Rely on a generic CnC runtime with explicit events to get natural mappings

to:
– Exascale architecture (simulators and real hardware)
– Distributed CnC
– Tuning through observation and adaptation

• Portability:
– Programmer transition from CnC-HC to CnC-OCR is straight-forward
– User is oblivious of the underlying runtime

• Potential for extensions:
– Create extensions for monitoring applications
– Attach debugging tools triggered by events
– Enable speculative execution of steps

• Challenge:
– Implement non-event-driven aspects of CnC runtime internals using a pure

event driven approach

14

Thursday, Session 2, Talk 2: “CnC in an Event-Driven Programming Model”

CnC Memory Management

Memory management and CnC

A. Get-counts (Intel CnC 0.3)

B. Declarative collections (DAMP 2009)

C. Streaming CnC (DFM 2011)

D. Folding (Euro-Par 2012)

E. Bounded memory scheduling (PACT 2014)

A.
GetCounts

D.
Folding

C.
Streaming

E. Bounded
Memory
Scheduling

Bounded memory scheduling:
A scheduling approach that ensures the parallel
application does not use more memory than
available.
Gives automatic memory collection too!

16

Memory requirements
of parallel programs

“Parallel memory
requirements may be
both large (relative to
memory requirements
of an equivalent
sequential program)
and unpredictable.”

“The amount of
memory required by a
parallel program may be
spectacularly larger
than … an equivalent
sequential program.”

Source:
F. Warren Burton. “Guaranteeing Good Memory Bounds
for Parallel Programs". IEEE Trans. Softw. Eng., 1996. 17

Advantages of
memory-aware scheduling

• State of the art schedulers do not adapt to
available memory limitations.

18

Avoid
out-of-memory errors.

Reduce
disk swapping.

Run on
larger input sizes.

Benefits of memory-aware scheduling:

Bounded memory scheduling
(BMS) problem

Given a program P with input I and a memory
bound M, find a set of task ordering relations
TO, such that every schedule that is legal for P

and also respects TO has to fit in M.

19

Dragoș Sbîrlea, Zoran Budimlić and Vivek Sarkar. “Bounded Memory Scheduling
of Dynamic Task Graphs”. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation Techniques (PACT), August 2014,
Edmonton, Alberta, Canada
.

Our solution:
The use of inspector/executor

• The solution is executing programs in two stages:

20

Inspector:
Query the computation for its structure.

Executor:
Based on the inspector, execute the program.

Dynamic Computation Graph

• Our programming model creates the
dynamic computation graph without
running the computation itself.

• We add functions mapping tags to:
• Input and output data items
• Prescribed tasks

• Limitation:
• graph-level determinism.
• only supports applications without

data-dependent gets or puts.

21

BMS algorithm:
Task ordering edges

• Task ordering edges ensure only
the schedules that fit the
memory bound are valid.

• Iff. A and B have the same color,
we add ordering edges:
– From the consumers of A

– To the producer of B

ordering
edge

A

B

22

These edges enforce non-
overlapping lifetimes for

same-color data.

BMS algorithm:
Coloring heuristic

• Types of ordering edges:

– transitive

– serialization

• Ideal case:

no serialization edges.
transitive

serialization

23

CnC		
serial	

CnC		
parallel	

OpenMP	
serial	

OpenMP	
parallel	

0	

50	

100	

150	

200	

250	

300	

350	

700	 900	 1100	 1300	 1500	 1700	

Ex
e
cu

o
n
	
m
e
	(
s)
	

Memory	bound	(MB)	

Results

Figure: Smith-Waterman results.

24

CnC		
serial	

CnC		
parallel	

OpenMP	
serial	

OpenMP		
parallel	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

559	 561	 563	 565	 567	 569	 571	 573	 575	
E
xe
cu

o
n
	
m
e
	(
s)
	

Memory	bound	(MB)	

Figure: Cholesky Factorization results.

