
Parallelism Through CnC (Concurrent Collections)

More Flexibility, Less Pain
CnC Workshop 9/18/2014

James Brodman, Intel

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Programming for
parallelism is

deemed to be hard.

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

4

We can mentally visualize things
happening in parallel

We perform analogous issues in our
daily lives

Parallelism itself isn’t hard

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

5

We handle multiple tasks, calendars
and locations, we allocate and balance

resources and maximize their usage.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

How did programming
for parallelism become

so complicated?

6

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7

Serial programs
obfuscate actual

semantics

Serial Legacy

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Classical view – from serial to parallel

8

One legal execution ordering
For a single core

Data dependences
Control dependences

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Classical view – from serial to parallel

11

Legal serial code => user knew dependences
Dependence analysis is hard and fails

Deduced

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC view

13

CnC tuning spec
• Ordering
• Platform

CnC domain spec
• Explicit dependences

Person,
compiler or

runtime

Actual

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC view – Ideas to Execution

14

Intel CnC Runtime
• An interpreter of domain spec
• Dynamically determines place and time
• Happens to get pretty good performance

That’s
mostly what

Intel® CnC
does

Actual

CnC domain spec
• Explicit dependences

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A CnC program defines computation units.

It also defines how they relate to (depend on) each other.

15

CnC is all about dependences

compute1

COMPUTE STEP

compute2

COMPUTE STEPcompute3

COMPUTE STEP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A CnC program defines computation units.

It also defines how they relate to (depend on) each other.

Exactly two relations exist.

Such relations constrain the legal execution order of related units.

16

CnC is all about dependences

compute1

COMPUTE STEP

compute2

COMPUTE STEPcompute3

COMPUTE STEP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A CnC program defines computation units.

It also defines how they relate to (depend on) each other.

Exactly two relations exist.

Such relations constrain the legal execution order of related units.

Producer-Consumer

The producer must go before the consumer

Controller-Controllee

The controller must execute before the controllee

17

CnC is all about dependences

CONTROL TAG

control
CONTROL TAG

controlTcompute3

COMPUTE STEP

compute3

COMPUTE STEP

compute4

COMPUTE STEP

compute1

COMPUTE STEP

data

DATA ITEM

compute2

COMPUTE STEP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

18

Whiteboard Example: Sequencing PL

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

19

Representations

19

CONTROL TAG

controlcompute1

COMPUTE STEP

data

DATA ITEM

compute3

COMPUTE STEP CONTROL TAG

controlTcompute3

COMPUTE STEP

compute4

COMPUTE STEP

compute2

COMPUTE STEP

compute1(j, k) -> data[j, k] -> compute2(j, k)

compute3(row, col) -> controlT<row, col> -> compute2(row, col)

Graphical

Textual

API

Language dependent – one API call per graph edge

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Sample Specification (C++ API)

struct cholesky_context : public CnC::context< cholesky_context >

{

// Step Collections

CnC::step_collection< cholesky > sc_cholesky;

...

// Item collections

CnC::item_collection< triple, tile_const_ptr_type > Lkji;

// Tag collections

CnC::tag_collection< int > tc_cholesky;

...

cholesky_context(int _b = 0, int _p = 0, int _n = 0)

{

tc_cholesky.prescribes(sc_cholesky, *this);

sc_cholesky.consumes(Lkji);

...

}

};

20

CONTROL TAG

tag

item

DATA ITEM

step

COMPUTE STEP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The CnC specification defines the data- and control-flow graph.

Every box/circle is a static placeholder (collection), during
execution many instances will be dynamically created (put()) and
consumed (get()).

Each instance has a unique identifier (per collection)

• Data-collections hold key/value pairs

• Step-collections hold computation instances, each has its
unique identifier

• Control-collections hold uniquely identified tags

The relations affect instances.

21

Dynamic Execution

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Sample step (cholesky)

// Perform unblocked Cholesky factorization on the input block

// Output is a lower triangular matrix.

int cholesky::execute(const int & t, cholesky_context & c) const

{

tile_const_ptr_type A_block;

tile_ptr_type L_block;

int b = c.b;

const int k = t;

c.Lkji.get(triple(k,k,k), A_block); // Get the input tile.

