A couple application areas for your
consideration ... ©

CnC-2014: The Sixth Annual Concurrent Collections Workshop

Bill Feiereisen, Intel Corporation
September 18, 2014

ﬂ

Extreme Scale Science
Next Generation of Scientific Discovery

Genomics Data explosion is driven by

Data Volume increases exponential technology
to 10 PB in FY21 advances

=S High Energy Physics Data sources

(Large Hadron Collider) Scientific Instruments

= 15 PB of data/year * Scientific Computing Facilities
* Simulation Results

* Observational data

7 3 Light Sources
) Approximately
4 300 TB/day Big Data and Big Compute

™ - | Climate * Analyzing Big Data requires processing (e.g.,
Al search, transform, analyze, ...)

|| Data expected to be _ _ _
100 EB * Extreme scale computing will enable timely

and more comblex nrocessing of increasinly
“Very few large scale applications of practical importance are NOT data
intensive.” — Alok Choudhary, IESP, Kobe, Japan, April 2012
Courtesy of Bill Harrod,
DOE Office of Science

Exascale Computing Initiative (ECI)
Target System Characteristics

20 pJ per average operation
- ~X 40 improvement over today's efficiency

e Billion--way concurrency

* Ecosystem to support new application development
and collaborative work, enable transparent
portability, accommodate legacy applications

* High reliability and resilience through self--
-diagnostics and self-- healing

 Programming environments (high--level languages,
tools, ...) to increase scientific productivity

Courtesy of Bill Harrod,
DOE Office of Science

On-die Interconnect

{5 Courtesy of Shekhar Borkar

Compute energy

0.8 -

0.6 - On die global IC energy

0.4 - — -y

0.2 -

90 65 45 32 22 14 10 7
Technology (nm)

Interconnect energy (per mm) reduces slower than compute
On-die data movement energy will start to dominate

2010-2012: UHPC
(7 [)

Incoherent
HW cache

Large
Register
File

\

“Clock + Vdd
64b
Gate Unit ALUS

Reductions Point-to-Point
& Multicast Network / / \

64KB L1 SPAD 64KB L1 SPAD 64KB L1 SPAD 64KB L1 SPAD 64KB L1 SPAD

1@
%

>_x

Barrier DM
\\Ietwork Unit

+ + + + +
32K icCache 32K icCache 32K icCache 32K icCache 32K icCache

L 2.5 MB Shared L2 Memory S

64KB L1 SPAD 64KB L1 SPAD 64KB L1 SPAD 64KB L1 SPAD

32K |cCachc 32K |cCachc 32K |cCachc 32K |cCachc

/

* Promising trend: simple-core energy efficiency
* Using a “radical” event-driven task runtime model and apps

2012-2014: FastForward-1 Goals

* Examine the viability of many simple cores
—Arranged hierarchically
e Support legacy software models
-C, MPI-lite, OpenMP, limited C++
—Explore use of scratchpads, advanced I/0
- Exploit low-latency high-BW network

 Left for future programs:
-new programming models

The Proxy Apps of FF1

e

CLOMP C Measure OpenMP overheads and other performance
impacts due to threading.

CoMD C Atomic scale simulations of materials using Newton’s
laws.

LULESH C++ Shock hydrodynamics for unstructured meshes.

Fine-grained loop level threading.
miniFE C (C++) Finite element code.
Nekbone Fortran, CFD solving incompressible Navier-Stokes equation

C using conjugate gradient. Compute intensity, small
messages, allreduce.
SMC Fortran Explicit combustion code, based on high-order finite
difference stencil
SNAP Fortran Deterministic radiation transport for structured

meshes.

Energy Breakdown for Parallel
Code

* This is unfortunately a blank side

Takeaways ...

* DRAM access costs dominate some workloads.

 On die-memory accesses use more energy than
compute.

 Unchanged legacy apps/languages inflict overhead
even with a radical hardware architecture.

* Note that all the apps simulate processes in
physical space

* And ... specifying data-locality/movement is difficult
enough

Two algorithms to make your life ...
vet more interesting.

