Eureka-Style Computations in CnC

Jacobi2D (lterative Convergence, Stencil Computation)

Nick Vrvilo, Shams Imam\
Department of Computer Science, (mostly Shams)

Rice University

Eureka Computations

Common in tree or graph exploration
problems

Relies on speculative parallelism

Eureka event: a point in the program which
announces that a result has been found

Curtails computation time by

— avoiding further exploration of the solution space,
or

— by causing the termination of the computation

Convergence Iterations

Successive approximations to obtain more
accurate solutions

Sequence converges
— depending upon initial approximations

Speculatively parallelizing computations of
future iterations

Convergence condition is the eureka event!

Convergence and Eureka Computations

* Inherently such computations are non-
deterministic

* Convergent eureka computations
deterministic by using Branch and Bound

(BnB) algorithms

Jacobhi2D

* Implement a parallel Jacobi2D in CnC
e Jacobi2D is a stencil computation

D
(x,y-1)

D P D
(x-Ly) | (xy) | (x+1,y)

D
(x,y+1)

Jacobhi2D

D= ... // initial input

var converged = false
while (!converged) {

// stencil computation
for (x in 1 to N) {
for (y in 1 to N) {
P(x, y) = 0.25 * (D(x, y-1) + D(x-1, y) + D(x, y+1) + D(x+1, vy))
o}

// convergence check
delta = 0
for (x in 1 to N) {
for (y in 1 to N) {
delta = max(delta, P(x, y)
} o}
if (delta < epsilon) {
converged = true

Jacobi2D — CnC Approaches

* Approach-1:
— avoid the convergence check

— instead run the algorithm for a fixed number of
iterations

— provide the determinism guarantee

— cannot guarantee that convergence will be
reached in a pre-specified number of iterations

Jacobi2D — CnC Approaches

* Approach-2:

— perform the convergence at the end of each
iteration

— spawning the steps of the next iteration after
check

—implicit barrier at the end of each iteration
that limits the speculative parallelism

Jacobi2D — Our Approach

* Convergence check is an orthogonal concern

— should not interfere with the main parallelism in
the application

— runs independently when its data become
available

— trigger the eureka event that signals the
computation to terminate

e Allow future iterations to start computing
stencils once their dependences are satisfied

Jacobi2D — Our Approach Determinism

* Convergence check triggers the eureka event

* BnB strategy is used to terminate (cancel)
steps from future iterations only

* Allows us to detect the earliest iteration that
triggered a eureka
— thus produces a deterministic value

Jacobi2D CnC Graph

%iter_tag: i>

-
-
- \\
- \\
L~ PN

(iter_step: i) (delta_step: i)\

[result_item: i]

/<b|ock_tag: i,r c>
p U\
(block_step: i, r, c) = > [block_step: i, r, c]

Using cancel _tuner to do “eurekas”

Execution Time (seconds)

Performance Results

400

800 1600
Problem Size

3200

i Plain

i Eureka

Performance Results
(with priority tuner for delta step)

400 800 1600 3200
Problem Size

W Plain
i Eureka

Conclusions

e Supporting “eureka” events to cancel extra
computation has potential for large
performance improvements

— Usefulness of “eureka” event is mitigated by poor
scheduling choices

— Need proper tuning of task priorities to get any
real benefit

* Branch and Bound algorithms allow us to
maintain determinism using “eurekas”