L_block = std::make_shared< tile_type >(b); // allocate output tile

for(int k_b = 0; k_b < b; k_b++) {

// do all the math on this tile

}

c.Lkji.put(triple(k+1, k, k), L_block); // Write the output tile

return CnC::CNC_Success;

}

Data is read/consumed
through calling get on the
mediating item/data-collection

Data is written/produced
through calling put on the
mediating item/data-collection

22

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC has well defined execution semantics

• Instances monotonically acquire attribute

• Data: available, dead

• Steps: ready, executed, dead

• Control: available, dead

• Step instances execute at some pointer after their control and
input data are available

23

Execution Semantics

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

24

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

First step
instance starts

25

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

First step instance
produces control and data

(step is now dead)

Each prescribed step is
to be executed once

with each control-tag.
Here the face-detection
pipeline is prescribed 3x

(e.g. for 3 scaling
factors).

26

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Control and data
available for 1st instance:
First scaling can start on

original image.

No data available yet:
No instance is ready!

27

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Data gets produced.
Needed by 2 steps.

28

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Control and data available
for the next instance:
Next one scales from

previously scaled image
(reads from “pyr”).

Now data available for first instance:
Detection/matching on first scaled

image can start!

29

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

New data gets produced.
Needed by 2 steps.

First seq instance
gets produced!

We found faces!

30

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Control and data available
for the last instance:

Ready to start!

Now data available for
next instance:

One more ready for
matching/detection!

31

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

New data gets produced.
Needed by 1 step.

Second seq instance
gets produced!

32

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Control and data available
for the last instance:

Ready to start!

33

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Last seq instance
gets produced!

34

A

B C

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Asynchronous Parallelism

Synchronous „parallel_for“ Asynchronous with CnC

Execution of an iterative stencil code
• X-axis: time
• Y-axis: number of threads
• Color: iteration number

One iteration at a time Iterations overlap

idle

35

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Requirements in space

Execution minimize requirements in time

• Dependences define a partial execution ordering

Also need to minimize requirements in space

• No overwriting (write once, dynamic single assignment (DSA))

• Dependencies defined on values

• Each given collection name & tag is associated with a unique value

36

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The Contract
guarantees to support productivity

If the programmer follows the rules

• Atomic steps (get inputs, compute, put outputs)

• No overwriting

• No side effects

Then CnC

• Guarantees determinism and serializability

• Can provide a bag of features (analysis, fault-tolerance, platform-
independence, ...)

But

Can do what you want. CnC will handle scheduling.

37

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Checkpoint/restart/continue

Continuously, asynchronously save state changes

 The set of attributes of instances of steps, tags and items

 The contents of items (available but not dead)

No user involvement required

 User can optimize

No barriers

No synchronization

Can restart from any saved state

 On a different machine

 On a different configuration

 On a different CnC runtime

 …

Nick Vrvilo (Rice)

39

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Tuning

CnC separates domain from tuning

A given domain specification can

• Get executed as-is

• Be paired with tuning hints

• Be paired with a tuning specification

Domain spec is stable for a large set of tunings

40

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

42

Intel® CnC: Tuning Interface

Optional tuner per collection instance

 As template type-parameters and optional construction argument

 One tuner (instance) can be used for multiple collections

 Tuner code separate from step-code

Tag-ranges (configurable partitioner, range-sizes)

Storage types (hash-map, vector, SQL)

Tag memoization

Get-count

Scheduling hints: tag-functions, priorities, affinity

Distribution

Cancelation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

For each collection type there is a corresponding tuner base type
(but you can use multiple inheritance to combine into one).

Your custom tuner derives from the appropriate base tuner and
then implements its tuning features.

All tuning is isolated from domain code.

43

How to write a tuner?

class my_tuner : public CnC::step_tuner
{

int compute_on(int tag, my_context & ctxt) const
{
return tag % numProcs();

}
...

};

Custom tuners
implement a given
interface (partially).

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Use step_tuner::depends to declare dependences.

Steps will be launched not before all dependences are satisfied.

44

How to avoid re-schedules

template< typename T >
void cholesky_tuner::depends(const int tag, cholesky_context & c, T & dC) const
{

dC.depends(c.tiles, triple(tag, tag, tag));
}
...
template< typename T >
void cholesky_tuner::depends(const triple & tag, cholesky_context & c, T & dC) const
{

const int k = tag[0], j = tag[1], i = tag[2];
dC.depends(c.tiles, tag);
if(i==j) { // Diagonal tile.

dC.depends(c.tiles, triple(k+1,j,k));
} else { // Non-diagonal tile.

dC.depends(c.tiles, ***************);
dC.depends(c.tiles, ***************);

}
}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Runtime cannot determine when an item will no longer be used.

Programmer needs to provide additional information.

