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Motivation

• Some current data-flow models: 

• Intel’s CnC

• Rice’s CnC-HJ, CnC-HC, CnC-Babel, CnC-Scala, CnC-Haskell 

• Limitations? Vulnerable to:

• Task granularity

• Available hardware.

• What do we need?

• Increased analyzability!
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Our claim

A language designed for analyzability 

is the key for consistently offering 

very good performance.

Our solution: 

Data Flow Graph Representation (DFGR)



4

• What it is:

• Intermediate graph representation for macro-dataflow programs

• Front-end for a compiler that targets heterogeneous architectures

• What is offers: performance potential through analyzability 

• Enables the use of transformations on the application graph

• Enables increased use of heterogeneity through static & dynamic scheduling

• High-level view of applications

• Easy programmability with high expressiveness using data-flow principles

Data Flow Graph Representation (DFGR)



5
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• DFGR language features

• Fully automatic translation system to Habanero C

• Preliminary results obtained on the CPU

• Ongoing work: motivating result for pursuing transformations 

Agenda
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Standard CnC DFGR

Controller – controllee

(step1)

(step2)

Producer - consumer

(step1) (step2)[item]

(step1) -> [item] -> (step2);

Controller – controllee

(step1)

(step2)

<t2>

Producer - consumer

(step1) (step2)[item]

(step1) -> [item] -> (step2); (step1)->(step3);

(step3)

Some differences between CnC and DFGR

(step1) -> <t2> ; <t2> :: (step2); (step1):: (step2);
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Example: Smith-Waterman

// Sequential code

A[0][0] = corner();

for(j=1; j<NW; j++) {

A[0][j] = top(j);

for(i=1; i<NH; i++) {

A[i][0] = left(i);

for(j=1; j<NW; j++)

A[i][j] = mainStep(i, j, 

A[i-1][j-1],

A[i-1][j], 

A[i][j-1]);

}

}
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DFGR Example: Smith-Waterman

[ int A ];

( corner : i, j ) → [ A : i, j ];

( top : i, j ) → [ A : i, j ];

( left : i, j ) → [ A : i, j ];

[ A : i-1, j ], [ A : i, j-1 ], [ A : i-1, j-1 ] →    ( 

mainStep : i, j ) → [ A : i, j ]; 

env :: (corner: 0, 0);

env :: ( top: 0, {1 .. NW} );

env :: ( left : {1 .. NH}, 0 );

env :: ( mainStep : {1 .. NH}, {1 .. NW} );

[ A : NH, NW ] → env;
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DFGR key features compared with other models (1/2)

• Dependences expressed directly between items and steps

• Simplifies the Concurrent Collections Model

• Uses tags as unique identifiers for both steps and items

• Accurate specification of item accesses, using functions of the step’s tag

• DFGR expresses streaming and task parallelism

• Kahn Process Networks and Synchronous Data Flow express only streaming

• Concurrent Collections expresses task parallelism

• DFGR can be optimized for both using graph analysis

• DFGR can combine static and dynamic scheduling

• Steps in the same collection may run on different cores/devices, unlike KPN/SDF

• Can enhance CnC’s dynamic scheduling with static analysis tools
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• Textual representation => high-level view of the application

• Steps are functional

• Steps are started directly by other steps

• Data exists in item collections

• Items are dynamic single assignment (DSA)

• Memory optimizations for reusing space are done by:

• Folding the tag space with a user-defined function

• Assigning a getCounts (a number of times an item is read before being cleared)

• Access to global data is permitted but inhibits the benefits or graph analysis

• Data read by a step may come from any source 

• Conditional writes and spawns are permitted => general applications

• Allows non-determinism using writeIfAbsent()

DFGR key features compared with other models (2/2)
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Tags for item identification and optimizations (1/2)
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• A hierarchy of concepts for modeling sets of tags:

• Ranges: model rectangles, suited for simple regular computations

• Simple polyhedron: affine inequalities enabling powerful static analysis and 

transformations

• Union of Z-polyhedra: generalization of polyhedra, analyzable using modern 

polyhedral compilation frameworks

• Union of arbitrary sets: most general; includes uninterpreted functions i.e. foo(i)

Tags for item identification and optimizations (2/2)
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Current status of DFGR

• Language design and specification for the textual DFGR.

