N\
[N\

hld T - H - F
<D OO
Center for Domain- ISPNIE

Specific Computing [ISiren

Fast Linear Algebra Kernels with CnC

Martin Kong* Louis-Noel Pouchet*

*Ohio State University tUniversity of California Los Angeles

6™ annual Concurrent Collections workshop

Center for Domain-Specific Computing (CDSC)
Supported by NSF “Expedition in Computing” Program: www.cdsc.ucla.edu.

Disclaimer

Disclaimer #1: The code(s) presented today were not tested/tuned for
performance! (and actually, performance is not very good...)

Disclaimer #2: This talks is actually about distributed linear algebra
algorithms, especially matrix-multiplication

Overview
A quick reminder on matrix-multiplication
The Cannon (2D) algorithm
A possible implementation in icnc of Cannon
Distribution scheme and implementation details
The Ballard/Demmel (2.5D) algorithm

Open questions and ruminations...

Matrix multiplication

« Today we focus only on multiplication of square & dense matrices
* Areminder (if needed ;-)) on mm:
for (1 = 0; 1 < N; ++1i)
for (J = 0; jJ < N; ++47)
for (k = 0; k < N; ++k)
C[1i][3] += A[1][k] * B[k]I[]J]’

« Some properties to not forget:
 All loops are permutable, i and j loops are sync-free parallel

* kloop is a reduction loop, + is associative/commutative (in
theory)

Tiled Matrix multiplication

* The base mm implementation suffers several performance problems:

- data locality is poor
 Inner loop is ‘sequential’ and has large-stride on B

A better, more classical implementation of mm uses tiling and SIMD
for (ii = 0; ii < N/T; ++ii)
for (jj = 0; 3jj < N/T; ++3j)
for (kk = 0; kk < N/T; ++kk)
for (i = ii*T; i < (ii+1)*T; ++i)
for (k = kk*T ; k < (kk+1)*T; ++k)
for (J = 3J3*T; J < (33+1)*T; ++3)
C[il[j] += A[il[k] * B[k]I[Jj]l;

» Operates on tiles of size T*T, inner-loop has stride-1 accesses at most

A graphical view of mm

MATEIX MULTIFPLICATION
A B
l—l—| l—;l

OOooond OROO0
0odoo @ omodo _
OO0Do0 * Oomgog =
oo OEpood
oOoooo Oepood

C[i][j] = sum(A[i][k] * B[k][]]) for k =8 ...

In our case:
C[1][1] =»

af1][e]*B(a][1] + A[1][1]*B[1][1] + A[21][2]*B[2][1] + A[L][3]*B[2][1] + A[1][4]*B[4][1]

C

l—;l

O000
o] |mEn
.
H{EEE.
QOO

p-1
o - -
L Z —
\l_/ =~ =~ - ~
T — %
0oL Z T = — %
0 //
L~
////
|
A LA
//
— A LA
//
l L1 //
|1
// //‘
|~
’/,,”
lf§1 /
0 ﬁ@l

j—»

Distributed algorithm for mm (source: S. Baden)

« Assume p 1s a perfect square
« Each processor gets an n/vp X n/vp chunk of data
* Organize processors into rows and columns

* Assume that we have an efficient serial matrix
multiply (dgemm, sgemm)

©2012 Scott B. Baden /CSE 260/ Fall 2012

Cannon algorithm (source: S. Baden)

« Move data incrementally in Vp phases

 Circulate each chunk of data among processors
within a row or column

In effect we are using a ring broadcast algorithm
* Consider iteration 1=1, j=2:

C[1,2] = A[1,0]*B[0,2] + A[1,1]*B[1,2] + A[1,2]*B[2,2]

AQ2,0)|AQ2,1)

B(2,1)|B(2,2)

Image: Jim Demmel
©2012 Scott B. Baden /CSE 260/ Fall 2012 5

Cannon algorithm (source: S. Baden)

C[1,2] = A[1,0]*B[0.2] + A[1,1]*B[1,2] + A[1,2]*B[2.2]

« Wewant A|1.0] and
[2/0.2] to reside on the
same processor initially

» Shift rows and columns so
the next pair of values
All lland B[1.2] line up

* And so on with
A[l,2] and B[2,2]