OpenMP exploits less parallelism
• worse performance
• lower memory footprint

OpenMP uses pre-allocation, post-deallocation
• matches in performance,
• lags in memory

CnC		
serial	

CnC		
parallel	

0	

2	

4	

6	

8	

10	

12	

0	 5000	 10000	 15000	

Ex
e
cu

o
n
	
m
e
	(
s)
	

Memory	bound	(MB)	

Results: Using the sweet-spot

• Merge Sort: With
14% of parallel
footprint, BMS
offers 91% of the
parallel speedup.

Figure: BMS-CnC executor time as a function of
memory bound for Merge Sort.

25

CnC Tuning

CnC Tuning Overview

• Separation of Concerns

27

Optimized mapping to
platform

Domain

Program

Application problem

Domain expert doesn’t need to
know a lot about parallelism

Tuning expert doesn’t need to
know a lot about the app

The domain expert:

• Finance

• Gaming

• Chemistry

The tuning expert:

• Parallelism

• Locality

• Load balancing

- Domain expert, but later
- Different person, different skills
- Automated: static analysis / autotuning

K. Knobe, et al. “The Tuning Language for Concurrent Collections”, CPC 2012.

CnC Tuning Model

• Two-level affinity model
– Hierarchical affinity groups

• compute/data affinity model (high-level)

– Hierarchical Place Trees
• machine affinity model (low-level)

• Two-level scheduling model
– Tuning scheduler (staging area)

• “tuning action” execution (tuning tree)
• tuning actions use “tuning APIs”

– Domain scheduler
• task execution (hierarchical place tree)

• Goal: Achieve spatial and temporal locality

28

Domain / Tuning

Domain spec

• Deterministic (Easy to debug)

• Unified programming
applicable for shared and
distributed memory

• Efficient and scalable

Tuning spec
• Motivation

– Semantics => partial ordering
some orderings more efficient than others

– Distributed memory tuning is limited

• Semantic constraints from the domain
spec are still requirements

• Tuning spec is a refinement of the
domain spec

• The domain spec allows for many
potential legal executions. Tuning avoids
the bad ones.

One domain spec can have multiple tuning specs

29

Tuning Rician Denoising

30

• Up to 3.5x improvement on specific tile size
•Overall improvement of 19% over best optimal tiled version

Un-Tuned best Tuned best

3.5x

Tuning for Distributed CnC

− Our goal is to achieve greater performance by
optimal balance between resource utilization, load
balance and communication

− CnC Model already has data and control
methodology

− distCnC Model:

– Provides control of work distribution

– Provides controls of data distribution

31

CnC provides a unified programming model
for shared and distributed memory

Distribution Function Generation

Given an application, generate a distribution
function which minimizes execution time across

a set of cluster nodes

• Distribution function value depends on steps
instances (tasks) in an application and cluster
node configuration

32

Approaches to Select Distribution Functions

• Empirical Search (Dynamic)
– Exhaustively search for optimal distribution function

– Pro: Takes all the environmental characteristics into account

– Con: Time consuming

– Sampling search space may help but still requires a significant amount of time

• Analytical Model (Static)

– Creates an abstract model of the application and provides parameter output

– Pro: Significantly less overhead

– Con: approximation may produce performance inefficient results

– Another approach is a general static analysis that works for all the programs

• Expert Programmer
– Spends significant time to tune application

– Relies on experience to tune it

– Pro: May provide good solution based on experience with application

– Con: Manual effort

• Our Approach combines analytical model with automated learning model
33

Our Approach

34

Sample Data Points as

training data across

different distributions

Learn the linear regression

model variables

Apply linear regression

model across all points

Generate the different

parameters

Choose Best Point with

Minimum Execution Time

Prediction

Step 1

Step 2

Step 3

Step 4

Step 5

Dynamic Graph + Analytical Model Approach

35

Performance Distribution

36

Experimental Results

37

Model Predicted Actual
Execution Time
(secs)