• Working CnC to DFGR translator.

• Working DFGR to HC translator.

• Preliminary results on transformations to handle step granularity in DFGR.

DFGR
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IR

Parallel code 

(CPU+GPU)

FPGA 

mapping

Analysis
CnC

Tools

Transforms

Text

User Future lang.

Future 

architectures
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Fully automatic translation system to Habanero C
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Preliminary results 

• Test bed: 12 core Intel Xeon CPU X5660 @ 2.80GHz

• 5 benchmarks used: Smith-Waterman, Black-Scholes, Cholesky factorization, 

Denoise3D and Matrix invert.

• Up to 11x speedup. 

• Good scaling for all benchmarks, sample graph:
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Motivating results for pursuing transformations 



18

DFGR transformation: Smith Waterman

• Four kind of steps:

Corner, Top, Left, Main

• Step dependences

Each step writes A[i][j] and reads items A[i-1][j], A[i][j-1], A[i-1][j-1].

• Tiled code

Leads to complex steps!
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Motivation for granularity transformations

• Automatic code generation for both code and data tiling

• Allow user to specify application at finest granularity

• Enable performance tuning

• Flexible user-managed tuning through choice of granularity

• In practice: use polyhedral tools (ScopLib + Pluto)

• Dependency analysis

• Dependency extraction

• Code generation
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Transformation for Smith Waterman: User CDSC-GR 

[ int A ];

( corner : i, j ) → [ A : i, j ];

( top : i, j ) → [ A : i, j ];

( left : i, j ) → [ A : i, j ];

[ A : i-1, j ], [ A : i, j-1 ], [ A : i-1, j-1 ] →( mainStep : i, j ) → [ A : i, j ]; 

env :: (corner : 0, 0 );

env :: ( top : 0, {1 .. NW} ), ( left : {1 .. NH}, 0 );

env :: ( mainStep : {1 .. NH}, {1 .. NW} );

[ A : NH, NW ] → env;

Element 

indexes

Fine-grained 

step indexes

Range until 

matrix size

Single elements items



21

Transformed CDSC-GR for Smith-Waterman 

[ int** A ];

(newS1 : c1, c2) → [ A :  c1, c2];

[ A : c1, c2-1 ]→(newS2 : c1, c2)→[ A : c1, c2 ]; 

[ A : c1-1, c2 ]→(newS3 : c1, c2)→[ A : c1, c2 ];

[ A : c1, c2-1 ], [ A :  c1-1, c2-1 ], [ A :  c1-1, c2 ] → (newS4 : c1, c2)

→ [ A : c1, c2 ];

env :: (newS1 : 0, 0 );

env :: ( newS2 : 0, {1 .. (NW)/TW} ), ( newS3 : {1 .. (NH)/TH}, 0 );

env :: ( newS4 : {1 .. (NH)/TH}, {1 .. (NW)/TW} );

[ A : NH/TH, NW/TW ] → env;

Tile 

indexes

Coarse-grained 

step indexes

Range until 

# of tiles

Tile items
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Smith Waterman auto-generated code (sample 1)

New corner step:
#define newS1(c1, c2) {\

corner(0,0, &A[0][0]);

for (c4=1;c4<=min(31,NW);c4++) {\

//input passed by runtime, as before

top(0,c4,&A[0][c4]);\

}

for (c3=1;c3<=min(31,NH);c3++) {\

left(c3,0, &A[c3][0]);\

for (c4=1;c4<=min(31,NW);c4++) {\

mainStep(c3,c4, &A[c3][c4]);\

}\

}\

}
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Smith Waterman auto-generated code (sample 2)

New main step:
#define newS4(c1, c2) {\

for (c3=32*c1;c3<=min(NH,32*c1+31);c3++) {\

for (c4=32*c2;c4<=min(NW,32*c2+31);c4++){\

//input passed by runtime, as before, adjust indexes

mainStep(c3, c4, correctInputs, correctOutput);\

//output location is allocated in the autogenerated code 

//and given as a pointer parameter

}}}

The environment starts a new range of the new main step:
for (c1=0;c1<=floord(NH,32);c1++)  {\

for (c2=1;c2<=floord(NW,32);c2++) {\

// prescribe newS4(c1, c2) 