Here: number of gets to each item

45

How to garbage collect items?

struct cholesky_tuner : public CnC::hashmap_tuner
{
...

int get_count(const triple & tag) const
{

int _k = tag[0], _i = tag[2];
if(_k == _i+1) return CnC::NO_GETCOUNT; // that's our result
return (_k > 0 && _k > _i) ? (m_p - _k) : 1;

}
...
};

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. Obey DSA

 In other words, don’t overwrite what you get

2. Use smart-pointers (std::shared_ptr) instead of non-pointer
item types

 Without smart pointers, garbage collection (get_count) will not work

3. Tell the system that it’s safe to marshal/serialize by using
CNC_POINTER_SERIALIZABLE

1. Content (what it points to) must of course be serializable

46

How to avoid copying?

typedef std::shared_ptr< const tile_type > tile_const_ptr_type;
typedef std::shared_ptr< tile_type > tile_ptr_type;

// Item collections
CnC::item_collection< triple, tile_const_ptr_type, cholesky_tuner > tiles;

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Making a CnC program distCnC-ready*

#include <cnc/dist_cnc.h>

 sets #define and declares dist_cnc_init template

Instantiate CnC::dist_cnc_init< … > object

 First thing in main, must persist throughout main

 Template parameters are the contexts used in the program

Marshalling of non-standard data types (tags and items)

 Simple mechanism (similar to BOOST)

 int, double, float, char etc. don’t need explicit serialization

Same binary runs on shared and distributed memory

*distCnC-readyness doesn’t guarantee good performance, but it
enables execution on a distributed memory system.

47

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Tuning

The key to good performance on distributed memory is the right
distribution plan

 What data goes where (data distribution)

 What computation is executed where (work distribution)

The default is a simple local round-robin scheduling

 Data is sent to where needed (requested)

 Likely to be inefficient – mostly development aid

48

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

DistCnC-ready performance (UTS)

• Unbalanced tree search

• Tree shape unknown in
advance

• CnC code is trivial

• CnC: 151 loc

• Shmem: ~1000 loc

• MPI: ~800 loc

• CnC performs better on single
node (multi-threaded)

• Performance gap in the mid-
sized region is a load-balancing
issue

• Experimental version
solves it

0

2

4

6

8

10

12

16 32 64 96 128 160 192 224 256

1 2 4 6 8 10 12 14 16

sp
e

e
d

u
p

 o
v

e
r

1
 n

o
d

e

#Threads/ranks

#Nodes

UTS [T3XXL] Speedup

MPI

CnC

49

Configuration: 2*X5670 @2.93GHz, 12*4GB DDR3@1333, Mellanox* QDR IB HCAs; RHEL*6.1, Intel(R) Compiler 12.1, gcc 4.5.2
See also optimization notice at the end of the presentation.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

distCnC-ready Performance

Default round-robin distribution can be arbitrarily bad.
If bad continue with tuning step.

0.00

50.00

100.00

150.00

200.00

250.00

1 2 4

T
im

e
 [

se
c]

#nodes (24 h-threads each)

CnC Time (dist-ready) [GigE]

inverse

primes

mandelbrot

cholesky

50

Configuration: 2*X5670 @2.93GHz, 12*4GB DDR3@1333, Mellanox* QDR IB HCAs; RHEL*6.1, Intel(R) Compiler 12.1, gcc 4.5.2
See also optimization notice at the end of the presentation.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

We can easily declare a distribution plan

• Computation and data items have unique identifiers!

We can easily let data follow computation

We can also let computation follow data

• We know the dependences!

51

Declaring Distribution Plans

compute1

COMPUTE STEP

data

DATA ITEM

compute3

COMPUTE STEP

compute4

COMPUTE STEP

compute2

COMPUTE STEP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC makes distribution easy and efficient

Tuner to declares data or work distribution and let the other follow

int tuner::compute_on(step_tag)

int tuner::consumed_on(item_tag)

vector< int > tuner::consumed_on(item_tag)

Returning ranks/ids of address-spaces

Mapping tag->rank can be computed

 Statically at compile time

 Dynamically at init-time

 Dynamically on the fly

Templates let compiler optimize

Isolated from application code

• Changing the distribution plan doesn’t require re-writing any of the computation code

52

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Distribution function (cyclic1)

Used for primes

int tuner::compute_on(const int & i) const

{

return i % numProcs();

}

Simple

53

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Distribution function (cyclic2)

int tuner::compute_on(const int& stage,

const int& stream) const

{

return stage % numProcs();

}

Good for pipeline if stages
require larger data sets

Pipeline# (data parallel)

S
ta

g
e
s
 (

ta
s
k
 p

a
r
a
lle

l)

Used for
mandelbrot

Pipelines (data parallel)

S
ta

g
e
s
 (

ta
s
k
 p

a
r
a
lle

l)

int tuner::compute_on(const int& stage,

const int& stream) const

{

return stream % numProcs();

}

Good for pipeline if large chunks
of data go through all stages

54

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Distribution function (blocked)

int tuner::compute_on(const int& x, y, z) const

{

return x * NBLOCKS_X / nx

+ (y * NBLOCKS_Y / ny) * nx

+ (z * NBLOCKS_Z / nz) * nx * ny

}

Minimizes data transfer.