Overall Best
Execution Time
(secs)

% Difference

Linear Regression
across all search
points* (1536 points)

0.8428 0.7222 16.69% §

§ Range of % Difference is 0%-418%

* Trained across 150 Data points

Tuning for CnC-OCR

• Challenges:
– OCR does not expose mechanisms to control location

or task ordering in the way MPI or HC do
– OCR has “hints” it can attempt to respect, or

completely ignore
– OCR runtime has its own ideas on where/when to put

tasks and data, influenced by many factors
(performance, power, energy, resilience)

• How do we translate CnC high-level tuning spec
into low-level OCR hints with some reasonable
expectations of performance?

38

Data Flow Graph Representation (DFGR)

39

• What it is:
– Intermediate graph representation for macro-dataflow programs
– Front-end for a compiler that targets heterogeneous architectures
– Based on CnC

• What is offers: performance through analyzability
– Enables the use of transformations on the application graph
– Enables increased use of heterogeneity through static & dynamic

scheduling
– High-level view of applications
– Easy programmability with high expressiveness using data-flow

principles
– Offer a framework for translating to parallel native code for various

architectures

Thursday, Session 2, Talk 3: “DFGR: an Intermediate Graph Representation for
Macro-Dataflow Programs”

Final Thoughts

• Alive and kicking!

• Community effort

• Influence on other programming and
execution models

• OpenCnC

• Exascale

• Many interesting research directions in
languages, compilers, runtimes, tuning

40

Backup Slides

41

HJ-CNC
Runtime

Control
Collections

(Scheduling)

Item
Collection

(Scheduling)

Step
Instances

(client)

HJ

Item
Collection

(Data)

Step Instances
(server)

Java/Python/C/C++/FortranJava/Python/C/C++/Fortran

CnC Babel Runtime

42

“what’s good for simplifying parallelism is
good for simplifying resilience”*

Checkpoint/Restart for CnC

• Pushing CnC for extreme-scale programming

• CnC has many interesting properties:
– Execution graphs – Execution frontiers

– Single-assignment data – Hierarchical graphs

– Referentially transparent computation steps

• How to leverage for CnC checkpoint/restart?

43*Inter-Agency Workshop on HPC Resilience at Extreme Scale. 2012.

Checkpoint/Restart in CnC

• Execution Frontier (XF)
– Currently-active subset of CnC graph state
– Works as input/output of a graph

• CnC Checkpoint
– Checkpoint is a snapshot of the XF

• Might be out of sync
• Could be in different format (e.g. compressed)

– Derived attributes handled separately in the
checkpoint
• Data might arrive out of order
• Don’t want to mark a step as data ready if not all the data

has shown up in the checkpoint!

44

CnC in Classroom

CnC in Classroom

• UCLA CS133 – Parallel Programming (Spring 2013)
– Upper-division undergraduate class
– 75 students (junior and senior)
– Lecturer: Jason Cong, TA: Di Wu

• Vivek Sarkar gave two guest lectures on CnC and shared Rice CnC C++ implementation
• Alina (Rice) gave a guest lecture the discussion session about program details

• Class project
– MI pipeline acceleration
– Three applications: MRI reconstruction, denoise, segmentation
– Four parallel languages: OpenMP, MPI, OpenCL, CnC
– Each student needs to choose application and implement in all four

languages
– CnC eventually made as an optional bonus, given difficulty faced by the

students
– 11 students finished (14.7%)

• Choice of project is not optimal
– Each application is highly iterative

Student Feedback

• Students who completed the CnC project enjoyed it– quote from one student
– ...I thought the CNC implementation was definitely the most interesting part of the class. I

think the students who skipped it definitely missed out.

– Working out all the problems that arose (at least for me) from both not fully understanding
exactly how the graphical nature of CNC was put together, and just trying to figure out what
each different part of code was actually doing, took me a really long time. I think it took me
upwards of 6 or 8 hours to get a super simple 2D array addition operation working.

