
CnC’14
Future of CnC

Kath Knobe - Rice

Outline

• A new way of presenting CnC

• Hierarchy

– Conceptual aspects

– Current projects

• Project basics

• Current state wrt hierarchy

• Future wrt hierarchy

– General future wrt hierarchy

The process

• You have a version X of your app
– X consists of chunks of code coordinated by explicit

serialization, fork-join constructs, parallel loops, etc.

• Convert X to Y
– Y consists of chunks of code coordinated by explicit

serialization, fork-join constructs, parallel loops, etc

• Reasons
– New math/physics
– Performance
– Energy
– For different platforms
– Evolution for same platform/goals

X Y

But …
• There are some rules

• Can’t move these chunks of code around
arbitrarily

• Any change must conform to the
required ordering constraints

X Y

What are the required ordering constraints?

• Exactly 2 types of ordering constraints

- Producer / consumer

- Controller / controllee

compute3

COMPUTE STEP

Bar

COMPUTE STEP

Baz

COMPUTE STEP

Foo

COMPUTE STEP

X

DATA ITEM

Bar

COMPUTE STEP

Actually …

X Y

• But rather:

• The backbone required orderings of X are buried among
computations, tuning orderings and arbitrary orderings. They have to
be uncovered. So it’s not this:

X Y

Deduced
constraints

But …

• Did you write X this morning?
• Did you write X 6 months ago?
• Did someone else write X?

X Y

Deduced
constraints

Then …

• You want to modify Y to become Z

X Y

Deduced
constraints

of X

Z

Deduced
constraints

of Y

• You have to deduce the constraints again. Did you get
the same constraints?

• The problem

The solution:

Dependence programming

• Explain CnC via LULESH

• What about tuning

• Conclusion

Where dependence programming fits

• Current programs:
the computations
the required constraints
the tuning constraints
some arbitrary constraints

All mixed together

• Dependence programming separates
1. The computation code

C, C++, Java, Fortran, Haskell, Scala, Python, Babel…

2. The CnC domain spec is the dependence program
-only the required constraints
-causes the separation of concerns

3. The CnC tuning spec
More to come

The distinction was:
Serial program vs parallel program
The distinction now is:
Required constraints vs tuning

New version with explicit dependences

X

Deduced
constraints

New version with explicit dependences

X

CnC: Explicit
constraints

Start with:
Computation code X
Its explicit constraints

No tuning constraints
No arbitrary constraints
Modify X to become Y

New version with explicit dependences

X Y

CnC: Explicit
constraints

Start with:
Computation code X
Its explicit constraints

No tuning constraints
No arbitrary constraints
Modify X to become Y

New version with explicit dependences

X Y Z

CnC: Explicit
constraints

Start with:
Computation code X
Its explicit constraints

No tuning constraints
No arbitrary constraints
Modify Y to become Z

Separation of concerns

X Y Z

CnC: Explicit
constraints

CnC: Explicit
constraints

H

Of course a significant modification:
- might also modify the constraints

Oh, by the way …

Because it isn’t over-constrained the untuned
dependence program often gets very good
performance.

The point:

don’t think of it as a parallel programming language

It’s a dependence programming language

… details elided here …

A look at performance

Possible tunings
Map for locality
Map to minimum footprint
Parallelism

Pipeline
Fork-join
Data parallel
SPMD

CnC = dependence programming
Exact ordering requirements

Explicitly serial programming
Overly constrained orderings

A look at performance

CnC = dependence programming
Exact ordering requirements

Possible tunings
Map for locality
Map to minimum footprint
Parallelism

Pipeline
Fork-join
Data parallel
SPMD

Explicitly serial programming
Overly constrained orderings

A look at performance

CnC = dependence programming
Exact ordering requirements

Possible tunings
Map for locality
Map to minimum footprint
Parallelism

Pipeline
Fork-join
Data parallel
SPMD

Explicitly serial programming
Overly constrained orderings

All approaches to performance improvements currently
applied to serial code are appropriate for CnC.

Might want to adjust the grain choice.

A look at performance

CnC = dependence programming
Exact ordering requirements

Explicitly serial programming
Overly constrained orderings

Examples of tuning
Distribution functions for distributed systems - Intel
Hierarchical affinity groups - Rice
Totally static – HP, something like DFGR
Dynamic grain choice – GaTech

More to come!

