
Eureka-Style Computations in CnC
Jacobi2D (Iterative Convergence, Stencil Computation)

Nick Vrvilo, Shams Imam

Department of Computer Science,

Rice University

(mostly Shams)



Eureka Computations

• Common in tree or graph exploration 
problems

• Relies on speculative parallelism

• Eureka event: a point in the program which 
announces that a result has been found

• Curtails computation time by 

– avoiding further exploration of the solution space, 
or 

– by causing the termination of the computation



Convergence Iterations

• Successive approximations to obtain more 
accurate solutions

• Sequence converges 

– depending upon initial approximations

• Speculatively parallelizing computations of 
future iterations

• Convergence condition is the eureka event!



Convergence and Eureka Computations

• Inherently such computations are non-
deterministic

• Convergent eureka computations 
deterministic by using Branch and Bound 
(BnB) algorithms



Jacobi2D

• Implement a parallel Jacobi2D in CnC

• Jacobi2D is a stencil computation



Jacobi2D



Jacobi2D – CnC Approaches

• Approach-1: 

– avoid the convergence check 

– instead run the algorithm for a fixed number of 
iterations 

– provide the determinism guarantee

– cannot guarantee that convergence will be 
reached in a pre-specified number of iterations



Jacobi2D – CnC Approaches

• Approach-2: 

– perform the convergence at the end of each 
iteration 

– spawning the steps of the next iteration after 
check

– implicit barrier at the end of each iteration 
that limits the speculative parallelism



Jacobi2D – Our Approach

• Convergence check is an orthogonal concern

– should not interfere with the main parallelism in 
the application

– runs independently when its data become 
available

– trigger the eureka event that signals the 
computation to terminate

• Allow future iterations to start computing 
stencils once their dependences are satisfied



Jacobi2D – Our Approach Determinism

• Convergence check triggers the eureka event

• BnB strategy is used to terminate (cancel) 
steps from future iterations only

• Allows us to detect the earliest iteration that 
triggered a eureka 

– thus produces a deterministic value



Jacobi2D CnC Graph

Using cancel_tuner to do “eurekas”

<iter_tag: i>

<block_tag: i, r, c>

(block_step: i, r, c) [block_step: i, r, c]

(delta_step: i)(iter_step: i)

[result_item: i]



Performance Results

0

1

2

3

4

5

6

7

8

400 800 1600 3200

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Problem Size

Plain

Eureka



Performance Results
(with priority tuner for delta step)

0

1

2

3

4

5

6

7

8

400 800 1600 3200

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Problem Size

Plain

Eureka



Conclusions

• Supporting “eureka” events to cancel extra 
computation has potential for large 
performance improvements

– Usefulness of “eureka” event is mitigated by poor 
scheduling choices

– Need proper tuning of task priorities to get any 
real benefit

• Branch and Bound algorithms allow us to 
maintain determinism using “eurekas”