– But that was definitely a helpful experience, and while I totally understand that there's no way
many of the students could devote that much time in a single afternoon just to get a very basic
sample up and running, that's the aspect of this class that I think was more useful than many
of the other ones I've taken. I can't help but think if everyone else had to go through that,
instead of it being optional, would they have gotten as much out of it as I did?

– I would like to mention here that Di Wu did an amazing job at getting a grasp on CNC very
quickly so he could help the rest of us with our stuff. He also mentioned spending several
hours getting simple samples up and running for the rest of us, which was absolutely great. He
was also great getting our question forwarded onto Alina and helping us out with getting
around some of CNCs restrictions to better use it with the project itself

Students Feedback (Cont’d)

• Non-intuitive programming model

– Not as easy as OpenMP

– Requires detail knowledge of the application

• Not able to handle in-place operations

– Data collection not freed in graph
• Need to maintain ‘MaxIter’ images in memory

• Memory overflow

– Destroy graph each iteration
• Too expensive

– Solution
• ‘hacking’: use CnC to create steps, and use ‘finish’ to enforce

explicit synchronization

for (iter=0; iter<MaxIter; iter++)
{

// processing 2d image
}

Applications

Applications

• Dense linear algebra: Cholesky (everyone), Eigensolver (GA Tech)
– Best Paper award, IPDPS 2010

• Medical imaging applications (UCLA, Rice)
– Combining CPU, GPU and FPGA steps for performance/energy

• Smith-Waterman (Rice)
• Unbalanced Tree Search (Rice)
• Graph 500 (Rice)
• Floyd-Warshall (Intel)
• LULESH (LLNL, Intel)
• CoMD (LANL)
• RTM 3DFD Stencil (Intel)
• Animation (Dreamworks)

50

• 3 Item Collections, 5 Tag Collections, and 8 Steps.

LU Decomposition in CnC-Scala

51

Python

• Multithreading is not an option
• The Global Interpreter Lock serializes computations
• Not all extension modules support multithreading
• Jython and IronPython do not support all extension

modules

• Multiprocessing module
• Requires explicit launching of processes/jobs
• Blocking synchronization on job completion for data

52

CnC Graph Spec (text)

Generated Stub code

(Habanero-Java and Babel)

- Step code (in Python)

- main() (in Python)

Compiled code

make build (from generated Makefile)

Output

User written Code

Generated Code

env CNC_NUM_WORKERS=W make run

(from generated Makefile)

cnc_translate

CnC-Python Build Model

53

• Targeted to shared-memory multiprocessors
Java-based
runtime task
scheduler (in
Habanero-Java)

Used for
Java-Python
interoperability

CnC-Python Implementation

54

SumPrimes Benchmark from Parallel-Python

Comparison with Parallel Python

55

• Widely used by domain experts

• For numerical/scientific computing

• Offers concise simple syntax

• Excellent documentation

• Helps in fast prototyping

• but sometimes executes slower

Matlab

56

CnC Graph Spec (text)

Generated Stub code

(Habanero-Java and Babel)
- Step wrapper code (in C)
- main() wrapper code (in C)

Compiled code

make build (from generated Makefile)

Output

User written Code

Generated Code

env CNC_NUM_WORKERS=W make run

(from generated Makefile)

cnc_translate

- Step code (in Matlab)
- main() (in Matlab)

- Generated code (in Matlab Coder)

Matlab Coder

CnC-Matlab Build Model

57

CnC Graph Spec

Generated Stub code

- Step code

- main() method

Compiled bytecode

cnc_scala_compile

cnc_scala_run

Output

cnc_scala_translate

User Code

Generated Code

CnC-Scala Build Model

58

• Represents rest of the computation from a given point in the
program

• Allows

• suspending current execution state

• resuming from that point later

• We need only delimited one-shot continuations

• Scala has shift-reset!

