
1

Center for Domain-Specific Computing (CDSC)
Supported by NSF “Expedition in Computing” Program: www.cdsc.ucla.edu.

Fast Linear Algebra Kernels with CnC

Martin Kong* Louis-Noel Pouchet*‡

*Ohio State University ‡ University of California Los Angeles

6th annual Concurrent Collections workshop

2

Disclaimer #1: The code(s) presented today were not tested/tuned for

performance! (and actually, performance is not very good…)

Disclaimer #2: This talks is actually about distributed linear algebra

algorithms, especially matrix-multiplication

Disclaimer

3

Overview

• A quick reminder on matrix-multiplication

• The Cannon (2D) algorithm

• A possible implementation in icnc of Cannon

• Distribution scheme and implementation details

• The Ballard/Demmel (2.5D) algorithm

• Open questions and ruminations…

4

Matrix multiplication

• Today we focus only on multiplication of square & dense matrices

• A reminder (if needed ;-)) on mm:

for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)

C[i][j] += A[i][k] * B[k][j];

• Some properties to not forget:

• All loops are permutable, i and j loops are sync-free parallel

• k loop is a reduction loop, + is associative/commutative (in

theory)

5

Tiled Matrix multiplication

• The base mm implementation suffers several performance problems:

• data locality is poor

• Inner loop is ‘sequential’ and has large-stride on B

• A better, more classical implementation of mm uses tiling and SIMD
for (ii = 0; ii < N/T; ++ii)

for (jj = 0; jj < N/T; ++jj)

for (kk = 0; kk < N/T; ++kk)

for (i = ii*T; i < (ii+1)*T; ++i)

for (k = kk*T ; k < (kk+1)*T; ++k)

for (j = jj*T; j < (jj+1)*T; ++j)

C[i][j] += A[i][k] * B[k][j];

• Operates on tiles of size T*T, inner-loop has stride-1 accesses at most

6

A graphical view of mm

2.5D Algorithm

• What if we have space for only 1 ≤ c ≤ p1/3 copies ?
• M = W(c·n2/p)
• Communication costs : lower bounds

 Volume =""""W(n2 /(cp)1/2) ; Set M = c·n2/p in W (# flops / M1/2))

 Messages = W(p1/2 / c3/2) ; Set M = c·n2/p in W (# flops / M3/2))

• 2.5D algorithm “interpolates” between 2D & 3D algorithms

24 ©2012 Scott B. Baden /CSE 260/ Fall 2012

Source: Edgar Solomonik

3D 2.5D

7

Distributed algorithm for mm (source: S. Baden)

8

Cannon algorithm (source: S. Baden)

9

Cannon algorithm (source: S. Baden)

10

Cannon algorithm (source: S. Baden)

11

Cannon algorithm (source: S. Baden)

12

Cannon algorithm (source: S. Baden)

13

CnC implementation of Cannon (2D) algorithm

• Question: how to implement a communication scheme in CnC?

• In particular, movement of tiles to processors?

• Cannon’s algorithm “rephrased”, for s x s processors:

C(i,j) = C(i,j) + sum_{k=0}^{s-1} A(i,k)*B(k,j)

= C(i,j) + sum_{k=0}^{s-1} A(i, (i+j+k) % s)*B((i+j+k) % s, j)

• This is all we need at the CnC program level

• But we need tuners to ensure proper implementation of the

communication scheme :-/

14

CnC implementation of Cannon (2D) algorithm

• CnC graph:
[Ablock : i, (i+j+k)%s], [Bblock : (i+j+k)%s],[Cblock : k,i,j] -> (mm : i,j,k);

(mm : i,j,k) -> [Cblock : k+1,i,j];

• Environment:

• Prescribes nb_tiles * nb_tiles * nb_tiles instances of mm computation

• Retrieves [Cblock : nb_tiles, i, j] the final result of the reduction

• Main driver:

• Loads original, untiled matrix into tiles, put them in Ablock and Bblock collection

• Starts the graph

• Upon completion, retrieve Cblock and store it in the output matrix

15

CnC implementation of Cannon (2D) algorithm
int compute_step_dist_2d::execute(const Triple &t, context_cannon_2d & c) const {

int i = t[0], j = t[1], k = t[2];

std::shared_ptr<Tile2d<double> > block_ik_A, block_kj_B, block_ij_C;