Summary

• Isolate
– Implementation of computation chunks

• In the steps

– the required ordering constraints among those chunks
• Domain spec

– tuning consistent with constraints
• Distinct tuning spec
• Many tuning specs - single domain spec
• Domain spec untouched

• Eliminate
– Arbitrary orderings

Productivity + Performance

Outline

• A new way of presenting CnC

• Hierarchy

– Conceptual aspects

– Current projects

• Project basics

• Current state wrt hierarchy

• Future wrt hierarchy

– General future wrt hierarchy

Hierarchy - why

• For many apps hierarchy is the natural way to think
MiniGMG: Cycle, level, iteration

• Software engineering
– Billion way parallelism
– Less to consider at each level
– Easier to develop and modify one level at a time

• Distinction among levels might enable/simplify
optimizations
– One level can be analyzed/optimized – another can’t

• Reuse: Critical (but we’ll delay that discussion a bit)
– Analog of hierarchy with vs without reuse:

library calls vs nested loops

• First assume no reuse – whole hierarchy is visible

Two styles

• Step-like
– Prescribed/controlled

– Functional

– Atomic

• Graph-like
– Not prescribed/controlled

– Output might effect input

– Doesn’t necessarily finish
current implementations limited to non-continuous apps

Research topic:
Extend current

implementation to
support continuous apps

c

Connect distinct subgraphs

c

Connect distinct subgraphs
Connect an output from one to input of another

Connect distinct subgraphs
Connect an output from one to input of another

Graph-like hierarchically:
Hook-up collections in the outer level to collections in
the inner level

Research issues

Meaning of graph-like hierarchy

• Exactly as if inserted as a flat graph

– Tags and items flow in

– Tags and items flow out

– Computation happens

Graph-like hierarchically:
Hook-up collections in the outer level to collections in
the inner level

Two adjacent levels might be CnC/CnC, CnC/? Or ?/CnC

Hierarchically:
Hook-up collections in the outer level to collections in
the inner level

Two adjacent levels might be CnC/CnC, CnC/? Or ?/CnC
Our current env/CnC might be viewed this way

Step-like hierarchy
Step-like

Prescribed/controlled
Functional
Atomic

Step-like hierarchy
Step-like

Prescribed/controlled
Functional
Atomic

Step-like hierarchy
Step-like

Prescribed/controlled
Functional
Atomic

Hierarchy: step-like

• Must behave like a step

functional/atomic

• Connect inner and outer collections

• Notice that a step is controlled / prescribed
unlike a subgraph

Meaning of hierarchical step-like app

• It is a “normal” CnC program at every level
– Within a level we know the meaning

• The meaning is determined hierarchically
– A hierarchical data item is not available until all its lower-level

components are available

– A hierarchical control tag is available when any lower-level tag is available
is available

e.g., tony<j=3> is available when tony< j=3, k> is available for any value of
k

– A hierarchical step at some level is not control-ready until:

• It is control ready within its own level

• And its parent step is control ready

• At least two legitimate executions:
– Only execute when control arrives from above

– Allow speculative execution at a lower level

Meaning of hierarchical step-like app

• It is a “normal” CnC program at every level

– Within a level we know the meaning

• The meaning is determined hierarchically

– A hierarchical data item is not available until all its lower-level components are
available

– A hierarchical control tag is available when any lower-level tag is available is available

e.g., tony<j=3> is available when tony< j=3, k> is available for any value of k

– A hierarchical step at some level is not control-ready until:

• It is control ready within its own level

• And its parent step is control ready

• At least two legitimate executions:

– Only execute when control arrives from above

– Allow speculative execution at a lower level
Research topic:

Some runtime cost
Some benefits
Assess value

Research topic:
Specify the hierarchical

propagation of state
attributes

Research topic:
Specify/build a

hierarchical runtime

Mixed graph-like/step-like hierarchy

• A step at one level might be a graph internally
• That graph might contain graph-like hierarchy
• Any step in the graph-like hierarchy might be

decomposed into a step-like hierarchy
Current versions:

From the outside our runtimes are now step-like:
input, compute, output, go away.

Internally, it is a graph
Intel version supports graph-like hierarchy

Future versions:
From the outside our apps might be graph-like:

Continuous, output might effect subsequent input

Two styles of decomposition:
Add tag components vs add distinct collections

• Computation steps
– compute(j) is compute(j,k)

– compute(j) is foo(J), bar(J), baz(J)

• Data items
– a[j] is a[j, k]

– a[j] is x[j], y[j], z[j]

• Control tags
– tom<j> is tom<j,k>

– tom<j> is tina<j>, tony<j>, tanya<j>

Blur the distinction between
collection name and tag components

• 2 kinds of decomposition
– a[j] is a[j, k]

– a[j] is x[j], y[j], z[j]

• Not fundamentally different

Picture k as a tag component with values “x”, “y” or “z”

Instance vs collections

• Old
– Collections are statically known
– Instances come into existence dynamically