* In contrast to physics simulations where
initial hints at data layout/movement can
come from domain decomposition,

—data locality/movement control is not as obvious
in the two algorithms that I will discuss

* DeNovo assembly of DNA
—DeBruijn graphs

 Mapping of DNA to existing databases
-Needleman-Wunsch, Smith-Waterman

But first, some context:
The central dogma of biology

Typical gene

ey
2
Py

¥

92020000,
000

rotein

Binds to messenger RNA|

MicroRNA
Protein assembly
is blocked

Genome Assembly

Create a full genome without reference to a database

 The data “explosion” of P_Ut that
sequenced DNA comes J!975aW

from the new High puzzle
Throughput Sequencers Dack
that (unfortunately) together >

deliver their data in

S h 0 rt ran d om Seq uences Unknown Genome: AGCTATAGCGCTATCGTAGCTAGCGCTAGCT

- W h I C h n e ed tO be l Next-generation sequencing machine
assembled into the jig- AGCTATAG CTATAGCG
saw puzzle portrayed to SRS Tt

- TCTAGCGC CGCTATCG
the ri g ht AGCTAGCG ATCGTAGG

Genome assembly software
* Two general types of AGCTATAG GCTAGCGC
assemblers TCTAGCGC AGCTAGCG
CTATAGCG ATCGTAGG CGCTAGCT
— Overlap Consensus TG

— De Bruijn Graphs

* De Bruijn methods have
proven very efficient

Reconstructed genome : AGCTATAGCGCTATCGTAGCTAGCGCTAGCT

Figure 1. Workflow of discovering the genome of a species

De Bruijn Graph Assembly

« Wikipedia: De Bruijn graph of m symbols is
a directed graph representing overlaps between
sequences of symbols

 Use as an assembler - Concept:
— Decompose all reads into k-mers (words of fixed length k)

— Construct a graph with the k-mers as vertices and the
directed edges are the connections between a k-mers that
overlap by k-1

— The assembly is the path through the graph

aaccgg

aacc + accg +| ccgg

http://en.wikipedia.org/wiki/Directed_graph

The De Bruijn Graph

* A representation of all possible paths joining reads together
Pevsner, PNAS 2001

 Choose a word length k (5 in this example, but larger in
applications)

AACTA

The De Bruijn Graph

AACTA ACTAA

*—0

The De Bruijn Graph

AACTAACTAACTAAC

* o ~w

The De Bruijn Graph

AACTA ACTAACTAACTAACT

~—o -———@

The De Bruijn Graph

AACTAACTACGCG

AACTA ACTAACTACT TAACT

G—

Same sequence, different k=3

ACTACTACTGCAGACTACT
TAC<«— CTA CTG v 4 C\> GC
A
Yer/ N
‘/

GACe—— AGA

Same sequence, different k=17

ACTACTACTGCAGACTACT

ACTACTACTGCAGACTA

N\

TACTACTGCAGACTACT
CTACTACTG CAGACW/)

Recovering unambiguous contigs

bulge- two
different paths;
® o in a diploid
- ® O
° ® 9 ° —e genome both
° - might be correct
- [
[
@ [
[
¢ °e—e o
= ® .
\ .

Parallel Implementations?

Completely random memory access. KMer counting generates very large
intermediate data. Early implementations in shared address space.

Recent work has seen many efforts in distributed implementations using bulk
synchronous parallelism for DeBruijn assemblers

- Large load imbalance problems depending upon the “counts” of KMers.. Data movement hard to
control

I know of almost no efforts to apply asynchrony.

