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Introduction

I Developed a scheme for Adaptive Mesh
Refinement of a Hydrodynamics
Simulation

I The study of liquids in motion
I Representative of several applications and

interests in scientific computing
I Tendency for very large scale simulations

of non-uniform systems

I Worked with domain experts to develop
general library

I Implemented in Intel’s Concurrent
Collections [1, 2]
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Adaptive Mesh Refinement

I Adaptive Mesh Refinement is a scheme for varying the accuracy of the solution
based on the simulation state [3]

I Any given calculation is only as accurate as needed
I i.e. Dynamically adjust the granularity of a region during execution
I Areas with sharper discontinuities are “refined” to provide greater precision
I Smoother regions are “coarsened” because less precision is needed

I Traditionally performed at either the Cell or Patch level
I A Cell is the finest grain element of the grid
I A Patch is a collection of contiguous Cells with the same refinement level
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Tile-Based AMR [4]

I Grid is divided into Tiles of varying
levels of refinement

I Tiles are rectangular collections of Cells
of uniform refinement

I Every Tile contains the same number
of Cells

I Decision to refine or coarsen made at
the Tile level

I During Refinement and Coarsening,
Tiles are split or merged

I Refinement level corresponds to
physical dimensions of Cells in Tile

I Can be considered a subset of
Patch-Based AMR with stricter rules
regarding refinement
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Challenges of AMR

I Rapidly varying workload
I Refinement and coarsening changes the number and/or weight of tasks

I Non-Uniform Grid
I Need to reconcile differences between refinement levels

I Data Storage
I Need to ensure location of all required data is known and available
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Co-Design

I Non-conventional design philosophy in which domain experts and computer
scientists work in unison

I Traditionally domain experts develop simulations and computer scientists later
optimize or re-implement for performance

I Under co-design, a multi-disciplinary approach is employed
I This work developed as part of the 2014 Los Alamos National Laboratory Co-Design

Summer School
I Multi-disciplinary team approached a problem of interest to the laboratory
I Explored alternative solutions to problem
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Our Approach

I Studied existing approaches
I Settled on use of modern runtime systems and programming models to simplify

problem
I Programming models that are better suited to the underlying science
I Built in mechanisms for load balancing

I Worked with domain experts to make flexible, quad-tree based, AMR library with
modular solvers

I Used library to implement application in multiple programming models and runtimes
I (Intel) Concurrent Collections is one of the models we chose
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High Level Details

I Hydrodynamics simulation of propagation of a shockwave
through system

I Finite Volume Method
I Dimensional Splitting
I Solve 2D Euler Equations with MUSCL-Hancock Scheme [5]

I Tile-based AMR
I Structured via map-based Quadtree [6]
I Morton Encoding (Z-Order) scheme used to provide Tile IDs [7]
I Allows Quadtree to be represented by a map containing only leaves
I Limit the number of different refinement levels to limit error

I Focus on Library Based, Functional, Approach
I Clearly defined interfaces to all aspects
I Modular approach to allow multiple solvers to be used
I So as to facilitate integration with multiple programming models
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The Algorithm

I Determine length of timestep (dt) based on Courant–Friedrichs–Lewy (CFL)
conditions [8]

I Ensures wave does not propagate beyond bounds of tile in a single timestep.

I Update simulation in X-Dimension
I Exchange Ghost Cells
I Perform a sweep on all Cells in Tile
I Apply Flux Corrections at discontinuities in refinement level

I Update simulation in Y-Dimension

I Apply Refinement Strategy to determine need for refinement or coarsening

I Refine and Coarsen as needed
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Refinement and Coarsening

I Overall grid requires 2:1 rule to be enforced
I A given Cell/Tile may have up to two neighbors along any edge
I Drastically simplifies implementation while providing bounds on

error

I Refinement is high priority
I One (parent) Tile Refines into four child Tiles (siblings)
I If refinement violates 2:1, neighbors are also refined until 2:1 is

not violated

I Coarsening is low priority
I Four sibling Tiles Coarsen into one (parent)
I May Coarsen only if all four are flagged to and 2:1 won’t be

violated
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Implementation in CnC

