
Intel® Concurrent Collections for C++
State of Play 2014
6th Annual Concurrent Collections Workshop

2014-09-18

Frank Schlimbach

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intel® Concurrent Collections for C++

API implementing full CnC semantics

− C++ compliant template-library for Linux and Windows

− Among others, allows data-dependent gets

Shared and distributed memory

− Single binary supports both

Separate interfaces for domain and tuning

− Tuning is an optional step

Development and debugging aids

− CnC and spec related checks (DSA, unsatisfied dependences)

− Tracing (textual and graphical), runtime checks, assertions, ...

Great performance

Free download and support forum

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc

https://icnc.github.io

2

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
https://icnc.github.io/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

With version 1.0 Intel® Concurrent Collections for C++ is
available as open source

 BSD license

 Homepage: https://icnc.github.io

 Repository: https://github.com/icnc/icnc

 Issue tracker

 Contributions welcome

 Still available from whatif.intel.com
(https://software.intel.com/en-us/articles/intel-concurrent-
collections-for-cc)

3

Out in Open Source

https://icnc.github.io/
https://github.com/icnc/icnc
https://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC can only meet acceptance if it integrates to existing codes

MPI standard in HPC

• Gradually add CnC to existing MPI code

• Use the strength of both

• Template for combining with other models

4

MPI and CnC

CnC1

CnC2

CnC3
CnC4

CnC5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC and SQL both deal with key/value pairs. Can we combine?

• Example code allows using (my)SQL database as internal
storage

• Everything handled in a tuner, no change to step codes

• DB configuration (port, schema, etc.)

• Item collections can be pre-filled with existing data

• Tuner defines which data is written to DB
• All data held in a hashmap anyway

5

New use: SQL and CnC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A formalism/definition of how a graph interacts with its
environment (and the runtime).

This allows for a variety of uses:

 Re-using a graph/feature in different programs

 Re-using a graph/feature multiple times in the same program

 Connecting different graphs to form a larger graph

 Connecting non-CnC graphs in a CnC-like way

 Hierarchical, self-similar nesting of graphs

6

Re-Use through graphs
A result of years of discussions with Kath (and others)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

CnC Graphs have a well defined external behavior

 Graphs communicate with the outside only through CnC
collections

 Input/output is just like communication with the
environment

 Graphs report when they enter and leave quiescence

 Needed for quiescence detection/handling

 A graph is neither prescribed nor is it a collection

7

What’s a CnC graph?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Connecting collections live next to graphs

 A graph is a new “type” of node in a CnC graph

 A graph can connect to any item- and tag-collection
– Its input and output

 It does not directly connect to other graphs or step-collections

 Adds to the static, fixed graph

 Conceptually, all pure CnC graphs expand to a single flat graph

8

Connecting a CnC graph

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

9

Reductions in CnC

compute1

COMPUTE STEP

compute2

COMPUTE STEP

cells

DATA ITEM

sums

DATA ITEM

CONTROL TAG

tag

result

DATA ITEM

Reduce?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

10

Reduction using a graph

compute1

COMPUTE STEP

compute2

COMPUTE STEP

cells

DATA ITEM

sums

DATA ITEM

CONTROL TAG

tag

Reduce
GRAPH

result

DATA ITEM

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

11

Graph1

Hierarchy/Nesting

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

12

Graph1

Hierarchy/Nesting

DATA ITEM

Graph2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

13

Graph1

Side by side

DATA ITEM

DATA ITEM

CONTROL TAG

Graph2
Graph3

Graph4

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

14

Graph1

The env is the outmost level

DATA ITEM

DATA ITEM

CONTROL TAG

Graph2
Graph3

Graph4

Environment

DATA ITEM

CONTROL TAG

A graph doesn’t need
to know whether its
outside is a graph or

the environment.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

We (Kath and Frank) think using a generalized graph approach
for reductions has benefits over other approaches.

• No special collection type

• Involved collections can be used in other relations as usual

• They are customizable, we can provide different flavors and
the user can write own optimized graphs

• Chainable

• No implied serial bottleneck or barrier

However, connecting a graph might be more elaborate than
special purpose solutions.

15

Reduce Graph

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• Operates on a “continuous” stream of incoming elements

• Continuous input accessed via callbacks

16

Example: Graph-like Reduction in CnC

Reduce

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Reduce

• Operates on a “continuous” stream of incoming elements

• Continuous input accessed via callbacks

• Input/output to a graph handled through CnC collections

17

Graph-like Reduction in CnC

Reduce RedVals

Elems

Ns

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Reduce

• Operates on a “continuous” stream of incoming elements

• Continuous input accessed via callbacks

• Input/output to a graph handled through CnC collections

• Connected steps operate with usual put/get semantics

18

Graph-like Reduction in CnC

Reduce RedVals c1

p1

p2

...

Elems.put(x,y);

...

...