• Benefits of continuations

• No re-execution of code

• Allow arbitrary (data-dependent) gets

• Threads never block

•No extra threads created

Continuations

59

• If item is available return it

• Else store continuation

get(tag: TagType): ItemType = {

if (itemAvailable)

return item

else

shift { continuation =>

// store continuation

}

// when cont resumes, item is available

return item

}

CnC-Scala Runtime - get

60

• Store item

• Resume waiting continuations

put(tag: TagType, item: ItemType) {

// store item into DDF

// resume ALL continuations waiting on item

}

CnC-Scala Runtime - put

61

• Blocking Gets
– Step starts to execute when prescribed
– If a Get fails, the thread running the step is suspended
– Can only be done in a work-sharing runtime
– Very poor scaling

• Rollback and Replay (RR)
– Steps start to execute when they are prescribed
– If a Get fails, step is killed
– Step is restarted by the step doing a Put on the data that Get failed on.

• Data Driven (DD)
– Steps do not start to execute until all data is available
– Dependencies are “filled in” when step is prescribed
– Once all dependencies are satisfied, step executes => Gets are ensured to succeed.

• Work-first: The worker thread executes the prescribed step immediately,
allowing the execution of the currently running step to be stolen by other
worker threads

• Help-first: The runtime puts the prescribed step on a queue to be stolen
by other worker threads

62

Runtime Policies

Comparing Runtime Policies

• ForkJoin benchmark v1, “no-work”, 100k-1M tasks

63

Comparing Runtime Policies

• ForkJoin benchmark v2, 100 Gets, 100k-1M tasks

64

Comparison of Runtime Policies

• The DD Runtime performs better under heavy load of small parallel
tasks
– Avoids the task-creating overhead

• The RR Runtime performs better for a heavy number of successful
Get calls
– Eagerly executes tasks, thus obtaining more parallelism than the “safe”

approach

• Work-first policy is more efficient than help-first for nested fork-join
programs (e.g., Cilk, Habanero-C)

• Help-first policy is more efficient than work-first for parallelism
expressed with a parallel for loop (detailed study: [1])

• For “normal” sized tasks the two runtimes
– Scale well
– See little differences between each other

65
[1] SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler. Yi Guo, Jisheng Zhao, Vincent Cavé, Vivek Sarkar.
24th IEEE International Parallel and Distributed Processing Symposium (IPDPS), April 2010.

http://www.cs.rice.edu/~vsarkar/PDF/Guo-et-al-IPDPS-2010.pdf

Dynamic Single Assignment (DSA) Folding

• Problem: it is difficult to automatically identify
when CnC items are dead

– Cause: item keys can be recomputed, unlike
general references

– User intervention may simplify the task and offer
the opportunity for further optimization

66

“Folding of Tagged Single Assignment Values for Memory-Efficient Parallelism”.
Dragos Sbirlea, Kathleen Knobe, Vivek Sarkar. Euro-Par 2012.

DSA Folding

• Transform the item keys with a folding
function, which maps logical (dynamic
single assignment) keys to fewer folded
(multiple assignment) keys.

Fold(DSA key) = folded key

|DSA Keys| > |folded Keys|

67

Folding Function for Routing Benchmark

point fold(point key) {

// point = [repetition, iteration, nodeId]

int i = p.get(0);

int j = p.get(1);

int k = p.get(2);

point fKey = point(i%2, j%2, k);

return fKey;

}

}

68

•The folding function implements a generalized version of the two buffer
approach

Routing with unreliable links

Results for Routing Benchmark

69

! "

#! ! ! ! "

$! ! ! ! "

%! ! ! ! "

&! ! ! ! "

' ! ! ! ! ! "

' #! ! ! ! "

! (" !)! ! (" !)! ' (" !)' ! (" ' (" ' ! ("

