
1

Center for Domain-Specific Computing (CDSC)
Supported by NSF “Expedition in Computing” Program: www.cdsc.ucla.edu.

DFGR: an Intermediate Graph Representation

for Macro-Dataflow Programs

Alina Sbîrlea* Louis-Noel Pouchet‡ Vivek Sarkar*

*Rice University ‡ University of California Los Angeles

The Sixth Annual Concurrent Collections Workshop

(CnC -2014) - September 18th , 2014

2

Motivation

• Some current data-flow models:

• Intel’s CnC

• Rice’s CnC-HJ, CnC-HC, CnC-Babel, CnC-Scala, CnC-Haskell

• Limitations? Vulnerable to:

• Task granularity

• Available hardware.

• What do we need?

• Increased analyzability!

3

Our claim

A language designed for analyzability

is the key for consistently offering

very good performance.

Our solution:

Data Flow Graph Representation (DFGR)

4

• What it is:

• Intermediate graph representation for macro-dataflow programs

• Front-end for a compiler that targets heterogeneous architectures

• What is offers: performance potential through analyzability

• Enables the use of transformations on the application graph

• Enables increased use of heterogeneity through static & dynamic scheduling

• High-level view of applications

• Easy programmability with high expressiveness using data-flow principles

Data Flow Graph Representation (DFGR)

5

Affine Programs / C subset CnC textual graph

DFGR

IR

Parallel code

(Habanero C

for CPUs + GPUs)

TLDM

(Task Level

Dataflow Model)

for FPGAs

Big Picture

Polyhedral Analysis of

Affine Regions

CnC

Tool Chain

DFGR

Transformations

Textual

DFGR

User written DFGR Future lang.

Future low level

representations?

DFGR

6

• DFGR language features

• Fully automatic translation system to Habanero C

• Preliminary results obtained on the CPU

• Ongoing work: motivating result for pursuing transformations

Agenda

7

Standard CnC DFGR

Controller – controllee

(step1)

(step2)

Producer - consumer

(step1) (step2)[item]

(step1) -> [item] -> (step2);

Controller – controllee

(step1)

(step2)

<t2>

Producer - consumer

(step1) (step2)[item]

(step1) -> [item] -> (step2); (step1)->(step3);

(step3)

Some differences between CnC and DFGR

(step1) -> <t2> ; <t2> :: (step2); (step1):: (step2);

8

Example: Smith-Waterman

// Sequential code

A[0][0] = corner();

for(j=1; j<NW; j++) {

A[0][j] = top(j);

for(i=1; i<NH; i++) {

A[i][0] = left(i);

for(j=1; j<NW; j++)

A[i][j] = mainStep(i, j,

A[i-1][j-1],

A[i-1][j],

A[i][j-1]);

}

}

9

DFGR Example: Smith-Waterman

[int A];

(corner : i, j) → [A : i, j];

(top : i, j) → [A : i, j];

(left : i, j) → [A : i, j];

[A : i-1, j], [A : i, j-1], [A : i-1, j-1] → (

mainStep : i, j) → [A : i, j];

env :: (corner: 0, 0);

env :: (top: 0, {1 .. NW});

env :: (left : {1 .. NH}, 0);

env :: (mainStep : {1 .. NH}, {1 .. NW});

[A : NH, NW] → env;

10

DFGR key features compared with other models (1/2)

• Dependences expressed directly between items and steps

• Simplifies the Concurrent Collections Model

• Uses tags as unique identifiers for both steps and items

• Accurate specification of item accesses, using functions of the step’s tag

• DFGR expresses streaming and task parallelism

• Kahn Process Networks and Synchronous Data Flow express only streaming

• Concurrent Collections expresses task parallelism

• DFGR can be optimized for both using graph analysis

• DFGR can combine static and dynamic scheduling

• Steps in the same collection may run on different cores/devices, unlike KPN/SDF

• Can enhance CnC’s dynamic scheduling with static analysis tools

11

• Textual representation => high-level view of the application

• Steps are functional

• Steps are started directly by other steps

• Data exists in item collections

• Items are dynamic single assignment (DSA)

• Memory optimizations for reusing space are done by:

• Folding the tag space with a user-defined function

• Assigning a getCounts (a number of times an item is read before being cleared)

