CnC in an event-driven
programming model

Concurrent Collections Workshop
September 18, 2014
Nick Vrvilo

Acknowledgements

* Brian Nickerson

e Zoran Budimlic

* Vincent Cavé

* Alina Sbirlea

* Kath Knobe

* Vivek Sarkar

* Habanero & OCR Teams

CnC + procedural environment

...non_CnC_code...

seriazl/r,zrloced g = create_graph()
Init_graph(g) step
parallel/even execute_graph(g) step
t-driven wait_on_graph(g)
step

serial/proced US€_graph_results(g)
ural ..non_CnC_code...

CnC is inherently event-driven

attrs: {avail}

@ attrs: {control-ready, data-ready, ready, done}

o ”

attrs: {avail, value="..."}

Based on PLDI Tutorial — June 15, 2009

CnC + event-driven runtime

step a
prescribe(a) /

prescribe(b) T step b
put(x)

g = create_graph()

execute_graph(g)

when_done(callback)
\ result = get(y)

print(result)
do_other_stuff() —_—

The Open Community Runtime (OCR)

P
Programming S
a0 s) (s
08 ommunity
Runtime ssry sz =]
e 9
et -

Pile of Work ControlData Mie ot Data Obsarvation and
(oTy) Degendencies {data blacky) Adaptaton

Extreme Scale Hardware

a)sls)a)alslals s a e 0

#

C-language restrictions for OCR

All shared data is in data blocks

Use GUIDs as intra-block “pointers”
— Data might move, or be elsewhere
— No pointers inside data structures
— Pointer logic is OK within a single EDT

Only an EDT can “dereference” a GUID

ocrWait (blocking) is cheating!
— Create a new EDT instead of blocking

Mapping CnC — OCR

* EDT — Step
* EDT dependencies — Step inputs

* EDT creation — Step prescription

... and everything else?

Outline

Why we want CnC on OCR
Full mapping of CnC — OCR

Challenges for “pure” OCR
— Avoiding blocking calls
— Avoiding pointers (using GUIDs)

Toolchain / OCR encapsulation

Why we want CnC on OCR

* OCR needs high-level languages

— Programming directly in OCR can be painful
* (Saying this from personal experience)
* Verbosity lowers productivity
* APl complexity begets buggy code

* Creates a path for porting CnC apps to OCR

* Traleika Glacier hardware is optimized for
event-driven applications!

CnC — OCR: Elide control tags

MVVVA2 [tem A ltem B ltem C N \VV\2

Step prescribe — EDT create

CnC — OCR: Elide control tags

ltem iR DataBlock

??27
ltem Al 1 T

ltem — DataBlock or Event

What about the (concurrent) collections?

* No control tags = No control collections
e Step collections are optimized away

— Pros: less run-time overhead
— Cons: no run-time check for duplicate precriptions

e What's left: item collection

Traditional CnC item collection
implementation

* |[tem collection — hash table
— CnC put — put value into hash table
— CnC get — look up value in hash table

* OCR doesn’t provide a hash table
e Let’s just assume we have one for now...

CnC-OCR item collection

* OCR and pointers don’t mix well
— CnC put — put datablock GUID into table
— CnC get — look up datablock/event GUID in table

* |nitially implemented by “cheating”
— Used vanilla C hash table implementation
— Works for OCR running single process on x86

Handling GUID returned
from CnC item gets

e Need an EDT to “dereference” each GUID
 The step itself is a new EDT

e Step inputs as EDT deps = usable data!
— Specify tag function to specify dependencies
— Add dependencies to EDT

— EDT dereferences all the GUIDs
— Yields valid (step-local) pointers

What about getting the graph results?

Getting CnC result items

* Take a similar approach to steps
— Create a pseudo-step function to handle output
— WEe'll call it the finalization function
— Specify a tag function to get the desired outputs

* Implies that we’re splitting CnC’s environment
— initialization
— finalization

e Similar approach in CnC Haskell (or cnc-clojure)

* Toy CnC implementation used in my MS thesis (C/R for CnC) 6‘“‘

CnC + event-driven runtime
(revisited)

step a
prescribe(a) /

. prescribe(b) T step b
g = create_graph()
execute_graph(g)

when_done(callback)
fin a IiZE\‘ result = get(y)

print(result)
do_other_stuff() —_—

Item collections in pure OCR

x86 shared-memory Pure OCR
hash table hash table
¥ > item o item > ... guid - guid, guid, ... > ...
* > item o item > ... guid - guid, guid, ... > ...
* 2 item = item o ... guid - guid, guid, ... > ...
* 2 item 5 item o ... guid - guid, guid, ... > ...
* 2 item 5 item o .. guid - guid, guid, ... > ...

Benefits of a “pure” CnC-OCR

 Same implementation runs everywhere

— Single-process (shared memory) x86
— Distributed x86
— Traleika Glacier hardware (FSim)

e Potential OCR runtime benefits
— Adaptive scheduling
— Resilience

* A higher-level language targeting OCR

Improving CnC-OCR programmability

* Why | feel programming in OCR is painful:
— Setting-up EDTs & datablocks is verbose
— void* types everywhere

 We'd like to abstract this away

e Cdoesn’t give much language support
(You can only do so much with the preprocessor)

* Use an external tool to generate source code

CnC-OCR translator tool

* |[nput: declarative CnC graph spec
— Currently text-based input language

— Uses JSON internally (I want a web-based graphical tool)

e QOutput: C code using OCR
— Type-correct API tailored to your input graph
— Encapsulates a lot of the OCR complexities
— Suggested code for steps, init/finalize, mainEDT

Debugging tools for CnC-OCR
(work in progress)

* Debugging non-serial programs is hard!
* |Intel CnC provides some nice tools

* Logging events would allow us to re-construct
the execution frontier of a terminated app*

* Guess source of missing dependence
* |nteractive visualization of the incremental XF

* Discussed in detail in my MS thesis (C/R for CnC)

Future directions

* Optimize implementation for different targets
— Traleika Glacier (FSim)
— x86 shared memory

* Use new OCR features for tuning

— GUID ranges for dense collections
— Explicit datablock/EDT affinities

Summary

CnC is an inherently even-driven model

CnC fits naturally into an event-driven
programming model (like OCR)

Even parts of CnC that are typically
implemented procedurally (item collections)
can be adapted to pure OCR

CnC in pure OCR gains all potential benefits of
future OCR features
2

ﬁ.%

