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Eureka Computations

Common in tree or graph exploration
problems

Relies on speculative parallelism

Eureka event: a point in the program which
announces that a result has been found

Curtails computation time by

— avoiding further exploration of the solution space,
or

— by causing the termination of the computation



Convergence Iterations

Successive approximations to obtain more
accurate solutions

Sequence converges
— depending upon initial approximations

Speculatively parallelizing computations of
future iterations

Convergence condition is the eureka event!



Convergence and Eureka Computations

* Inherently such computations are non-
deterministic

* Convergent eureka computations
deterministic by using Branch and Bound

(BnB) algorithms



Jacobhi2D

* Implement a parallel Jacobi2D in CnC
e Jacobi2D is a stencil computation
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Jacobhi2D

D= ... // initial input

var converged = false
while (!converged) {

// stencil computation
for (x in 1 to N) {
for (y in 1 to N) {
P(x, y) = 0.25 * (D(x, y-1) + D(x-1, y) + D(x, y+1) + D(x+1, vy))
o}

// convergence check
delta = 0
for (x in 1 to N) {
for (y in 1 to N) {
delta = max(delta, P(x, y)
} o}
if (delta < epsilon) {
converged = true



Jacobi2D — CnC Approaches

* Approach-1:
— avoid the convergence check

— instead run the algorithm for a fixed number of
iterations

— provide the determinism guarantee

— cannot guarantee that convergence will be
reached in a pre-specified number of iterations



Jacobi2D — CnC Approaches

* Approach-2:

— perform the convergence at the end of each
iteration

— spawning the steps of the next iteration after
check

—implicit barrier at the end of each iteration
that limits the speculative parallelism



Jacobi2D — Our Approach

* Convergence check is an orthogonal concern

— should not interfere with the main parallelism in
the application

— runs independently when its data become
available

— trigger the eureka event that signals the
computation to terminate

e Allow future iterations to start computing
stencils once their dependences are satisfied



Jacobi2D — Our Approach Determinism

* Convergence check triggers the eureka event

* BnB strategy is used to terminate (cancel)
steps from future iterations only

* Allows us to detect the earliest iteration that
triggered a eureka
— thus produces a deterministic value



Jacobi2D CnC Graph
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Using cancel _tuner to do “eurekas”
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Performance Results
(with priority tuner for delta step)
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Conclusions

e Supporting “eureka” events to cancel extra
computation has potential for large
performance improvements

— Usefulness of “eureka” event is mitigated by poor
scheduling choices

— Need proper tuning of task priorities to get any
real benefit

* Branch and Bound algorithms allow us to
maintain determinism using “eurekas”



