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» Traleika Glacier X-Stack Program

B Looking at exascale computing
@ In particular, the effort involved with porting existing software

B One potential path for applications is through CnC via. CnC-OCR

LULESH — Lawrence Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics code

v

Introduction to LULESH

Top down approach, designing the CnC graph specification
Bottom up approach, looking at the code

Future research topic for CnC

Preliminary performance results
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» LULESH 2.03
B Developed at Lawrence Livermore
B Uses a regular Cartesian mesh
B Stores data on elements (volumes) and nodes (vertices) in the mesh



Top down approach - Initial Graph Pacticitioncee
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» Domain scientists provided an initial CnC graph of LULESH




Initial Graph Paciichol =

Proudly Operated by Baffelle Since 1965

» Formalized the graph into slideware
B The computation steps are shown in ovals
B The data is represented as attributes on the connections between the
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Formalizing the Graph

» In CnC, we want to represent data as first class, as with the steps
B We use different shapes to make the difference obvious

COMPUTE FORCE

PDATE POSITIO
FOR_ NODES
A A

HOURGLASS
FOR_ELEMENTS FOR_ELEMENTS
- 0 -
0 0
A A

Y S Y
DT 4
11 A
X
COURANT E < A 4
FOR_EL:E)MENTS a 2 1 i — .
4 [l A 1]
A A E
A i}
K%Y
ss
1]
Y QL

LAR < Yy V. VY

,POATE ENE 0 ARTIFICTAL

/ PRESSURE VISCOSITY

\ FOR_ELEMENTS FOR_ELEMENTS
QQ
A 0 1 v
v PDATE VOLUME
FOR_ELEMENTS
[ 0

e 1965



7

Pacific Northwest
NATIONAL LABORATORY

Formalizing the Graph
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» We corrected a few CnC contract violations (single assignment)
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Formalizing the Graph
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» Added missing input/output
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Formalizing the Graph Paciichol =
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» The next step was to distinguish amongst the instances
B Interestingly enough this information was informally in the step names
[
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Formalizing the Graph Paciichol =
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Analyzing the Graph Paciichol =
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» Using the formal graph, we can learn a lot about the application
before getting into the code
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Analyzing the Graph Paciichol =
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» Regarding the data flow, the graph exposed a per iteration barrier
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Analyzing the Graph

» The graph also exposes required serializations
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Analyzing the Graph Paciichol =
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» Allowing us to reduce the graph complexity by combining steps,
potentially reducing overhead
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Analyzing the Graph
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» The graph also exposes areas where we can potentially reduce
communication that occurs in the same iteration space
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Final Graph
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» After analyzing the graph we came up with the following result
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Bottom up Approach, starting from code Paciichol =
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» While working on the graph we were also working on converting the
code

» This allowed us to find a few discrepancies between what we thought
was going on and what was actually happening, allowing us to make
corrections to our CnC graph specification

» The first step was to match the sequential code to the outlined steps
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Combining steps? PaciflciNCUiE= SN
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» One of the questions we needed the code to answer was when is it
appropriate to combine steps
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Combining steps? PaciflciNCUiE= SN
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» Looking back at our LULESH structure graph, we see that we
actually had an error in our CnC graph
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Combining steps? PaciflciNCUiE= SN
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» The corrected version actually looks like this
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» This leads us to a decision on the tradeoff between running our two
partial computations in parallel vs. combining them.

» If we implement the graph as is, compute stress and compute
hourglass can happen at the same time.

» If we combine the steps, we remove two step collections and two
data items, reducing overhead
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» In our case we chose to combine the steps
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Next Steps for CnC and LULESH Paciichol =
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» Our initial CnC implementation produces steps and data items at the
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