• Access to global data is permitted but inhibits the benefits or graph analysis

• Data read by a step may come from any source

• Conditional writes and spawns are permitted => general applications

• Allows non-determinism using writeIfAbsent()

DFGR key features compared with other models (2/2)

12

Tags for item identification and optimizations (1/2)

13

• A hierarchy of concepts for modeling sets of tags:

• Ranges: model rectangles, suited for simple regular computations

• Simple polyhedron: affine inequalities enabling powerful static analysis and

transformations

• Union of Z-polyhedra: generalization of polyhedra, analyzable using modern

polyhedral compilation frameworks

• Union of arbitrary sets: most general; includes uninterpreted functions i.e. foo(i)

Tags for item identification and optimizations (2/2)

14

Current status of DFGR

• Language design and specification for the textual DFGR.

• Working CnC to DFGR translator.

• Working DFGR to HC translator.

• Preliminary results on transformations to handle step granularity in DFGR.

DFGR

C subset CnC

IR

Parallel code

(CPU+GPU)

FPGA

mapping

Analysis
CnC

Tools

Transforms

Text

User Future lang.

Future

architectures

15

Fully automatic translation system to Habanero C

16

Preliminary results

• Test bed: 12 core Intel Xeon CPU X5660 @ 2.80GHz

• 5 benchmarks used: Smith-Waterman, Black-Scholes, Cholesky factorization,

Denoise3D and Matrix invert.

• Up to 11x speedup.

• Good scaling for all benchmarks, sample graph:

17

Motivating results for pursuing transformations

18

DFGR transformation: Smith Waterman

• Four kind of steps:

Corner, Top, Left, Main

• Step dependences

Each step writes A[i][j] and reads items A[i-1][j], A[i][j-1], A[i-1][j-1].

• Tiled code

Leads to complex steps!

19

Motivation for granularity transformations

• Automatic code generation for both code and data tiling

• Allow user to specify application at finest granularity

• Enable performance tuning

• Flexible user-managed tuning through choice of granularity

• In practice: use polyhedral tools (ScopLib + Pluto)

• Dependency analysis

• Dependency extraction

• Code generation

20

Transformation for Smith Waterman: User CDSC-GR

[int A];

(corner : i, j) → [A : i, j];

(top : i, j) → [A : i, j];

(left : i, j) → [A : i, j];

[A : i-1, j], [A : i, j-1], [A : i-1, j-1] →(mainStep : i, j) → [A : i, j];

env :: (corner : 0, 0);

env :: (top : 0, {1 .. NW}), (left : {1 .. NH}, 0);

env :: (mainStep : {1 .. NH}, {1 .. NW});

[A : NH, NW] → env;

Element

indexes

Fine-grained

step indexes

Range until

matrix size

Single elements items

21

Transformed CDSC-GR for Smith-Waterman

[int** A];

(newS1 : c1, c2) → [A : c1, c2];

[A : c1, c2-1]→(newS2 : c1, c2)→[A : c1, c2];

[A : c1-1, c2]→(newS3 : c1, c2)→[A : c1, c2];

[A : c1, c2-1], [A : c1-1, c2-1], [A : c1-1, c2] → (newS4 : c1, c2)

→ [A : c1, c2];

env :: (newS1 : 0, 0);

env :: (newS2 : 0, {1 .. (NW)/TW}), (newS3 : {1 .. (NH)/TH}, 0);

env :: (newS4 : {1 .. (NH)/TH}, {1 .. (NW)/TW});

[A : NH/TH, NW/TW] → env;

Tile

indexes

Coarse-grained

step indexes

Range until

of tiles

Tile items

22

Smith Waterman auto-generated code (sample 1)

New corner step:
#define newS1(c1, c2) {\

corner(0,0, &A[0][0]);

for (c4=1;c4<=min(31,NW);c4++) {\

//input passed by runtime, as before

top(0,c4,&A[0][c4]);\

}

for (c3=1;c3<=min(31,NH);c3++) {\

left(c3,0, &A[c3][0]);\

for (c4=1;c4<=min(31,NW);c4++) {\

mainStep(c3,c4, &A[c3][c4]);\

}\

}\

}

23

Smith Waterman auto-generated code (sample 2)