}\

}
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Smith Waterman – scaling of tiled code for large sizes

0

5

10

15

20

25

30

35

1 2 4 8 16

T
im

e 
(s

)

#Cores

Performance as a function of tile size
(Input size 50k*50k)

100

200

400

500

750

1000

2000

3125

Tile size



25

Conclusion

DFGR:  intermediate representation to which compilers and programmers can map to

Provide a textual representation easy to read/write for domain experts, “DSL” for dataflow

Provide an IR easy to map into from a compiler

Enable transformations of the application graph

Offer a framework for translating to parallel native code for various architectures

?

DFGR

C subset CnC

IR

Parallel code 

(CPU+GPU)

FPGA 

mapping

Analysis
CnC

Tools

Transforms.

Text

User Future lang.

Future 

architectures
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Backup
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Smith Waterman – single element vs tiled runs

Problem size: 500*500
1 2 4 8 16

1 12.25 14.15 15.37 18.31 31.25
10 0.013 0.019 0.017 0.025 0.032
15 0.007 0.008 0.008 0.013 0.013
20 0.005 0.005 0.005 0.005 0.007
32 0.003 0.003 0.002 0.002 0.003

Problem size: 1000*1000
1 2 4 8 16

1 208.02 244.72 257.65 343.58 544.98
5 0.28 0.52 0.5 0.67 1.03

10 0.06 0.08 0.07 0.09 0.14
20 0.02 0.02 0.02 0.02 0.03
50 0.009 0.006 0.005 0.005 0.005
63 0.008 0.005 0.004 0.003 0.004

Tilesize
#Cores

Tilesize
#Cores
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void* mainStep_gets(char * tag, Context * context, Step* step){ 

int i = getTag(tag, 0), j = getTag(tag, 1);

// Get first item

ItemCollectionEntry*__entry0; int** A0;

char* tagA0 = createTag(2, i-1, j);

RuntimeGet((void**) & (__entry0), tagA0, context->A, 

step);

A0 = __entry0->item;

// Get the other items

// …

// Call user code

mainStep ( i, j, argc, argv, A0, A1, A2, context, step );

// ...

}

Auto-generated data reads
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• Sample code for spawning a step:

void prescribeStep(char* stepName, char* stepTag,…, Context* 

context, …){

// Initialize step 

// …

// Spawn asynchronous task

async IN(step){ 

mainStep_gets(step->tag, (Context*)step->context, step); };

}

• Sample user suggested code:

void mainStep( int i, int j, …, int A0, int A1, int A2, 

Context* context, Step* step){

/* Suggested code based on DFGR graph. 

// Allocate A3 and insert its computations

char* tagA3 = createTag(2, i, j); 

Put(A3, tagA3, context->A, step); */

}

Auto-generated step spawns
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Stages of transforming CDSC-GR using PoCC

• Convert CDSC-GR to ScopLib

• Tile ScopLib using Pluto

• Extract tile dependences

• Generate final code

Transformed CDSC-GR

C code wrappers for the new tiled steps



31

From CDSC-GR to PoCC: ScopLib generation 

• Assume the existence of a sequential schedule for the graph to 

enable data dependence analysis

• Generate the reads/writes based on CDSC-GR inputs/outputs

Treat step-to-step dependences as item dependences

Treat regions as multiple dependences

• Use undefined CDSC-GR variables as parameters (e.g. matrix size).
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Polyhedral PoCC pass

• Challenge of tile size selection in Pluto to optimize performance 

• Extraction of tile dependences 

Item and step dependence aggregation into tiles

Data layout changes: items become pointers to tiles instead of scalars

Step aggregation into new, possibly composed steps

• Final code generation

Coarse grained CDSC-GR generation for the steps and the environment

Possible generation of regions (vs ranges) for complex dependences

Composed step generation as wrappers of user steps


