
Implementation of the classical Molecular
Dynamics (MD) algorithm using Intel
Concurrent Collections

Riyaz Haque
2014 Exmatex Co-design Summer School
Lawrence Livermore National Laboratory

 Consider several emerging programming paradigms
➢ CnC, OCR, Chapel, UPC, PyOP2 etc.

 Write a real-world physics problem
➢ Map equations to code
➢ Do not port any existing application

 Evaluate a programming model's capabilities like
➢ Expressiveness
➢ Portability
➢ Productivity
➢ Code optimization
➢ Performance

Motivation: Evaluate emerging
programming models

Classical MD: Computational Model

 Widely used n-body simulation problem
using Newton's laws
➢ Several reference implementations

 Restricted to
➢ Near-range Lennard-Jones potential
➢ Fluid or solid materials i.e. limited

particle movement in a timestep
 No interaction beyond a given cutoff

distance
 Valid simulation conserves total energy

 Need for decomposition
➢ Particle interaction during force calculation
➢ Naive method takes O(n2) time to find pair-wise interactions

 Common decomposition approaches
i. Linked-cell
ii. Neighbor-list
iii. Hybrid methods

 Choice of decomposition is important!!

Classical MD: Problem Decomposition

 Simulation space divided into fixed-size cells
➢ In one timestep, a particle does not move more than one cell

 Interaction only between particles inside a cell and neighboring
cells
➢ Cell-size > cutoff distance

 Pros
➢ Granularity by varying cell-size
➢ Finite neighborhood
➢ Simpler logic for cell locality

 Cons
➢ Redundant particle searches

 Best-suited for our CnC implementation

Classical MD: Linked-cell

 For each particle, maintain a list of
i. Particles within cutoff distance (neighbor-list)
ii.Particles inside a small width beyond cutoff (halo)

 Recompute neighbor list only if particle
moves more than half the halo width

 Pros
➢ Minimal interactions

 Cons
➢ Dynamic neighbor list
➢ Locality (requires space-filling curve)
➢ Barrier synchronization at every

timestep

Classical MD: Neighbor-list

 Strictly stay within the CnC specification and follow the semantics
of CnC interface API (Expressibility)

 Make no assumptions about data distribution or parallelism in the
main code (Portability, Productivity)
➢ Same CnC code should run on any supported backend with

absolutely no changes
 Separation of concerns (Productivity, Optimization, Performance)

➢ Code optimizations are allowed only inside tuners
➢ Untuned code should run unmodified

 Abstract locality analysis from rest of the code (Optimization,
Portability)

MD@CnC: Ground Rules

MD@CnC: Dependence Graph

 Linked-cell approach
➢ Change cell-size for granularity
➢ Finite neighborhood implies simple reductions
➢ No barrier synchronization
➢ Simplified cell to processor mapping

 Force computation
➢ Interaction step for cell-pair forces
➢ CnC reduction graph for overall force
➢ Half-neighbor computation exploiting force symmetry

● Invoke step only if current cell has greater id
➢ Periodic boundary conditions

● Shift vectors
 Shared pointers and appropriate serializers for item-collection

values to minimize redundant data movement

MD@CnC: Implementation

 Its indispensable!!
➢ Untuned code runs ~25X slower

 Garbage collection
➢ Trivial. Most item collections have refcount = 1
➢ Use of shared pointers minimizes redundant data movement

 Locality
➢ Tags are based on cell ids
➢ Map cells to process thru a user-specified distribution function

defined in the context
➢ Have compute_on() and consumed_on()use this function

 Scheduler dependencies
➢ depends()is well-defined for most steps
➢ Dynamic dependency in redistribute step

MD@CnC: Tuning

 Distribution function definition
//policy.h
int md_dist_polict_t::get_place_id(cell_id& c, md_context& mc) {

return (c.x + mc.cx*c.y + mc.cz*mc.cy*c.z)%mc.numProcs();
}
 Distribution declaration
//md.h
struct md_context {

…
md_dist_policy_t distribution();
…

}
 Distribution function use
//tuners.h
int md_step_tuner::compute_on(cell_id& c, md_context& mc) {

return mc.distribution.get_place_id(c);
}
int md_item_tuner::consumed_on(cell_id& c, md_context& mc) {

return mc.distribution.get_place_id(c);
}

MD@CnC: Tuning (contd..)

MD@CnC: Performance

MD@CnC: Evaluation
 Expressibility

➢ Different from conventional programming approaches
● Major part of coding effort spent in setting correct dependences
● Straightforward to code once dependences are well-defined

➢ Write-once semantics are restrictive
● Lead to unnecessary expansion of the tag space

➢ Idempotent step semantics are manifest as failed gets
● Dynamic dependencies are difficult to optimize
● No “puts” before “gets”

● Lack of implicit gather primitives and synchronization operations

MD@CnC: Evaluation
 Productivity, portability and optimizations

➢ Very good separation of concerns
● Almost all coding effort spent on the actual

application
● Same code works with absolutely no changes on

multiple backends
➢ Support for abstract places

● Place hierarchy
➢ Simplified garbage collection

● At least makes you think how to make it possible

MD@CnC: Future Work
 Evaluate performance for larger input sizes
 Write data distribution functions for load balancing,

communications-optimal cell mapping, hierarchical places
etc.

 Evaluate using CnC in conjunction with other
parallelization frameworks e.g. OMP, Habanero

 Compare CnC with other programming models under
consideration

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 14
	Slide 16