New main step:
#define newS4(c1, c2) {\

for (c3=32*c1;c3<=min(NH,32*c1+31);c3++) {\

for (c4=32*c2;c4<=min(NW,32*c2+31);c4++){\

//input passed by runtime, as before, adjust indexes

mainStep(c3, c4, correctInputs, correctOutput);\

//output location is allocated in the autogenerated code

//and given as a pointer parameter

}}}

The environment starts a new range of the new main step:
for (c1=0;c1<=floord(NH,32);c1++) {\

for (c2=1;c2<=floord(NW,32);c2++) {\

// prescribe newS4(c1, c2)

}\

}

24

Smith Waterman – scaling of tiled code for large sizes

0

5

10

15

20

25

30

35

1 2 4 8 16

T
im

e
(s

)

#Cores

Performance as a function of tile size
(Input size 50k*50k)

100

200

400

500

750

1000

2000

3125

Tile size

25

Conclusion

DFGR: intermediate representation to which compilers and programmers can map to

Provide a textual representation easy to read/write for domain experts, “DSL” for dataflow

Provide an IR easy to map into from a compiler

Enable transformations of the application graph

Offer a framework for translating to parallel native code for various architectures

?

DFGR

C subset CnC

IR

Parallel code

(CPU+GPU)

FPGA

mapping

Analysis
CnC

Tools

Transforms.

Text

User Future lang.

Future

architectures

26

Backup

27

Smith Waterman – single element vs tiled runs

Problem size: 500*500
1 2 4 8 16

1 12.25 14.15 15.37 18.31 31.25
10 0.013 0.019 0.017 0.025 0.032
15 0.007 0.008 0.008 0.013 0.013
20 0.005 0.005 0.005 0.005 0.007
32 0.003 0.003 0.002 0.002 0.003

Problem size: 1000*1000
1 2 4 8 16

1 208.02 244.72 257.65 343.58 544.98
5 0.28 0.52 0.5 0.67 1.03

10 0.06 0.08 0.07 0.09 0.14
20 0.02 0.02 0.02 0.02 0.03
50 0.009 0.006 0.005 0.005 0.005
63 0.008 0.005 0.004 0.003 0.004

Tilesize
#Cores

Tilesize
#Cores

28

void* mainStep_gets(char * tag, Context * context, Step* step){

int i = getTag(tag, 0), j = getTag(tag, 1);

// Get first item

ItemCollectionEntry*__entry0; int** A0;

char* tagA0 = createTag(2, i-1, j);

RuntimeGet((void**) & (__entry0), tagA0, context->A,

step);

A0 = __entry0->item;

// Get the other items

// …

// Call user code

mainStep (i, j, argc, argv, A0, A1, A2, context, step);

// ...

}

Auto-generated data reads

29

• Sample code for spawning a step:

void prescribeStep(char* stepName, char* stepTag,…, Context*

context, …){

// Initialize step

// …

// Spawn asynchronous task

async IN(step){

mainStep_gets(step->tag, (Context*)step->context, step); };

}

• Sample user suggested code:

void mainStep(int i, int j, …, int A0, int A1, int A2,

Context* context, Step* step){

/* Suggested code based on DFGR graph.

// Allocate A3 and insert its computations

char* tagA3 = createTag(2, i, j);

Put(A3, tagA3, context->A, step); */

}

Auto-generated step spawns

30

Stages of transforming CDSC-GR using PoCC

• Convert CDSC-GR to ScopLib

• Tile ScopLib using Pluto

• Extract tile dependences

• Generate final code

Transformed CDSC-GR

C code wrappers for the new tiled steps

31

From CDSC-GR to PoCC: ScopLib generation

• Assume the existence of a sequential schedule for the graph to

enable data dependence analysis

• Generate the reads/writes based on CDSC-GR inputs/outputs

Treat step-to-step dependences as item dependences

Treat regions as multiple dependences

• Use undefined CDSC-GR variables as parameters (e.g. matrix size).

32

Polyhedral PoCC pass

• Challenge of tile size selection in Pluto to optimize performance

• Extraction of tile dependences

Item and step dependence aggregation into tiles

Data layout changes: items become pointers to tiles instead of scalars

Step aggregation into new, possibly composed steps

• Final code generation

Coarse grained CDSC-GR generation for the steps and the environment

Possible generation of regions (vs ranges) for complex dependences

Composed step generation as wrappers of user steps