Ao A

Cannon algorithm (source: S. Baden)
C[1,2] = A[1,0]*B[0,2] + A[1,1]*B[1,2] + A[1,2]*B[2,2]

e We first skew the matrices so
that everything lines up

» Shift each row i by i columns
to the left using sends and

receives

* Communication wraps
around

Do the same for each column

10

Cannon algorithm (source: S. Baden)
C[1,2] =A[1,0]*B[0,2] + A[1,1]*B[1,2] + A[1,2]*B[2,2]

» Takes Vp steps
* Circularly shift

+ cach row by 1 column to the left
+ cach column by 1 row to the left

* Each processor forms the
product of the two local
matrices adding into the
accumulated sum

A2,0)[A2,

Cannon algorithm (source: S. Baden)

forall i=0 to Vp -1

CShift-left A[i; :] by i // T= o+Bn3/p
forall j=0 to Vp -1
Cshift-up B[: , j] by j // T= ot+Bn%/p

for k=0 to Vp -1
forall i=0 to Vp -1 and j=0 to Vp -1

Cli,j] += A[1,;]*BJ[1,j] /' T = 2%n3/p3?

CShift-leftA[i; :] by 1 // T= ot+Bn?/p

Cshift-up BJ:, j] by 1 // T= ot+Bn/p
end forall

end for

12

CnC implementation of Cannon (2D) algorithm
* Question: how to implement a communication scheme in CnC?
* |n particular, movement of tiles to processors?
« Cannon’s algorithm “rephrased”, for s x s processors:
C(i,j) = C(i,j) + sum_{k=0}*{s-1} A(i,k)*B(k.j)
= C(i,j) + sum_{k=0}*{s-1} A(i, (i+j+k) % s)*B((i+j+k) % s, j)

 This is all we need at the CnC program level ©

« But we need tuners to ensure proper implementation of the
communication scheme :-/

13

CnC implementation of Cannon (2D) algorithm
* CnC graph:

[Ablock : i, (i+j+k)%s], [Bblock : (i+j+k)%s],[Cblock : k,i,j] -> (mm : i,3,k);
(mm : i,j,k) -> [Cblock : k+1,i,3];

* Environment:
» Prescribes nb_tiles * nb_tiles * nb_tiles instances of mm computation

 Retrieves [Cblock : nb_tiles, i, j] the final result of the reduction

 Main driver:
 Loads original, untiled matrix into tiles, put them in Ablock and Bblock collection
« Starts the graph

* Upon completion, retrieve Chlock and store it in the output matrix

14

CnC implementation of Cannon (2D) algorithm

int compute_step_dist 2d::execute(const Triple &t, context cannon _2d & c) const {
int i = t[0], j = t[1], k = t[2];
std: :shared ptr<Tile2d<double> > block_ ik A, block kj B, block ij_C;
// Cannon's formula on a 2D mesh of s x s procs:
//c(i,3)
//

int s = c.matrix_size / c.block_size;

C(i,j) + sum_{k=0}"{s-1} A(i,k)*B(k,])

C(i,j) + sum_{k=0}"{s-1} A(i, (i+j+k) mod s)*B((i+j+k) mod s, jJ)

// Fetch the blocks according to Cannon formulae. Let CnC do the hard work!
c.mat A blocks.get(Triple(0, i, (i+j+k) % s), block_ik a);
c.mat B blocks.get(Triple(0, (i+j+k) % s, Jj), block kj_B);
if (k > 0)
c.mat_C _blocks.get(Triple(k, i, j), block ij_C);
else
{
block ij_C = std::make shared<Tile2d<double> >(c.block size, c.block_size);
for (int ii = 0; ii < c.block_size; ++ii)
for (int jj = 0; jj < c.block_size; ++3jj)
(*block_ij_C) (i,3j) = 0;
}
for (int kk = 0; kk < c.block size; ++kk)
for (int ii = 0; ii < c.block_size; ++ii)
for (int jj = 0; jj < c.block_size; ++3j3j)
(*block_ij C) (ii,jj)+=(*block_ik A) (ii, kk)* (*block kj_B) (kk,3]):

c.mat_C_blocks.put(Triple(k+l, i, j), block_ij C);

return CnC: :CNC_Success;

15

CnC implementation of Cannon (2D) algorithm

* What we have: a generic, portable mm algorithm

« What we don’t have so far: an implementation of Cannon’s algorithm
Missing: placement of tasks to processors in a 2D mesh

Missing: performance tuning (depends, consumed_on, etc.)