But & The Joint Genomics Institute of the Department of Energy is now using
the one sided communication of UPC - from the preprint for SC'14:

Parallel De Bruijn Graph Construction and
Traversal for De Novo Genome Assembly

Evangelos Georganas’, Aydin Bulug', Jarrod Chapman*

Leonid Oliker!, Daniel Rokhsar* ¥, Katherine Yelick*
T Computational Research Division / *Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
*EECS Department / YMolecular and Cell Biology Department, University of California, Berkeley, USA

This assembler is named Meraculous

Meraculous

’ « Two expensive pieces

reads —— e — 1) count Kmers and populate
s e the distributed hash table
#1 | 2 2) Build the distributed
kmers =TT me s ‘PeBI‘l_,Iijl’), (sub)graph -
- e = = contigs
42 - « #1 uses MPI_ALLtoallv
Contigs == mmm — Large load imbalance
wav w/high count Kmers
—— (Wheat genome)

scaffolds I N S

Fig. 2: Meraculous assembly flow chart.

 Challenge:

- Build a dependence graph
for #1

intel“

Meraculous

Distributed
Input Read kmers Store k-mers hash table
* #2 (build the DB graph) ____ Py
places the remote KMers iy P,
into the distributed hash P
table through one-sided Shecae &
P
UPC comms. 2 B
. . . . Fig. 5: Parallel de Bruijn graph construction.
* No distinction (right now)
between processors that 1) P niates o remote segregate [Distibuted
are on-or-off die E fmer sl when the degnatod S0 bash table
— Think of mapping to a pjLocal buffer Buffer local |1\ \ [
hierarchical hardware _ for o to Py —Local to Fo
E : 2) P, later stores -
e Cha”enge . F the k-mers in its ___|Local to P,
. E lo.ca.l'buckets of the :
- build a dependence graph o bt distributed hash T 1.0cal to P,
and o =

. . Fig. 6: Communication optimization for the de Bruijn graph construction. In

— Ma ke |t h an d Ie h Ierarc h y this example, processor p; performs one remote aggregate transfer to processor
po when the local buffer for po gets full. pg will store these k-mers in its
local buckets later by iterating over its local-shared stack.

intel“

pause

Sequence Alignment/Mapping

Compare your reads against known databases

« Comparison between two sequences starts with a “pairwise
alignment”

 Example:
Sequence #1: CGGGTATCCAA

Sequence #2: CCCTAGGTCCCA

Alignment #1 Sequence #1: CGGGTA--T-CCAA
Sequence #2: CCC-TAGGTCCC-A

Alignment #2 Sequence #1: CGGGTA---TCCAA
Sequence #2: CC--CTAGGTCCCA

Alignment #3 Sequence #1: C-GGGTA--TCCAA
Sequence #2: CC-—-CTAGGTCCCA

Three alignments - which one is best?

Dynamic Programming,
Needleman-Wunsch Algorithm

* Use these rules
- Move horizontally introducing a gap
- Score += gap score
— Move vertically introducing a gap C(i-1,-1)
- Score += gap score

- Move diagonally
— Score += corner value

e 1) Then build a matrix of Clij-1) —
scores starting at the upper
left
— Cell score is the maximum of qg;aq,
qup Or Qjeft Qdiag —

- Mark the path with an arrow back to

the max-cell (if there is more than Qup =
one, mark both) Qeft =
e 2) Then traceback through the
arrows along the path is the Where
alignment « C s the score previously calculated

* Sis “substitution” score — in our case 1 or -1
« gisthe gap score —in our case -3

Set up a matrix

G A A G A

-3 -6 -9 -12 -15
G -3 1 -1 -1 1 -1
T -6 -1 -1 -1 -1 -1
T -9 -1 -1 -1 -1 -1
T 12 |1 -1 -1 -1 -1
A -15 -1 1 1 -1 1
A -18 -1 1 1 -1 1
G -21 1 -1 -1 1 -1

Follow the rules to build a score matrix

G A A G A
0 -3 -6 -9 -12 |-15
G 3 1 -1 -1 1 -1
14— 24—.5 -8 % -11
T b -1 -1 -1 -1 -1
T 9 -1 -1 -1 -1 -1
T 12 |- -1 -1 -1 -1
A 15 |- 1 1 -1 1
A 18 |-1 1 1 -1 1
G 21 |1 -1 -1 1 -1

