
CnC in an event-driven 
programming model

Concurrent Collections Workshop

September 18, 2014

Nick Vrvilo



Acknowledgements

• Brian Nickerson

• Zoran Budimlić

• Vincent Cavé

• Alina Sbirlea

• Kath Knobe

• Vivek Sarkar

• Habanero & OCR Teams

2



CnC + procedural environment

serial/proced
ural

...non_CnC_code...

g = create_graph()

init_graph(g)

parallel/even
t-driven

execute_graph(g)

wait_on_graph(g)

serial/proced
ural

use_graph_results(g)

...non_CnC_code...

step

step

step

3



CnC is inherently event-driven

Based on PLDI Tutorial — June 15, 2009
4

attrs: {avail}

attrs: {}

attrs: {avail, value=“…”}

attrs: {control-ready}attrs: {control-ready, data-ready}attrs: {control-ready, data-ready, ready}attrs: {control-ready, data-ready, ready, done}

...



CnC + event-driven runtime

5

g = create_graph()

execute_graph(g)

when_done(callback)

prescribe(a)

prescribe(b)

put(x)

result = get(y)

print(result)

do_other_stuff() ...

step a

step b



The Open Community Runtime (OCR)

6



C-language restrictions for OCR

• All shared data is in data blocks

• Use GUIDs as intra-block “pointers”

– Data might move, or be elsewhere

– No pointers inside data structures

– Pointer logic is OK within a single EDT

• Only an EDT can “dereference” a GUID

• ocrWait (blocking) is cheating!

– Create a new EDT instead of blocking

7



Mapping CnC ➙ OCR

• EDT ➙ Step

• EDT dependencies ➙ Step inputs

• EDT creation ➙ Step prescription

… and everything else?

8



Outline

• Why we want CnC on OCR

• Full mapping of CnC ➙ OCR

• Challenges for “pure” OCR

– Avoiding blocking calls

– Avoiding pointers (using GUIDs)

• Toolchain / OCR encapsulation

9



Why we want CnC on OCR

• OCR needs high-level languages

– Programming directly in OCR can be painful

• (Saying this from personal experience)

• Verbosity lowers productivity

• API complexity begets buggy code

• Creates a path for porting CnC apps to OCR

• Traleika Glacier hardware is optimized for 
event-driven applications!

10



CnC ➙ OCR: Elide control tags

Step prescribe ➙ EDT create

11



CnC ➙ OCR: Elide control tags

Item ➙ DataBlock

12

?

???1st

2st 1st

Item ➙ DataBlock or Event



What about the (concurrent) collections?

• No control tags ⇒ No control collections

• Step collections are optimized away

– Pros: less run-time overhead

– Cons: no run-time check for duplicate precriptions

• What’s left: item collection

13



Traditional CnC item collection 
implementation

• Item collection ➙ hash table

– CnC put ➙ put value into hash table

– CnC get ➙ look up value in hash table

• OCR doesn’t provide a hash table

• Let’s just assume we have one for now…

14



CnC-OCR item collection

• OCR and pointers don’t mix well

– CnC put ➙ put datablock GUID into table

– CnC get ➙ look up datablock/event GUID in table

• Initially implemented by “cheating”

– Used vanilla C hash table implementation

– Works for OCR running single process on x86

15



Handling GUID returned
from CnC item gets

• Need an EDT to “dereference” each GUID

• The step itself is a new EDT

• Step inputs as EDT deps⇒ usable data!
– Specify tag function to specify dependencies

– Add dependencies to EDT

– EDT dereferences all the GUIDs

– Yields valid (step-local) pointers

What about getting the graph results?

16



Getting CnC result items

• Take a similar approach to steps

– Create a pseudo-step function to handle output

– We’ll call it the finalization function

– Specify a tag function to get the desired outputs

• Implies that we’re splitting CnC’s environment

– initialization

– finalization

• Similar approach in CnC Haskell (or CnC-Clojure*)

17* Toy CnC implementation used in my MS thesis (C/R for CnC)



CnC + event-driven runtime
(revisited)

18

g = create_graph()

execute_graph(g)

when_done(callback)

prescribe(a)

prescribe(b)

put(x)

result = get(y)

print(result)

do_other_stuff() ...

step a

step b
init

finalize



Item collections in pure OCR

19

*

*

*

*

*

→ item → item → …

→ item → item → …

→ item → item → …

→ item → item → …

→ item → item → …

guid

guid

guid

guid

guid

→ guid, guid, … → …

→ guid, guid, … → …

→ guid, guid, … → …

→ guid, guid, … → …

→ guid, guid, … → …

x86 shared-memory
hash table

Pure OCR
hash table



Benefits of a “pure” CnC-OCR

• Same implementation runs everywhere

– Single-process (shared memory) x86

– Distributed x86

– Traleika Glacier hardware (FSim)

• Potential OCR runtime benefits

– Adaptive scheduling

– Resilience

• A higher-level language targeting OCR

20



Improving CnC-OCR programmability

• Why I feel programming in OCR is painful:

– Setting-up EDTs & datablocks is verbose

– void* types everywhere

• We’d like to abstract this away

• C doesn’t give much language support

(You can only do so much with the preprocessor)

• Use an external tool to generate source code

21



CnC-OCR translator tool

• Input: declarative CnC graph spec

– Currently text-based input language

– Uses JSON internally (I want a web-based graphical tool)

• Output: C code using OCR

– Type-correct API tailored to your input graph

– Encapsulates a lot of the OCR complexities

– Suggested code for steps, init/finalize, mainEDT

22



Debugging tools for CnC-OCR
(work in progress)

• Debugging non-serial programs is hard!

• Intel CnC provides some nice tools

• Logging events would allow us to re-construct 
the execution frontier of a terminated app*

• Guess source of missing dependence

• Interactive visualization of the incremental XF

23* Discussed in detail in my MS thesis (C/R for CnC)



Future directions

• Optimize implementation for different targets

– Traleika Glacier (FSim)

– x86 shared memory

• Use new OCR features for tuning

– GUID ranges for dense collections

– Explicit datablock/EDT affinities

24



Summary

• CnC is an inherently even-driven model

• CnC fits naturally into an event-driven 
programming model (like OCR)

• Even parts of CnC that are typically 
implemented procedurally (item collections) 
can be adapted to pure OCR

• CnC in pure OCR gains all potential benefits of 
future OCR features

25



26


