
Lulesh in CnC

Ellen Porter (PNNL)

Kath Knobe (RICE)

John Feo (PNNL)



Overview

Traleika Glacier X-Stack Program

Looking at exascale computing

In particular, the effort involved with porting existing software

One potential path for applications is through CnC via. CnC-OCR

LULESH – Lawrence Livermore Unstructured Lagrangian Explicit 

Shock Hydrodynamics code

Introduction to LULESH

Top down approach, designing the CnC graph specification

Bottom up approach, looking at the code

Future research topic for CnC

Preliminary performance results



LULESH

LULESH 2.03

Developed at Lawrence Livermore

Uses a regular Cartesian mesh

Stores data on elements (volumes) and nodes (vertices) in the mesh



Top down approach - Initial Graph

Domain scientists provided an initial CnC graph of LULESH



Initial Graph

Formalized the graph into slideware

The computation steps are shown in ovals

The data is represented as attributes on the connections between the 

steps



Formalizing the Graph

In CnC, we want to represent data as first class, as with the steps

We use different shapes to make the difference obvious



Formalizing the Graph

We corrected a few CnC contract violations (single assignment)



Formalizing the Graph

Added missing input/output



Formalizing the Graph

The next step was to distinguish amongst the instances

Interestingly enough this information was informally in the step names

… FOR 
ELEMENTS

… FOR NODES



Formalizing the Graph



Analyzing the Graph

Using the formal graph, we can learn a lot about the application 

before getting into the code



Analyzing the Graph

Regarding the data flow, the graph exposed a per iteration barrier



Analyzing the Graph

The graph also exposes required serializations



Analyzing the Graph

Allowing us to reduce the graph complexity by combining steps, 

potentially reducing overhead



Analyzing the Graph

The graph also exposes areas where we can potentially reduce 

communication that occurs in the same iteration space 



Final Graph

After analyzing the graph we came up with the following result 



Bottom up Approach, starting from code

While working on the graph we were also working on converting the 

code

This allowed us to find a few discrepancies between what we thought 

was going on and what was actually happening, allowing us to make 

corrections to our CnC graph specification

The first step was to match the sequential code to the outlined steps



Lulesh structure 



Lulesh structure mapped to CnC diagram



Combining steps?

One of the questions we needed the code to answer was when is it 

appropriate to combine steps



Combining steps?

Looking back at our LULESH structure graph, we see that we 

actually had an error in our CnC graph



Combining steps?

The corrected version actually looks like this

Lulesh method Domain modified Domain read Loop CnC Graph Block

IntegrateStressTermsForElems .p, .q Elements IntegrateStressForElems

CollectDomainNodesToElemNodes .x, .y, .z

CalcElemShapeFunctionDerivatives

SumElemFaceNormal

CalcElemNodeNormals

SumElemStressesToNodeForces

IntegrateStressForElems .fx, .fy, .fz

CollectDomainNodesToElemNodes .x, .y, .z Elements CalculateHourglass

VolDer

CalcElemVolumeDerivative

CalcElemFBHourglassForce .fx, .fy, .fz .elemMass, .xd, .yd, 

.zd

CalcFBHourglassForceForElems



Combining steps?

This leads us to a decision on the tradeoff between running our two 

partial computations in parallel vs. combining them.

If we implement the graph as is, compute stress and compute 

hourglass can happen at the same time. 

If we combine the steps, we remove two step collections and two 

data items, reducing overhead



Combining steps?

In our case we chose to combine the steps



Next Steps for CnC and LULESH

We arbitrarily chose when to combine steps based on what we 

thought would be best, but without exhausting testing

One possibility is to automate when steps are combine

If the graph is precise enough, this becomes possible



Initial Performance Results

Our initial CnC implementation produces steps and data items at the 

per element or per node granularity

This unfortunately did not perform well, due to the overhead in 

creating data items

To remedy this we added spatial tiling, combining our elements and 

nodes into super elements and nodes