// Cannon's formula on a 2D mesh of s x s procs:

//C(i,j) = C(i,j) + sum_{k=0}^{s-1} A(i,k)*B(k,j)

// = C(i,j) + sum_{k=0}^{s-1} A(i, (i+j+k) mod s)*B((i+j+k) mod s, j)

int s = c.matrix_size / c.block_size;

// Fetch the blocks according to Cannon formulae. Let CnC do the hard work!

c.mat_A_blocks.get(Triple(0, i, (i+j+k) % s), block_ik_A);

c.mat_B_blocks.get(Triple(0, (i+j+k) % s, j), block_kj_B);

if (k > 0)

c.mat_C_blocks.get(Triple(k, i, j), block_ij_C);

else

{

block_ij_C = std::make_shared<Tile2d<double> >(c.block_size, c.block_size);

for (int ii = 0; ii < c.block_size; ++ii)

for (int jj = 0; jj < c.block_size; ++jj)

(*block_ij_C)(i,j) = 0;

}

for (int kk = 0; kk < c.block_size; ++kk)

for (int ii = 0; ii < c.block_size; ++ii)

for (int jj = 0; jj < c.block_size; ++jj)

(*block_ij_C)(ii,jj)+=(*block_ik_A)(ii,kk)*(*block_kj_B)(kk,jj);

c.mat_C_blocks.put(Triple(k+1, i, j), block_ij_C);

return CnC::CNC_Success;

}

16

CnC implementation of Cannon (2D) algorithm

• What we have: a generic, portable mm algorithm

• What we don’t have so far: an implementation of Cannon’s algorithm

• Missing: placement of tasks to processors in a 2D mesh

• Missing: performance tuning (depends, consumed_on, etc.)

• Implementation of task placement

• Note: this code has nbt^3 tasks, Cannon’s 2D mesh has s x s processors

17

CnC implementation of Cannon (2D) algorithm

• Proposed distribution scheme: put tiles of tiles on a processor,

processors are viewed as a 2D mesh
int compute_on(int i, int j, int k, int matrix_size, int block_size,

int numproc)

{

// implement cannonball distrib. A proc does a tile of blocks

int num_blocks_per_dim = matrix_size / block_size;

int proc_array_dim = sqrt(numproc);

int proc_block_num = num_blocks_per_dim / proc_array_dim;

int node = (i / proc_block_num) * proc_array_dim + j/proc_block_num;

return node;

}

18

CnC implementation of Cannon (2D) algorithm

• Data distribution: inform which processor will consume data
std::vector<int> consumed_on(const Triple& tag) const /// for Ablock

{

int s = matrix_size / block_size;

bool bout[s];

for (int i = 0; i < s; ++i) bout[i] = false;

for (int i = 0; i < s; ++i)

{

int node = ::compute_on(tag[1], i, 0, matrix_size, block_size, numProcs());

bout[node] = true;

}

std::vector<int> out;

for (int i = 0; i < s; ++i)

if (bout[i] == true)

out.push_back(i);

return out;

}

19

CnC implementation of Cannon (2D) algorithm

• Data distribution: inform which processor will consume data
std::vector<int> consumed_on(const Triple& tag) const /// for Bblock

{

int s = matrix_size / block_size;

bool bout[s];

for (int i = 0; i < s; ++i) bout[i] = false;

for (int i = 0; i < s; ++i)

{

int node = ::compute_on(i, tag[2], 0, matrix_size, block_size, numProcs());

bout[node] = true;

}

std::vector<int> out;

for (int i = 0; i < s; ++i)

if (bout[i] == true)

out.push_back(i);

return out;

}

20

Super-preliminary experimental results

8 core Intel(R) Xeon(R) CPU E5620 @ 2.40GHz (westmere) ./mm_cannon_cnc.exe -n 2048 -b 64

–cnc && mpirun -n 2 -genv CNC_NUM_THREADS=4 -genv DIST_CNC=MPI

./dist_mm_cannon_cnc.exe -n 2048 -b 64 -cnc runtime (best of 3)