I Generally straightforward

I Communication almost exclusively producer/consumer relationships

I Requires reduction on dt
I Item Collections a good fit

I Underlying quadtree based on map data structure

I Write–once memory problematic for refinement
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A Dimensional Sweep

I A given dimensional sweep is a stencil with very
simple dependencies

I Tile from previous Step
I Ghost Cells from nearest neighbors in the dimension

we are sweeping
I Flux corrections from neighbors in dimension we are

sweeping with finer refinement levels

I Very simple CnC implementation
I Each Tile has a neighbor list
I All dependencies easily expressed through

producer/consumer relationships
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Apply Refinement Strategy

I Uses Cells in Tile to determine if Refinement or Coarsening is needed
I Estimates error based on contents of Tile
I If error is above a threshold, Refinement occurs
I If error is below a threshold, Coarsening occurs

I Specifically, we utilize the scheme developed by Löhner
I Makes need for ghost Cells less important
I Lessens communication

I Also straightforward
I Similar communication pattern to a Dimensional Sweep
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Refinement

I Refinement itself is complicated
I High priority of refinement leads to refinement cascades

I Cascades can trigger additional cascades

I Items are write–once memory

I Need to ensure all Items are written to the correct location
once

I Maximum number of cascades related to number of different
refinement levels

I Every Tile steps through the refinement loop once for each
refinement level

I Ensures that tag of each Tile is known and available and that final

result is in correct location

I Aside from that, fairly straightforward
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Refinement
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Coarsening

I Coarsening much simpler
I Coarsening is low priority

I All four siblings must be flagged to coarsen
I Coarsening must not violate 2:1 rule

I Each sibling locally determines if it can coarsen
I Are all non-sibling neighbors as refined or coarser?
I Do all sibling neighbors exist at the same refinement

level?

I This information is propagated to siblings

I If all four are able, coarsening occurs
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Coarsening
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Reduction on dt

I To satisfy CFL conditions, each Tile locally computes its desired dt for the next
time step

I A reduction is then needed to find the global dt

I A CnC reduction requires knowledge of the number of participants

I The number of tiles varies during execution beause of adaptive mesh refinement
I This is solved through multiple reductions

I One reduction to determine the number of Tiles after refinement and coarsening
I One reduction to obtain minimum dt

I Only need to wait on result of dt reduction
I dt reduction needs to wait on result of tile reduction
I Performance depends heavily on how much of a reduction can occur before the number of

participants is known
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Tuning and Optimizations

I Still ongoing
I Step scheduling (Step Tuners) an open problem

I Simple modulo based scheduling insufficient due to encoding scheme
I Would prefer to have locality, at least, during Coarsening
I Traditional solutions (ParMETIS [9], PT-SCOTCH [10], etc.) are heavyweight

I Garbage Collection (Item Tuners)
I Mostly done
I Need to adjust Refinement and Coarsening branches to avoid accessing Items a varying number

of times

I Make tasks coarser–grained
I Operate on a “branch” instead of a “leaf”
I Guarantees locality during Coarsening
I May lead to more complicated load balancing during Refinement
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Preliminary Results

I Very early results

I Focused on shared memory initially
I Considered two Tile sizes and two physical

problems
I Sod Shock
I Centralized Discontinuity

I Limited to four levels of refinement for memory
purposes

I Tests run on single node of Los Alamos National
Laboratory’s Darwin cluster

I 2 Socket Intel Xeon E5-2650L. 1.8 GHz, 16 physical

cores, 128 GB memory
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Sod Shock
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Centralized Discontinuity
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Suitability of CnC

For this application, CnC was an excellent fit

I Majority of work was a finite volume problem with simple dependencies
I Underlying Data Strucure was built around a Map

I CnC Item Collections were a good fit
I Tag–space Extensions used to handle iterations

I Write–Once Memory was problematic for Refinement
I Workaround includes unnecessary computation and communication

I Built-in debugging and tracing tools invaluable in development of implementation

For other applications, CnC may cause issues

I Not all data structures can be easily represented with a Write–Once map
I Write–Once Memory makes unbounded loops problematic

I Many applications run until convergence criteria are met
I Unclear of efficient way to check those criteria (periodic Reductions?)
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