• But
– X[] is a collection
– X[5] is an instance in that collection
– But since X[] is hierarchical, X[5] is really a collection
– X[5, 12] is an instance in that collection

• New
– Collections and instances might be dynamically

determined

Universal CnC domain spec

computationSteps()

dataItems[]

controlTags< >

The top level of all hierarchical CnC apps

Hierarchy with reuse

• Both step-like and graph-like

• Shares all the issues of hierarchy within a
single app

• Adds a few more …

Step-like Reuse

• Must behave like a step when viewed from the
outside
– atomic & functional

• Internally might be computation language or a
CnC graph

• Hook-up inputs and outputs
–Name mapping

A[] could connect to B[]
–Shape mapping

A[k] could connect to B[1, k]
X[j, k] could connect to Y[k, j]

Graph-like Reuse
[Schlimbach]

• Must behave like a graph when viewed from the outside
– Asynchronous input / output of data items / control tags
– Name mapping and shape mapping

• Internally
– it might be CnC (executed by normal runtime)
– it might be hidden arbitrary internals

• Current state of hidden graph-like reuse
– Intel version currently supports hidden graph-like reuse
– Supplied with several examples, e.g., reductions
– Users can provide their own
– Could use it to provide non-deterministic constructs: pick-any, …

(at your own risk)

• For hidden graph reuse it must contribute to global runtime decisions
– Determining when an item is dead
– Determining when the app is finished

Research topic:
Push the non-

determinism aspect

Research topic:
Push this further

Outline

• A new way of presenting CnC

• Hierarchy

– Conceptual aspects

– Current projects

• Project basics

• Current state wrt hierarchy

• Future wrt hierarchy

– General future wrt hierarchy

Hierarchical affinity groups
Checkpoint/restart
Lowering to

application-specific state

Hierarchical affinity groups [Chatterjee]
project basics

• Good parallelism and good load balance

• Affinity groups – For locality

– Data movement cost will dominate cost of computes

• Hierarchical affinity groups

– Computations in the same low-level group have tight
affinity

– Computations in the same higher-level group have a
weaker affinity

• Our first new tuning approach specifically for CnC

Cholesky: An example of
hierarchical affinity groups

Update: col, row, iter

COMPUTE STEP

Trisolve: row, iter

COMPUTE STEP

Cholesky: iter

COMPUTE STEP

AFFINITY GROUP

GroupC: iter

AFFINITY GROUP
GroupTU: row, iter

Cholesky: An example of
hierarchical affinity groups

Update: col, row, iter

COMPUTE STEP

Trisolve: row, iter

COMPUTE STEP

Cholesky: iter

COMPUTE STEP

AFFINITY GROUP

GroupC: iter

AFFINITY GROUP
GroupTU: row, iter

CONTROL TAG

CholeskyTag: iter

CONTROL TAG
TrisolveTag: row, iter

Hierarchical affinity groups
current state wrt hierarchy

• Our first project using hierarchy

• But not a true application hierarchy

– sets of sets of steps

Hierarchical affinity groups
future wrt hierarchy

Now
• Start with bottom level

– Build multiple tuning specs
based on sets of computation steps

Possibilities
• Build hierarchical application

– Use the application hierarchy as a locality based tuning spec

• Start with bottom level
– Build multiple tuning specs

each as a full hierarchical application

Research issues

Application-specific runtime
[Budimlic, Knobe]

project basics

• CnC state changes are monotonic and discrete

• Current runtimes are application-independent

– Know about state changes of CnC apps in general

– Interpreted

• Application-specific runtime

– Know about the state changes of this specific app

– compiled

Item
avail

step
controlReady

step
ready

step
dataReady

tag
avail

Abstract meaning of a CnC specification:
Partial order at instance level

State: Monotonically increasing

Set of instances with any attribute
Set of attributes of those instances

Contents of available items

Item
avail

step
controlReady

step
ready

step
dataReady

step
executed

tag
avail

tag
dead

Item
dead

Execution frontier: relevant part of the full state

leading edge: monotonically increasing state
trailing edge: remove irrelevant instances

dead items, dead tags, executed steps

Sample user application:
face detection

Classifier1(F)

Classifier2(F)

Classifier3(F)

image[F]