!"
#
$
%&
'"
&#
(
)
&

*+' (, #&- .&/0(1&.' 0/23#&4#3&$ #%%' 5#&

*+, - ./0- "

1 - 234502, "

64.7/08"

CnC Program State

Execution Graph

– Control Tag

• Avail

– Data Item

• Avail

• Data

– Step

• Control Ready

• Data Ready

• Executed

70
Diagram by Kath

Item

avail

step

controlReady

step

ready

step

dataReady

step

executed

tag

avail

executing

Runtime Research

• Runtime policies

• DSA Folding

• Checkpointing/restart

• Flexible Preconditions

• Distribution function generation

• CnC Tuning

71

Flexible Preconditions

• Eager task creation
– Tasks are spawned as soon as they are prescribed

– Once they start to execute, they may encounter an
unavailable dataflow dependence

• Strict preconditions
– Dataflow dependences must be declared before tasks start

running

– Limiting expressiveness

• Flexible preconditions
– allow partial specification of the preconditions of tasks

– performance and memory behavior of strict preconditions

– programmability of eager spawning

72
Friday, Session 2, Talk 3:
Flexible Preconditions: A Model for Efficient Macro-Dataflow Execution

Influence on other languages/efforts

• CDSC-GL

• Habanero-C

• OCR

73

Data-driven Futures and Data-driven Tasks in
Habanero-Java and Habanero-C

Habanero-C syntax:

DDF_t* ddfA = DDF_CREATE(); Allocate an instance of a data-driven-future
object (container)

async IN (ddfA, ddfB, …) AWAIT(ddfA, ddfB, …) <Stmt>

– Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, …
become available

DDF_PUT(ddfA, V);

– Store object V in ddfA, thereby making ddfA available

– Single-assignment rule: at most one put is permitted on a given DDF

DDF_GET (ddfA); Return the value stored in ddfA (non-blocking)

– Safely done by asyncs that have ddfA in their await clause

• CnC item collections are just hashmaps of DDFs
• CnC steps are DDTs
• CnC-HJ uses DDFs and DDTs as its default runtime

74

Summary of OCR Open Source Project
• Hosted on 01.org
• Goals

– Modularity
– Stable APIs
– Extreme flexibility in implementation
– Transparency

• Development process
– Continuous integration
– Quarterly milestones
– Mailing lists for technical discussions, build status, etc

• Organization
– Steering Committee (SC) --- sets overall strategic

directions and technical plans
– Core Team (CT) --- executes technical plan and decides

actions to take for source code contributions
– Membership of SC and CT will turn over periodically

based on level of participation

https://01.org/projects/open-community-runtime
75

Affinity and Cancelation (new in 0.9)

Intel

• Affinity
– Like distribution (tuner::compute_on(tag)) tuner::affinity(tag) defines preferred

thread for executing given step
– Runtime option allows pinning threads to cores

configurable stride for the mapping

• Cancellation
– Second feature (after unsafe_get) which allows non-determinism
– Tuner can cancel execution

• Best effort policy, steps might still execute
• In particular cancelation might come after execution

– Customizable interface
• CnC::cancel_tuner provides cancel(tag) and cancel(all)
• Other strategies possible, like after system inspection or so

76

CnC on Intel® Xeon Phi™

• Preliminary experiments with 3dfd-TTI
– 2 x 73-point stencil

– Used in seismic exploration

• Strong NUMA effects on Xeon
– “Auto-tunes” with 2 processes on a 2-socket box

• Pinning needed on Phi to achieve good
performance

• Adding a Phi (same code) achieves 30%
speedup

• Issues with clusters
– Might be caused by MPI implementation

• Note: top-notch native (Fortran) Phi(-only)
implementations can be almost as fast as this
Xeon/MIC combo
– With special configuration for a given data set

0

2

4

6

8

10

12

14

16

18

3dfd-TTI (768x512x768,20)

ti
m

e
 [

se
c]

CnC: 3dfd-TTI

1 xeon

1 xeon (2 ranks pp)

1 xeon/mic

2 xeon (2 ranks pp)

2 xeon (2x2 blocks)

2 xeon/mic

Intel

77

Scalability

• 3dfd-TTI (2 x 73-point stencil)

• Quasi-ideal weak scaling

• Tradeoff between tile-size and communication overhead

• Strong scaling

– 47% efficiency despite 4x more tiles than cores

– Asynchronous execution!