Used for
CholeskyUsed for

stencil

55

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Distribution function (blocked cyclic)

int tuner::compute_on(const int& stage, const int& stream) const

{

return ((x + y * m_nx) / BLOCKSIZE) % numProcs();

}

Good if block-size and/or –shape is relevant.
Good for load balancing through over-decomposition

56

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Distribution function (tree)
int tuner::compute_on(const int & tag, context & c) const

{

return tag >= LIM

? CnC::COMPUTE_ON_LOCAL

: tag % numProcs();

}

At certain tree-depth stop
distributing and stay local

16

1

2

8

4

17 18

9

19 20

10

21 22

11

23 24

12

25 25

13

26 27

14

28 29

15

30

5 6 7

3

Used for
quickSort

57

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Selecting distribution at runtime

inline static int compute_on(const dist_type dt, const int i,
const int j, const int n, const int s)

{
switch(dt) {
default:
case BLOCKED_ROWS :

return (((j*j)/2 + 1 + i) / s) % numProcs();
break;

case ROW_CYCLIC :
return i % numProcs();
break;

case COLUMN_CYCLIC :
return j % numProcs();
break;

case BLOCKED_CYCLIC :
return ((i/2) * n + (j/2)) % numProcs();
break;

}
}

58

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Changing distribution (cholesky)

Optimal distribution might
depend on several factors

CnC makes it easy to
customize.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 4 8 16 32

S
p

e
e

d
u

p
 o

v
e

r
si

n
g

le
-n

o
d

e
 M

K
L

-L
A

P
A

C
K

#nodes (24 h-threads each)

Cholesky - Speedup
(matrix 16kx16k, blocks 100x100)

MKL-LAPACK

CnC COLUMN_CYCLIC

CnC BLOCKED_ROWS

CnC ROW_CYCLIC

CnC BLOCKED_CYCLIC

MKL-scaLAPACK

59

Configuration: 2*X5670 @2.93GHz, 12*4GB DDR3@1333, Mellanox* QDR IB HCAs; RHEL*6.1, Intel(R) Compiler 12.1, gcc 4.5.2
See also optimization notice at the end of the presentation.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Scalability Comparison

0

1

2

3

4

5

6

7

1 2 4 8 16 32

MatrixInverse - Speedup
(matrix: 16kx16k, blocks: 90x90)

MKL-LAPACK CnC MKL-scaLAPACK

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 4 8 16 32

Cholesky - Speedup
(matrix 16kx16k, blocks 100x100)

MKL-LAPACK CnC MKL-scaLAPACK

60

Configuration: 2*X5670 @2.93GHz, 12*4GB DDR3@1333, Mellanox* QDR IB HCAs; RHEL*6.1, Intel(R) Compiler 12.1, gcc 4.5.2
See also optimization notice at the end of the presentation.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

3dfd - Scalability

3dfd-TTI: 2 x 57-point stencil

ISO: 1 x 25-point stencil

Quasi-ideal weak scaling

Tradeoff between tile-size and communication overhead

61

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

p
a

ra
ll

e
l

e
ff

ic
ie

n
cy

 [
%

]

#nodes/#cores

RTM-3dfd parallel efficiency (1024^3)
2 processes per node, tiles:128x64x256

ISO/C++-weak

TTI/C++-weak

TTI/C++-strong

1 tile per
core

1 tile per
4 cores

Strong scaling

47% efficiency despite 4x more tiles than cores

Asynchronous execution!

61

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

62

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

63

Traditional approach from serial to
parallel obfuscates the relevant
information

The relevant information is about
dependences between computations

Conclusion

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

64

Expresses the relevant information explicitly

Is general purpose, high-level, minimal and precise

Has simple and clear rules (detailed dependencies,
single-assignment, execution model)

Separation of domain logic and tuning

Deterministic and analyzable

Conclusion - CnC

Makes writing and tuning parallel
programs effective and productive.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intel® Concurrent Collections for C++ is available from
https://icnc.github.io (sources and binary packages)

Questions? Contact frank.schlimbach@intel.com

65

CnC

https://icnc.github.io/
mailto:frank.schlimbach@intel.com

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

68