C3Tag<F>

C1Tag<F>

C2Tag<F>

face<F>

Application compiled to
application-specific runtime

image[F]

avail

Classifier1(F)

ready

C1Tag<F>

avail

Classifier1(F)

dataReady

Classifier1(F)

controlReady

Classifier2(F)

ready

C2Tag<F>

avail

Classifier2(F)

dataReady

Classifier2(F)

controlReady

Classifier3(F)

ready

C3Tag<F>

avail

Classifier3(F)

dataReady

Classifier3(F)

controlReady

Classifier1(F)

executed

Classifier3(F)

executed

Classifier2(F)

executed

face<F>

avail

Application-specific runtime
current state wrt hierarchy

• We haven’t even implemented the non-
hierarchical version

Research topic

Application-specific runtime
future wrt hierarchy

• Hierarchical application runtime

Research topic
Big/Open

Checkpoint/restart [Vrvilo]
project basics

• Discrete, asynchronous, monotonic application state
changes

• Continuous, asynchronous state changes are the basis for
automatic, continuous, asynchronous checkpointing
– No barriers, No synchronization

– No user involvement required (user can optimize)

• Can restart from any saved state
– On a different machine

– On a different configuration

– On a different CnC runtime

– …

Checkpoint/restart
current state wrt hierarchy

• One level checkpoint/restart

• Continuous

• Asynchronous

• Automatic

– no support yet for user to optimize

Hierarchical checkpoint/restart
future wrt hierarchy

Research topic
Ideas follow

Abstract view of application hierarchy

iter()

rowIter()

colRowIter()

A node at any level has the form of a full application input, computation, output

Abstract view of the platform hierarchy

A node has the form of a full machine at each level:
a subtree of the memory hierarchy + set of cores

Hierarchical platform
node

Abstract app maps to abstract platform

iter()

rowIter()

colRowIter()

Hierarchical checkpoint/restart

Checkpoint for a graph is held with its parent step

Hierarchical checkpoint/restart

Hierarchical checkpoint/restart

Hierarchical checkpoint/restart

From above: step simply looks like it took longer than expected.

Checkpoint with full stop at one node looks like checkpoint/continue for the
whole program

Adaptive computing

• If

– Capability: move an executing part of app
because we have to

• Then

– Capability: move an executing part of app because
we want to

• Energy management, self-aware computing,
change of goals, …

Checkpoint/restart
current state wrt hierarchy

• Work for our current 1-level applications

• No hierarchy yet

Hierarchical checkpoint/restart
future wrt hierarchy

Research issues
In the story above

• Start with 1-level version

• Design/build hierarchical one

Current State

• Hierarchical affinity groups

– Hierarchy but not program hierarchy just sets of
steps

• Checkpoint/restart

– State but not hierarchical state

• Attribute-based runtime

– But generic instances not application-specific
instances

Future

• Extend the current projects
• Still need syntax and semantics for hierarchy
• Static & dynamic hierarchy-based optimizations
• Ignore the static compiler vs dynamic runtime

distinction
– Unfolding of the graph hierarchy and progress of state are

all just graph rewrites
– Include other lowerings:

• map across platform, schedule across time, expose and schedule
communication …

– Allow dynamically available information to impact
subsequent transformations

Analysis and transformation

Ignore the static compiler vs dynamic runtime
distinction

• Unfolding of the graph hierarchy and progress
of state are all just graph rewrites

• Include other lowerings:

– map across platform, schedule across time,
expose and schedule communication …

• Allow dynamically available information to
impact subsequent transformations Research topic:

Design/implement

DARPA: UHPC

DOE: X-Stack

Dreamworks: How to train your dragon II

Cambridge Research Lab
DEC/Compaq/HP/(Intel)

• Carl Offner, Alex Nelson

Intel

• Frank Schlimbach, Geoff Lowney

Rice

• Vivek Sarkar, Zoran Budimlic, Mike
Burke, Sanjay Chatterjee, Shams Imam,
Sangak Tasirlar, Dragos Sbirlea, Alina
Sbirlea, Kamal Sharma, Nick Vrvilo

UCLA

• Jason Cong

Ohio State

• Louis-Noel Pouchet

GaTech

• Aparna Chandramowlishwaran, Rich
Vuduc

• Hasnain Mandviwala, Kishore
Ramachandran

Indiana

• Ryan Newton

PNNL

• John Feo

• Ellen Porter

Thanks to …

• CnC on Intel’s WhatIf site:
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc

• Available open source
https://icnc.github.io

• CnC on Rice’s Habanero site:
https://wiki.rice.edu/confluence/display/HABANERO/CNC

• CnC’14 workshop
Sept 2014 Co-located with LCPC’14 in Hillsboro, OR

To get on mailing list send mail to kath.knobe@rice.edu

• Open CnC regular meeting (presentation or discussion)
To get on mailing list send mail to kath.knobe@rice.edu

• Discuss putting your app in CnC
Send mail to kath.knobe@rice.edu or frank.schlimbach@intel.com

X

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
https://icnc.github.io/
https://wiki.rice.edu/confluence/display/HABANERO/CNC
mailto:kath.knobe@rice.edu
mailto:frank.schlimbach@intel.com

Thank you