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1/16 2/32 4/64 8/128 16/256 32/512 64/1024 128/2048 256/4096

p
ar

al
le

l e
ff

ic
ie

n
cy

 [
%

]

#nodes/#cores

RTM-3dfd parallel efficiency (1024^3)
2 processes per node, tiles:128x64x256

ISO/C++-weak

TTI/C++-weak

TTI/C++-strong

1 tile per
core

1 tile per
4 cores

Intel

78

Current work: Combining CnC and MPI

• Exploring adding CnC to existing HPC/MPI codes
– An evolutionary alterative to the current revolutionary approach

• Current idea: support embedding CnC blocks/phases into an
MPI application
– Allows for adding or converting pieces of a code, in contrast to an

all-or-nothing scenario
– Each CnC phase works on a subset of processes

• Specified by an MPI-Communicator
• Multiple concurrent but independent CnC phases are possible

– Each CnC phase can have
• Either a single environment (single-process view)
• Or a shared environment (SPMD-style)

– Initial prototype implemented

• Now looking for collaborators and applications

Intel

79

Current work: CnC.js

• Exploring CnC for JavaScript
– JavaScript community searching for a solution to general parallelism

• One JS requirement is race-freedom, which CnC guarantees by design

– API on the JS level (e.g. as a language construct)
• Enforces CnC graph (e.g. no write on consume-only edges, access only via

declared relations)

– Experimenting with a prototype in spidermonkey/firefox
• Basic API works single-threaded (with the C++ runtime under the hood) e.g. in a

face-detection app
• Enforces DSA (very invasively: deep-freezes everything)

– Next
• Get parallelism

– Not trivial: parallel execution simply not foreseen in the complex (and huge) runtime
– Exploring acceptable limitations

• Disallow side-effects (also more difficult than anticipated)
• Tag functions
• Discuss with stakeholders?

Intel

80

Open Community Runtime (OCR)

• A runtime framework that …
– is representative of execution models expected in future

extreme scale systems
– can be targeted by multiple high-level programming systems
– can be effectively mapped on to multiple extreme scale

platforms
– can be extended and customized for specific programming and

platform needs
– can be used to obtain early results to validate new ideas
– is available as an open-source testbed

• Strongly influenced by the CnC model
– decomposition of algorithm into steps/items, tuning, event-

driven execution

81

CDSC-GL

• Context: NSF Expeditions Center for Domain-
Specific Computing (CDSC) --- UCLA, Rice, OSU,
UCSB

• CDSC-GL serves an intermediate graph
language used in mapping

• CDSC-GL can be generated from higher-level
programming systems, and can operate on
both graph and non-graph data

• CDSC-GL can be mapped on to heterogeneous
hardware (including FPGAs) with synchronized
access to non-graph data

• CDSC-GL will need to be hierarchical to support
mapping on to hierarchical machine models

– Design of hierarchy in CnC is currently in
progress; will influence design of hierarchy in
CDSC-GL

Tuesday, Session 3, Talk 4: “CDSC-GL: A CnC-inspired Graph Language”

82

Rice, UCLA

CnC 0.9 Release

Intel

• API implementing full CnC semantics
• Shared and distributed memory
• Separate interfaces for domain and tuning
• Affinity, Cancelation
• Support for Intel® Xeon Phi™
• Tuner for CnC::parallel_for

– switch on/off checking dependencies, priority, affinity,
depends and preschedule

• New examples (floyd-warshall, nqueens, dedup, UTS)

83