Ns.put(r,n);

...

...

RedVals.get(r,v);

...

Elems

Ns

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Reduce

• Operates on a “continuous” stream of incoming elements

• Continuous input accessed via callbacks

• Input/output to a graph handled through CnC collections

• Connected steps operate with usual put/get semantics

19

Graph-like Reduction in CnC

Reduce RedVals c1

p1

p2

...

Elems.put(x,y);

...

...

Ns.put(r,n);

...

...

RedVals.get(r,v);

...

Elems

Ns

One Reduce graph
handles multiple

reduction instances
(concurrently)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

20

2D Reduction using 2 graphs

compute1

COMPUTE STEP

compute2

COMPUTE STEP

cells

DATA ITEM

sumsR

DATA ITEM

CONTROL TAG

tag

ReduceR
GRAPH

result

DATA ITEM

ReduceC
GRAPH

sumsC

DATA ITEM

NRows

DATA ITEM

NCols

DATA ITEM

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Asynchronous and Parallel Dependent Reduce

Row reductions (pink) and
column reductions (turquois)

overlap!

21

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

struct reduce_context : public CnC::context< reduce_context >
{

CnC::tag_collection< tag_type > tags; // control tags for our step
CnC::item_collection< tag_type, int > a; // the matrix
CnC::item_collection< int, int > cnt1, cnt2; // provides number of participating items per red.
CnC::item_collection< int, int > sum1, sum2; // outputs of reductions
CnC::step_collection< putter > sc; // the steps
CnC::graph * red1, * red2; // our 2 sub-graphs: 2 reductions

reduce_context() : ...
{

tags.prescribes(sc, *this);
sc.produces(a);
// first reduction inputs a and outputs sum1
red1 = CnC::make_reduce_graph(*this, "red_row",

a, // input collection: our matrix
cnt1, // count of items per reduction
sum1, // output collection: sum per row
std::plus<int>(), // reduction operation '+‘
0, // identity element
selector()); // selector

// second reduction inputs sum1 and outputs sum2
red2 = CnC::make_reduce_graph(*this, "red_red",

sum1, // the input collection is the output of red1
cnt2, // count of items per reduction
sum2, // the final output: sum of all values
std::plus<int>(), // reduction operation '+‘
0, // identity element
selector()); // selector

}
}

22

Using a graph

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A graph

• Accepts input/output as arguments to its constructor

• wires input and output in its constructor (if applicable)

• Uses CnC collections only

• Put/get/callbacks

• Or calls quiescence handlers appropriately

23

Writing a graph

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A graph might operate on streams of incoming data.

Requires more than just get().

We use callbacks (iteration can be built on top).

24

Callbacks

typedef struct _callback {
virtual void on_put(const T &, const item_type &) = 0;
virtual ~_callback() {};

} callback_type;
void on_put(callback_type * cb);

Same for tag-collections
(without item argument)

Remember: if all activity of a graph
happens in callbacks then no explicit
quiescence handling is needed.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A graph can internally do whatever it wants, it might even hide its
internals from CnC and its environment.

If there is more than CnC in it (e.g. collections and callbacks) then
it must properly communicate its quiescence state.

• It might start threads or create TBB tasks

• A graph is born in quiescent state

• void leave_quiescence() const;
• Must be called only within a on_put or within a CnC step

• void enter_quiescence() const;
• Means graph will not return to activity unless new data arrives

• Allows non-determinism in the graph’s implementation

25

Quiescence

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Step-like reuse

More on DBs

Load balancing on distributed memory

Explicit tag-functions

Common CnC compiler infrastrcuture?

Tools?

??

26

Future

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

27

backup

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Internally, graph-like patterns can do what they want.

Externally they behave like CnC graph

• All communication with the outside through CnC collections

Any functionality is thinkable

• Currently we provide prototypes of reduction and join/cross

• Some details on reduction indicate the idea/what’s possible

28

Graph-like patterns

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Associative and commutative operations

Shared memory reduction based on tbb::combinable

• Operation stays thread-local until N or “done” shows up

• “done” triggers TBB’s reduction

• N triggers check, if reached N it triggers TBB’s reduction

Distributed memory mimics this behavior

• Operation stays thread-local until N or “done” shows up

• If “done” shows up it trigger tree-based fan-out/fan-in
reduction on results of TBB’s reduction

• N also triggers tree-based fan-out/fan-in. Subsequent puts
imply a p2p communication between producer and owner.

29

CnC Reduction (current implementation)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

“Done” mechanism closer to MPI style, has more predictable performance

N mechanism more flexible, can lead to heavy communication

Other implementations are possible

• Operate on chunks (like MPI does it)

• Non-commutativity (accept ordering operator)

• Tuning

• Provide number of participating elements/chunks per process (like MPI)

• Speculation

• Other communication patterns, message/reduction agglomeration...

• ?

• Build your own

30

Implementation options

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

31