 Implementation of task placement

Note: this code has nbt*3 tasks, Cannon’s 2D mesh has s x s processors

16

CnC implementation of Cannon (2D) algorithm

* Proposed distribution scheme: put tiles of tiles on a processor,
processors are viewed as a 2D mesh

int compute on(int i, int j, int k, int matrix size, int block size,

int numproc)

// implement cannonball distrib. A proc does a tile of blocks

int num blocks per dim = matrix size / block size;

int proc_array dim = sqrt (numproc);

int proc_block num = num blocks per dim / proc_array dim;

int node = (i / proc block num) * proc array dim + j/proc _block num;

return node;

17

CnC implementation of Cannon (2D) algorithm

 Data distribution: inform which processor will consume data

std:

{

:vector<int> consumed on(const Triple& tag) const /// for Ablock

int s = matrix size / block size;
bool bout(s];
for (int i = 0; i < s; ++i) bout[i] = false;
for (int i = 0; i < s; ++i)
{
int node = ::compute_on(tag[l], i, 0, matrix size, block_size, numProcs());
bout[node] = true;
}
std: :vector<int> out;
for (int i = 0; i < s; ++i)
if (bout[i] == true)

out.push back (i) ;

return out;

18

CnC implementation of Cannon (2D) algorithm

 Data distribution: inform which processor will consume data

std:

{

:vector<int> consumed on(const Triple& tag) const /// for Bblock

int s = matrix size / block size;
bool bout(s];
for (int i = 0; i < s; ++i) bout[i] = false;
for (int i = 0; i < s; ++i)
{
int node = ::compute_on(i, tag[2], 0, matrix size, block_size, numProcs());
bout[node] = true;
}
std: :vector<int> out;
for (int i = 0; i < s; ++i)
if (bout[i] == true)

out.push back (i) ;

return out;

19

Super-preliminary experimental results

E5620 @ 2.40GHz (westmere) ./mm_cannon_cnc.exe -n 2048 -b 64

8 core Intel(R) Xeon(R) CPU

—cnc && mpirun -n 2 -genv CNC_NUM_THREADS=4 -genv DIST_CNC=MPI
Jdist_mm_cannon_cnc.exe -n 2048 -b 64 -cnc runtime (best of 3)

gcc
icpc -ansi-
alias

Parallel Efficiency (time/(base*#cores))

[%]

10.884629 5.596946 2.953818 2.158629 1.727793

10.851598

100.00%

90.00% -
80.00% -
70.00% -
60.00% -
50.00% -
40.00% -
30.00% -
20.00% -
10.00% -
0.00% -

MM Cannon: Scalability

2 4 6

8
#threads

16

2*4

5.55699 2.968464 2.139101 1.668087

mgce

W icpc -ansi-alias

1.692625

1.63325

20

Comments on the experimental results
 On single-node MPI
» Block size matters a lot

« Setting consumed_on for Cblock accounted for 50% perf.
improvement (on an old 2-core AMD machine)

 Baseline is very low, obviously performance bug (see 2*4 results)

21

2.5D algorithm: Ballard & Demmel (source: S. Baden)

@
i
=N

Execution time normalized by 2D

Source Jim Demmel

Performance on Blue Gene P

14 ¢
12k

Matrix multiplication on 16,384 nodes of BG/P

| | _
communication e

idle -
95% reduction in comm computation m—]

))
o & VA N7
7'99 7.99 370) 370>
' e 2., R
O <D 350
©2012 Scott B. Baden /CSE 260/ Fall 2012 27

22

2.5D algorithm: Ballard & Demmel (source: S. Baden)
Johnson’s 3D Algorithm

3D processor grid: p'/3 x p'/3 x p1/3
+ Bcast A (B) inj (1) direction (p'® redundant copies)
+ Local multiplications