Follow the rules to build a score matrix

G A A G A
0 -3 -6 -9 -12 |-15
G -3 1 1 -1 1 -1
f 14— 2¢—.5 -8{' -11
T 6 -1! 1 \ t1 1
-2 0«4 -3 -64— -9
T 9 -1 i i -1 -1
T -12 -1 -1 -1 -1 -1
A -15 -1 1 1 -1 1
A 18 -1 1 1 -1 1
G 21 1 ol 1 1 -1

Follow the rules to build a score matrix

G A A G A
0 -3 -6 -9 -12 |[-15
G -3 1 -1
? 1 <l— -24— -11
T -6 -1! 1
-2 4 -9
T -9 -1T \J t 1
-5 -4 -7
T -12 -1 -1
A -15 -1 1 1 -1 1
A 18 -1 1 1 -1 1
G 21 1 -1 o1 1 -1

Follow the rules to build a score matrix

Follow the rules to build a score matrix

G A A G A
0 -3 -6 -9 -12 (-15
G -3 1 -1 -1 1 -1
? 14— -2¢—.5 -8 -11
T 6 -1 M '\ 1
24 A -3 -6 -9
T 9 -11' -1 1
A -3, .. -4 -7
T -12 -1 | N, 1"\{ 1
-8 AT\ -6 o 4-2} -5
A 15 (-1 [1 N[N\ 1~
. -7 ® -5 ;1
A SRR 1<|) \\1 1
R-14| 410 46 -6 W A
G -21 -1 |1 '\{ -IN
17| -13| -9 -5 -7

Follow the rules to build a score matrix

G B A G &

Follow the rules to build a score matrix

Global alignments with the

GAAGA--
GTTTAAG

G-A-AGA
GTTTAAG

G-—-AAGA
GTTTAAG

G-AAGA-
GTTTAAG

GAAA-G-
GTTTAAG

GAA-GA-
GTTTAAG

highest score

* There are six global
alignments with score = -7!

e But it might make sense to
align only certain regions,
perhaps those that are
conserved - local alignment

— (This is actually the modification
that leads to Smith-Waterman)

* You can see that there is a
“wavefront” character to this
algorithm and a “kind of”
locality in the sequences that
is used to tile the data.

Dependencies and | |

% Implementation
alse dependency,
missed asynchrony
opportunity
N ¢c A C A C T A
- o0 0 0 0 0
A 2 1 2 1 0 2
G 1 1 1 1 0 1
o C 3 2 3 2 3 2 1
1 A 2 2 5 4 5 4 3 4
¢ 01 4 4 7 6 7 6 5
A0 2 3 6 6 9 8 7 B8
¢ 01 4 5 8 8 11 10 9
\A 0 2 3 6 7 10 10 10 12

This is actually Smith-Waterman, which is a variation of Needleman-Wunsch

37

Dependencies and | |

Implementation

I A
0 0
0 2
0 1
2 1
3 4

C
0
1
1
3

O

8

11 10 9

1
0
2
1

1

4 4 7 6 7

1

4 5 8 |8

1

A0 2 2 5 4] 5 4

G 0
¢ 0

C
0
1
1
¢ 00 3 2 3 2

0
A 0 2

A0 |2 3 6 6 9

C 0

\4 0 2 3 6 7 10 10 10 12

* Tile it up ...
H =

Dependencies and ||
Implementation

 Sagnak Tasirlar and Sanjay Chatterjee:

v\ Y
VNN
-
v\

—2

-1
e R RN

VN VN

O->E->0->0

YN VN VN
O->C1>[1>0

V\y ¥ [Oexecuted MDDF
B running DDDF

—

VL

Fig. 23: Smith-Waterman dependency graph, its hierarchical
tiling and execution wavefronts

 Sagnak has an OCR implementation, Sanjay has a
DDF implementation

* Challenge:

- Build a CnC graph and make it hierarchical

I chose these examples ...

* Because they are instantiations of “big data”
analysis that you will likely see more and
more in applications

* I believe that asynchronous methods will be
well suited to genomics applications

—And also to irregular data analysis problems in
general

... and I notice that several of the data
analysis applications described in this
workshop might share this view