#threads 1 2 4 6 8 16

gcc 10.884629 5.596946 2.953818 2.158629 1.727793 1.692625

icpc -ansi-
alias 10.851598 5.55699 2.968464 2.139101 1.668087 1.63325

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 6 8 16 2*4

P
ar

al
le

l
E

ff
ic

ie
n

cy
 (

ti
m

e/
(b

as
e*

#c
o

re
s)

)
[%

]

#threads

MM Cannon: Scalability

gcc

icpc -ansi-alias

21

Comments on the experimental results

• On single-node MPI

• Block size matters a lot

• Setting consumed_on for Cblock accounted for 50% perf.

improvement (on an old 2-core AMD machine)

• Baseline is very low, obviously performance bug (see 2*4 results)

22

2.5D algorithm: Ballard & Demmel (source: S. Baden)

23

2.5D algorithm: Ballard & Demmel (source: S. Baden)

24

2.5D algorithm: Ballard & Demmel (source: S. Baden)

2.5D Algorithm

• What if we have space for only 1 ≤ c ≤ p1/3 copies ?
• M = W(c·n2/p)
• Communication costs : lower bounds

 Volume =""""W(n2 /(cp)1/2) ; Set M = c·n2/p in W (# flops / M1/2))

 Messages = W(p1/2 / c3/2) ; Set M = c·n2/p in W (# flops / M3/2))

• 2.5D algorithm “interpolates” between 2D & 3D algorithms

24 ©2012 Scott B. Baden /CSE 260/ Fall 2012

Source: Edgar Solomonik

3D 2.5D

25

2.5D algorithm: Ballard & Demmel (source: S. Baden)

2.5D Algorithm

• Assume can fit cn2/P data per processor, c>1

• Processors form (P/c)1/2 x (P/c)1/2 x c grid

25 ©2012 Scott B. Baden /CSE 260/ Fall 2012

Source Jim Demmel

c

(P/c)1/2

Example: P = 32, c = 2

26

2.5D algorithm: Ballard & Demmel (source: S. Baden)

2.5D Algorithm

• Assume can fit cn2/P data per processor, c>1

• Processors form (P/c)1/2 x (P/c)1/2 x c grid

26 ©2012 Scott B. Baden /CSE 260/ Fall 2012 Source Jim Demmel

c

(P/c)1/2

Initially P(i,j,0) owns A(i,j) &B(i,j)

 each of size n(c/P)1/2 x n(c/P)1/2

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)

(2) Processors at level k perform 1/c-th of SUMMA,

 i.e. 1/c-th of Σm A(i,m)*B(m,j)

(3) Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so that

 P(i,j,0) owns C(i,j)

27

2.5D algorithm: Ballard & Demmel

• Deriving its implementation from our Cannon’s is natural:

• We already have nb_tiles ^ 3 tasks

• We need a new task distribution scheme

• Expand along the ‘k’ dimension, view the processors as a 3D

mesh of height ‘c’ along the k dimension

• We do not need a new data distribution scheme

• Although we need to update the current consumed_on

implementations:

• Blocks of A and B can now be used along the k dimension

too (and need slight update in the shift functions)

• Blocks of C along k need to be reduced across processors

28

Ruminations and Open Questions

• On one hand, we would like to want the communication in “CnC”:

[A : i,j] -> (moveto : i,j,k) -> [A : i,(i+j+k)%s]

• On the other hand, the above is meaningless, we mean to say “move

data from proc i,j to proc i,(i+j+k)%s

• Possible implementation: use a collection for A and B with i,j,k

indices, so that each element is produced/consumed exactly once

(simpler consumed_on implementation)

• Other idea: have a collection that can be made fully local to a

processor in its declaration

• Ex: [Alocij : k] is “owned” by proc (i,j), meaning each access to

Alocij is a communication to/from proc (i,j)

29

Ruminations and Open Questions

• CnC does not allow to explicitly model the communications

• Benefit of CnC: the code is simple for the user!

• Drawback for “parallel guys”: they need to write a program which

will implement the desired communication scheme

• Reasoning on the communications and translating to CnC requires

conversion to DSA and sometimes “re-thinking” of the code

• Example: Cannon/Johnson/Demmel all update/rewrite a single

local tile

• Implementing task-to-processor mapping is easy, congratulations!

• Implementing data-to-consumer-processor mapping (i.e., push-model)

is good, but a data-to-processor mapping would be useful