+ Accumulate (Reduce) in k direction “C face” Tk Cube
. . . representing
e Communication costs (optimal) C(1,1) +=
« Volume = 0O(n?/p?3) L 23/ A(1,3)*B(3,1)
+ Messages = O(log(p)) c(1,1) |
» Assumes space for !
p'? redundant copies AlL3) g
* Trade memory for o1 /|
communication Dl
!
C)
A(2,1
(2,1) s@c,
o v
B i < “A face”
A ,
Source: Edgar Solomonik
©2012 Scott B. Baden /CSE 260/ Fall 2012 23

23

2.5D algorithm: Ballard & Demmel (source: S. Baden)
2.5D Algorithm

What if we have space for only 1 < c < p'?® copies ?
M = W(c-n?/p)
Communication costs : lower bounds
« Volume =""Wn2/(cp)¥2) ; Set M =cn?/pin W (# flops/ M¥2))
+ Messages = WMpY2/c¥2) ;SetM =cn?pin W (# flops / M32))
2.5D algorithm “interpolates” between 2D & 3D algorithms

3D 2.5D

L~ (p/c)u-zl L~
0

Source: Edgar Solomonik

©2012 Scott B. Baden /CSE 260/ Fall 2012 24
24

2.5D algorithm: Ballard & Demmel (source: S. Baden)
2.5D Algorithm

« Assume can fit cn?/P data per processor, ¢>1
 Processors form (P/c)Y2 x (P/c)¥2 x ¢ grid

(Plc)l/2

AV
Q')
\ Example: P= 32, c =2

|

Source Jim Demmel

v

©2012 Scott B. Baden /CSE 260/ Fall 2012 25

25

2.5D algorithm: Ballard & Demmel (source: S. Baden)
2.5D Algorithm

« Assume can fit cn?/P data per processor, c>1
 Processors form (P/c)¥2 x (P/c)Y2 x ¢ grid

(Plc)t2

i s
3

NS

Initially P(i,J,0) owns A(i,J) &B(i,))
each of size n(c/P)¥2 x n(c/P)2

C

(1) P(i,},0) broadcasts A(i,j) and B(i,)) to P(i,},k)
(2) Processors at level k perform 1/c-th of SUMMA,
I.e. /c-th of = A(i,m)*B(m,j)
(3) Sum-reduce partial sums X A(i,m)*B(m,j) along k-axis so that
P(1,j,0) owns C(i,))

Source Jim Demmel ©2012 Scott B. Baden /CSE 260/ Fall 2012 26

26

2.5D algorithm: Ballard & Demmel

* Deriving its implementation from our Cannon’s is natural:
« We already have nb_tiles * 3 tasks
* We need a new task distribution scheme

« Expand along the ‘k’ dimension, view the processors as a 3D
mesh of height ‘c’ along the k dimension

 We do not need a new data distribution scheme

 Although we need to update the current consumed_on
implementations:

 Blocks of A and B can now be used along the k dimension
too (and need slight update in the shift functions)

 Blocks of C along k need to be reduced across processors

27

Ruminations and Open Questions
On one hand, we would like to want the communication in “CnC”:
[A:i,j]->(moveto : i,j,k)->[A:i,(i+j+k)%s]

On the other hand, the above is meaningless, we mean to say “move
data from proc i,j to proc i,(i+j+k)%s

Possible implementation: use a collection for A and B with i,j,k
indices, so that each element is produced/consumed exactly once
(simpler consumed_on implementation)

Other idea: have a collection that can be made fully local to a
processor in its declaration

« Ex: [Alocij : k] is “owned” by proc (i,j), meaning each access to
Alocij is a communication to/from proc (i,j)

28

Ruminations and Open Questions
CnC does not allow to explicitly model the communications
 Benefit of CnC: the code is simple for the user!

» Drawback for “parallel guys”: they need to write a program which
will implement the desired communication scheme

Reasoning on the communications and translating to CnC requires
conversion to DSA and sometimes “re-thinking” of the code

« Example: Cannon/Johnson/Demmel all update/rewrite a single
local tile

Implementing task-to-processor mapping is easy, congratulations!

Implementing data-to-consumer-processor mapping (i.e., push-model)
is good, but a data-to-processor mapping would be useful

29

